Symbolic Math Toolbox ${ }^{\text {TM }}$

User's Guide

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
www.mathworks.com
www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Symbolic Math Toolbox ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 1993-2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

Revision History

August 1993 First printing
October 1994 Second printing
May 1997
May 2000
Third printing
June 2001
July 2002
Fifth printing Online only
October 2002
Online only
December 2002 Sixth printing
June 2004 Seventh printing
October 2004 Online only
March 2005 Online only
September 2005 Online only
March 2006 Online only
September 2006 Online only
March 2007 Online only
September 2007 Online only
March 2008 Online only
October 2008 Online only
October 2008 Online only
November 2008 Online only
March 2009 Online only
September 2009 Online only
March 2010 Online only
September 2010 Online only
April 2011 Online only
September 2011 Online only
March 2012 Online only
September 2012 Online only
March 2013 Online only
September 2013 Online only
March 2014 Online only
October 2014 Online only
March 2015
Online only
September 2015 Online only
March 2016 Online only
September 2016 Online only
March 2017 Online only
September 2017 Online only
March 2018 Online only

Revised for Version 2
Minor changes
Minor changes
Revised for Version 2.1.3 (Release 13)
Revised for Version 3.0.1
Revised for Version 3.1 (Release 14)
Revised for Version 3.1.1 (Release 14SP1)
Revised for Version 3.1.2 (Release 14SP2)
Revised for Version 3.1.3 (Release 14SP3)
Revised for Version 3.1.4 (Release 2006a)
Revised for Version 3.1.5 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.2.2 (Release 2007b)
Revised for Version 3.2.3 (Release 2008a)
Revised for Version 5.0 (Release 2008a+)
Revised for Version 5.1 (Release 2008b)
Revised for Version 4.9 (Release 2007b+)
Revised for Version 5.2 (Release 2009a)
Revised for Version 5.3 (Release 2009b)
Revised for Version 5.4 (Release 2010a)
Revised for Version 5.5 (Release 2010b)
Revised for Version 5.6 (Release 2011a)
Revised for Version 5.7 (Release 2011b)
Revised for Version 5.8 (Release 2012a)
Revised for Version 5.9 (Release 2012b)
Revised for Version 5.10 (Release 2013a)
Revised for Version 5.11 (Release 2013b)
Revised for Version 6.0 (Release 2014a)
Revised for Version 6.1 (Release 2014b)
Revised for Version 6.2 (Release 2015a)
Revised for Version 6.3 (Release 2015b)
Revised for Version 7.0 (Release 2016a)
Revised for Version 7.1 (Release 2016b)
Revised for Version 7.2 (Release 2017a)
Revised for Version 8.0 (Release 2017b)
Revised for Version 8.1 (Release 2018a)
Symbolic Math Toolbox Product Description 1-2
Key Features 1-2
Create Symbolic Numbers, Variables, and Expressions 1-3
Create Symbolic Numbers 1-3
Create Symbolic Variables 1-4
Create Symbolic Expressions 1-4
Reuse Names of Symbolic Objects 1-5
Create Symbolic Functions 1-7
Create Symbolic Matrices 1-9
Use Existing Symbolic Variables 1-9
Generate Elements While Creating a Matrix $1-10$
Create Matrix of Symbolic Numbers 1-10
Perform Symbolic Computations 1-12
Differentiate Symbolic Expressions 1-12
Integrate Symbolic Expressions 1-13
Solve Equations 1-15
Simplify Symbolic Expressions 1-17
Substitutions in Symbolic Expressions 1-18
Plot Symbolic Functions 1-22
Use Assumptions on Symbolic Variables 1-28
Default Assumption 1-28
Set Assumptions 1-28
Check Existing Assumptions 1-29
Delete Symbolic Objects and Their Assumptions 1-29

Using Symbolic Math Toolbox Software

2
Find Symbolic Variables in Expressions, Functions, Matrices 2-3
Find a Default Symbolic Variable 2-4
Units of Measurement Tutorial 2-5
Define and Convert Units 2-5
Use Temperature Units in Absolute or Difference Forms 2-6
Verify Dimensions 2-7
Use Units in Differential Equations 2-9
Units and Unit Systems List 2-13
Units List 2-13
SI Unit Prefixes List 2-27
Unit Systems List 2-28
Unit Conversions and Unit Systems 2-31
Convert Units 2-31
Temperature Unit Conversion 2-32
Convert to SI, CGS, or US Unit Systems 2-33
Define Custom Unit System from Existing System 2-35
Define Custom Unit System Directly 2-37
Unit System Definition 2-38
Differentiation 2-40
Derivatives of Expressions with Several Variables 2-41
More Examples 2-42
Functional Derivatives Tutorial 2-46
Limits 2-54
One-Sided Limits 2-54
Integration 2-57
Integration with Real Parameters 2-60
Integration with Complex Parameters 2-62
High-Precision Numerical Integration Using Variable-Precision Arithmetic 2-63
Symbolic Summation 2-65
Comparing symsum and sum 2-65
Computational Speed of symsum versus sum 2-66
Output Format Differences Between symsum and sum 2-66
Taylor Series 2-68
Padé Approximant 2-71
Find Asymptotes, Critical and Inflection Points 2-80
Define a Function 2-80
Find Asymptotes 2-81
Find Maximum and Minimum 2-82
Find Inflection Point 2-84
Simplify Symbolic Expressions 2-87
Simplify Using Options 2-89
Simplify Using Assumptions 2-91
Simplify Fractions 2-91
Abbreviate Common Terms in Long Expressions 2-93
Choose Function to Rearrange Expression 2-95
Combine Terms of Same Algebraic Structures 2-95
Expand Expressions 2-97
Factor Expressions 2-98
Extract Subexpressions from Expression 2-100
Collect Terms with Same Powers 2-101
Rewrite Expressions in Terms of Other Functions 2-102
Compute Partial Fraction Decompositions of Expressions 2-103
Compute Normal Forms of Rational Expressions 2-104
Represent Polynomials Using Horner Nested Forms 2-104
Extract Numerators and Denominators of Rational Expressions 2-106
Substitute Variables in Symbolic Expressions 2-108
Substitute Elements in Symbolic Matrices 2-110
Substitute Scalars with Matrices 2-112
Evaluate Symbolic Expressions Using subs 2-114
Choose Symbolic or Numeric Arithmetic 2-115
Symbolic Arithmetic 2-115
Variable-Precision Arithmetic 2-115
Double-Precision Arithmetic 2-116
Increase Precision of Numeric Calculations 2-117
Recognize and Avoid Round-Off Errors 2-119
Use Symbolic Computations When Possible 2-119
Perform Calculations with Increased Precision 2-120
Compare Symbolic and Numeric Results 2-122
Plot the Function or Expression 2-122
Increase Speed by Reducing Precision 2-124
Numeric to Symbolic Conversion 2-126
Conversion to Rational Symbolic Form 2-128
Conversion by Using Floating-Point Expansion 2-128
Conversion to Rational Symbolic Form with Error Term 2-128
Conversion to Decimal Form 2-129
Basic Algebraic Operations 2-130
Linear Algebraic Operations 2-132
Eigenvalues 2-137
Jordan Canonical Form 2-142
Singular Value Decomposition 2-144
Solve Algebraic Equation 2-146
Solve an Equation 2-146
Return the Full Solution to an Equation 2-147
Work with the Full Solution, Parameters, and Conditions Returned by solve 2-147
Visualize and Plot Solutions Returned by solve 2-148
Simplify Complicated Results and Improve Performance 2-151
Solve Differential Equation Numerically 2-152
Select Numeric or Symbolic Solver $\mathbf{2 - 1 5 5}$
Solve System of Algebraic Equations 2-157
Handle the Output of solve 2-157
Solve a Linear System of Equations 2-159
Return the Full Solution of a System of Equations 2-160
Solve a System of Equations Under Conditions 2-162
Work with Solutions, Parameters, and Conditions Returned by solve 2-163
Convert Symbolic Results to Numeric Values 2-167
Simplify Complicated Results and Improve Performance 2-167
Troubleshoot Equation Solutions from solve Function 2-168
Return Only Real Solutions 2-168
Apply Simplification Rules 2-168
Use Assumptions to Narrow Results 2-169
Simplify Solutions 2-171
Tips 2-171
Solve System of Linear Equations 2-173
Solve System of Linear Equations Using linsolve 2-173
Solve System of Linear Equations Using solve 2-174
Solve Equations Numerically 2-176
Find All Roots of a Polynomial Function 2-176
Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points 2-177
Obtain Solutions to Arbitrary Precision 2-181
Solve Multivariate Equations Using Search Ranges 2-182
Solve Differential Equation 2-187
First-Order Linear ODE 2-187
Solve Differential Equation with Condition 2-188
Nonlinear Differential Equation with Initial Condition 2-188
Second-Order ODE with Initial Conditions 2-188
Third-Order ODE with Initial Conditions 2-189
More ODE Examples 2-190
Solve a System of Differential Equations 2-192
Solve System of Differential Equations 2-192
Solve Differential Equations in Matrix Form 2-194
Solve Differential Algebraic Equations (DAEs) 2-198
Step 1. Specify Equations and Variables 2-198
Step 2. Reduce Differential Order 2-200
Step 3. Check and Reduce Differential Index 2-202
Step 4. Convert DAE Systems to MATLAB Function Handles 2-204
Step 5. Find Initial Conditions For Solvers 2-204
Step 6. Solve DAEs Using ode15i 2-206
Solve Semilinear DAE System 2-210
Step 1. Reduce Differential Index with reduceDAEToODE 2-210
Step 2. ODEs to Function Handles for ode15s and ode23t 2-211
Step 3. Initial Conditions for ode15s and ode23t 2-212
Step 4. Solve an ODE System with ode15s or ode23t 2-214
Solve DAEs Using Mass Matrix Solvers 2-218
Step 1. Convert DAEs to Function Handles 2-218
Step 2. Find Initial Conditions 2-219
Step 3. Solve DAE System 2-221
Fourier and Inverse Fourier Transforms 2-225
Fourier Transform Definition 2-225
Concept: Using Symbolic Workflows 2-225
Calculate Beam Deflection Using Fourier Transform 2-226
Solve Differential Equations Using Laplace Transform 2-230
Definition: Laplace Transform 2-230
Concept: Using Symbolic Workflows 2-230
Workflow: Solve RLC Circuit Using Laplace Transform 2-230
Solve Difference Equations Using Z-Transform 2-238
Definition: Z-transform 2-238
Concept: Using Symbolic Workflows 2-238
Workflow: Solve "Rabbit Growth" Problem Using Z-Transform 2-238
References 2-243
Create Plots 2-245
Plot with Symbolic Plotting Functions 2-245
Plot Functions Numerically 2-247
Plot Multiple Symbolic Functions in One Graph 2-248
Plot Multiple Symbolic Functions in One Figure 2-250
Combine Symbolic Function Plots and Numeric Data Plots 2-252
Combine Numeric and Symbolic Plots in 3-D 2-254
Generate C or Fortran Code from Symbolic Expressions 2-257
Generate MATLAB Functions from Symbolic Expressions 2-259
Generating a Function Handle 2-259
Control the Order of Variables 2-260
Generate a File 2-260
Name Output Variables 2-262
Generate MATLAB Function Blocks from Symbolic Expressions 2-263
Generate and Edit a Block 2-263
Control the Order of Input Ports 2-264
Name the Output Ports 2-264
Generate Simscape Equations from Symbolic Expressions 2-265
Convert Algebraic and Differential Equations 2-265
Limitations 2-267
MuPAD in Symbolic Math Toolbox
3
MuPAD Engines and MATLAB Workspace 3-2
Create MuPAD Notebooks 3-3
If You Need Communication Between Interfaces 3-3
If You Use MATLAB to Access MuPAD 3-4
Open MuPAD Notebooks 3-6
If You Need Communication Between Interfaces 3-7
If You Use MATLAB to Access MuPAD 3-8
Open MuPAD Program Files and Graphics 3-9
Save MuPAD Notebooks 3-12
Evaluate MuPAD Notebooks from MATLAB 3-13
Close MuPAD Notebooks from MATLAB 3-17
Convert MuPAD Notebooks to MATLAB Live Scripts 3-19
Convert a MuPAD Notebook .mn to a MATLAB Live Script .mlx 3-19
Convert MuPAD Graphics to MATLAB Graphics 3-20
Known Issues 3-20
Troubleshoot MuPAD to MATLAB Translation Errors 3-25
Troubleshoot MuPAD to MATLAB Translation Warnings 3-35
Edit MuPAD Code in MATLAB Editor 3-44
Comments in MuPAD Procedures 3-45
Notebook Files and Program Files 3-47
Source Code of the MuPAD Library Functions 3-49
Differences Between MATLAB and MuPAD Syntax 3-50
Copy Variables and Expressions Between MATLAB and MuPAD 3-53
Copy and Paste Using the System Clipboard 3-55
Reserved Variable and Function Names 3-57
Call Built-In MuPAD Functions from MATLAB 3-59
evalin 3-59
feval 3-59
evalin vs. feval 3-60
Floating-Point Arguments of evalin and feval 3-61
Use Your Own MuPAD Procedures 3-63
Write MuPAD Procedures 3-63
Steps to Take Before Calling a Procedure 3-64
Call Your Own MuPAD Procedures 3-65
Clear Assumptions and Reset the Symbolic Engine 3-68
Check Assumptions Set On Variables 3-69
Effects of Assumptions on Computations 3-70
Create MATLAB Functions from MuPAD Expressions 3-72
Copy MuPAD Variables to the MATLAB Workspace 3-73
Generate MATLAB Code in a MuPAD Notebook 3-74
Create MATLAB Function Blocks from MuPAD Expressions 3-76
Create Simscape Equations from MuPAD Expressions 3-78
GenerateSimscape Equations in the MuPAD Notebook App 3-79
Generate Simscape Equations in the MATLAB Command
Window 3-79
Functions - Alphabetical List

Getting Started

- "Symbolic Math Toolbox Product Description" on page 1-2
- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Functions" on page 1-7
- "Create Symbolic Matrices" on page 1-9
- "Perform Symbolic Computations" on page 1-12
- "Use Assumptions on Symbolic Variables" on page 1-28

Symbolic Math Toolbox Product Description

 Perform symbolic math computationsSymbolic Math Toolbox provides functions for solving, plotting, and manipulating symbolic math equations. You can create, run, and share symbolic math code using the MATLAB Live Editor. The toolbox provides functions in common mathematical areas such as calculus, linear algebra, algebraic and ordinary differential equations, equation simplification, and equation manipulation.

Symbolic Math Toolbox lets you analytically perform differentiation, integration, simplification, transforms, and equation solving. You can perform dimensional computations and conversions using SI and US unit systems. Your computations can be performed either analytically or using variable-precision arithmetic, with the results displayed in mathematical typeset.

You can share your symbolic work with other MATLAB users as live scripts or convert them to HTML or PDF for publication. You can generate MATLAB functions, Simulink® function blocks, and Simscape ${ }^{\text {TM }}$ equations directly from symbolic expressions.

Key Features

- Symbolic integration, differentiation, transforms, and linear algebra
- Algebraic and ordinary differential equation (ODE) solvers
- Simplification and manipulation of symbolic expressions
- Unit systems for specifying, converting, and computing using SI, US, and custom unit systems
- Plotting of analytical functions in 2D and 3D
- Symbolic expression conversion to MATLAB, Simulink, Simscape, C, Fortran, and LaTeX code
- Variable-precision arithmetic

Create Symbolic Numbers, Variables, and Expressions

This page shows how to create symbolic numbers, variables, and expressions. To learn how to work with symbolic math, see "Perform Symbolic Computations" on page 1-12.

Create Symbolic Numbers

You can create symbolic numbers by using sym. Symbolic numbers are exact representations, unlike floating-point numbers.

Create a symbolic number by using sym and compare it to the same floating-point number.

```
sym(1/3)
1/3
ans =
1/3
ans =
    0.3333
```

The symbolic number is represented in exact rational form, while the floating-point number is a decimal approximation. The symbolic result is not indented, while the standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding sin(pi) symbolically and numerically. The symbolic result is exact, while the numeric result is an approximation.

```
sin(sym(pi))
sin(pi)
ans =
0
ans =
    1.2246e-16
```

To learn more about symbolic representation of numbers, see "Numeric to Symbolic Conversion" on page 2-126.

Create Symbolic Variables

You can use two ways to create symbolic variables, syms and sym. The syms syntax is a shorthand for sym.

Create symbolic variables x and y using syms and sym respectively.
syms x
$y=\operatorname{sym}(' y$ ')
The first command creates a symbolic variable x in the MATLAB workspace with the value x assigned to the variable x. The second command creates a symbolic variable y with value y. Therefore, the commands are equivalent.

With syms, you can create multiple variables in one command. Create the variables a, b, and c .

```
syms a b c
```

If you want to create many variables, the syms syntax is inconvenient. Instead of using syms, use sym to create many numbered variables.

Create the variables a1, ..., a20.
A $=\operatorname{sym}(' a ',[120])$
A $=$
[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,...
a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]
The syms command is a convenient shorthand for the sym syntax. Use the sym syntax when you create many variables, when the variable value differs from the variable name, or when you create a symbolic number, such as sym (5).

Create Symbolic Expressions

Suppose you want to use a symbolic variable to represent the golden ratio

$$
\varphi=\frac{1+\sqrt{5}}{2}
$$

The command

```
phi = (1 + sqrt(sym(5)))/2;
```

achieves this goal. Now you can perform various mathematical operations on phi. For example,

```
f = phi^2 - phi - 1
```

returns

```
f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2
```

Now suppose you want to study the quadratic function $f=a x^{2}+b x+c$. First, create the symbolic variables a, b, c, and x :

```
syms a b c x
```

Then, assign the expression to f :
$f=a * x^{\wedge} 2+b * x+c ;$

Tip To create a symbolic number, use the sym command. Do not use the syms function to create a symbolic expression that is a constant. For example, to create the expression whose value is 5 , enter $f=\operatorname{sym}(5)$. The command $f=5$ does not define f as a symbolic expression.

Reuse Names of Symbolic Objects

If you set a variable equal to a symbolic expression, and then apply the syms command to the variable, MATLAB software removes the previously defined expression from the variable. For example,

```
syms a b
f = a + b
```

returns
$f=$
$a+b$
If later you enter

```
syms f
f
then MATLAB removes the value a + b from the expression f:
f =
f
```

You can use the syms command to clear variables of definitions that you previously assigned to them in your MATLAB session. However, syms does not clear the following assumptions of the variables: complex, real, integer, and positive. These assumptions are stored separately from the symbolic object. For more information, see "Delete Symbolic Objects and Their Assumptions" on page 1-29.

See Also

More About

- "Create Symbolic Functions" on page 1-7
- "Create Symbolic Matrices" on page 1-9
- "Perform Symbolic Computations" on page 1-12
- "Use Assumptions on Symbolic Variables" on page 1-28

Create Symbolic Functions

Symbolic functions represent math functions. Use symbolic functions for differentiation, integration, solving ODEs, and other math operations. Create symbolic functions by using syms.

Create a symbolic function f with variables x and y by using syms. Creating f automatically creates x and y.
syms $f(x, y)$
Assign a mathematical expression to f .

```
f(x,y) = x^2*y
f(x, y) =
x^2*y
```

Find the value of f at $(3,2)$.
f(3,2)
ans $=$
18
Symbolic functions accept array inputs. Calculate f for multiple values of x and y.

```
xVal = 1:5;
yVal = 3:7;
f(xVal,yVal)
ans =
[ 3, 16, 45, 96, 175]
```

You can differentiate symbolic functions, integrate or simplify them, substitute their arguments with values, and perform other mathematical operations. For example, find the derivative of $f(x, y)$ with respect to x. The result $d f x$ is also a symbolic function.

```
dfx = diff(f,x)
dfx(x,y) =
2*x*y
```

Calculate $\mathrm{df}(\mathrm{x}, \mathrm{y})$ at $\mathrm{x}=\mathrm{y}+1$.

```
dfx(y+1,y)
ans =
2*y*(y + 1)
```

If you are creating a constant function, such as $f(x, y)=1$, you must first create $f(x, y)$. If you do not create $f(x, y)$, then the assignment $f(x, y)=1$ throws an error.

See Also

More About

- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Matrices" on page 1-9
- "Perform Symbolic Computations" on page 1-12
- "Use Assumptions on Symbolic Variables" on page 1-28

Create Symbolic Matrices

```
In this section...
"Use Existing Symbolic Variables" on page 1-9
"Generate Elements While Creating a Matrix" on page 1-10
"Create Matrix of Symbolic Numbers" on page 1-10
```


Use Existing Symbolic Variables

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries one step forward. For example, create the symbolic circulant matrix whose elements are a, b, and c, using the commands:

```
syms a b c
A = [a b c; c a b; b c a]
A =
[ a, b, c]
[ c, a, b]
[ b, c, a]
```

Since matrix A is circulant, the sum of elements over each row and each column is the same. Find the sum of all the elements of the first row:

```
sum(A(1,:))
ans =
a + b + c
```

To check if the sum of the elements of the first row equals the sum of the elements of the second column, use the isAlways function:

```
isAlways(sum(A(1,:)) == sum(A(:,2)))
```

The sums are equal:

```
ans =
    logical
    1
```

From this example, you can see that using symbolic objects is very similar to using regular MATLAB numeric objects.

Generate Elements While Creating a Matrix

The sym function also lets you define a symbolic matrix or vector without having to define its elements in advance. In this case, the sym function generates the elements of a symbolic matrix at the same time that it creates a matrix. The function presents all generated elements using the same form: the base (which must be a valid variable name), a row index, and a column index. Use the first argument of sym to specify the base for the names of generated elements. You can use any valid variable name as a base. To check whether the name is a valid variable name, use the isvarname function. By default, sym separates a row index and a column index by underscore. For example, create the 2 -by- 4 matrix A with the elements A1_1, ..., A2_4:

A = sym('A', [2 4])
A $=$
[A1_1, A1_2, A1_3, A1_4]
[$\left.A 2^{-} 1, A 2_{2}^{-} 2, A 2 _3, A 2_{-}^{-} 4\right]$
To control the format of the generated names of matrix elements, use \%d in the first argument:
$A=\operatorname{sym}\left({ }^{\prime} A \% d \% d^{\prime},\left[\begin{array}{ll}2 & 4]\end{array}\right)\right.$
A =
[A11, A12, A13, A14]
[A21, A22, A23, A24]

Create Matrix of Symbolic Numbers

A particularly effective use of sym is to convert a matrix from numeric to symbolic form. The command

A = hilb(3)
generates the 3-by-3 Hilbert matrix:

$A=$| | | |
| :--- | :--- | :--- |
| | 1.0000 | 0.5000 |
| | 0.5000 | 0.3333 |
| | 0.3333 | 0.2500 |
| | 0.2500 | |
| | | 0.2000 |

By applying sym to A
$A=\operatorname{sym}(A)$
you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

```
A =
[ 1, 1/2, 1/3]
1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
```

For more information on numeric to symbolic conversions, see "Numeric to Symbolic Conversion" on page 2-126.

See Also

More About

- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Functions" on page 1-7
- "Perform Symbolic Computations" on page 1-12
- "Use Assumptions on Symbolic Variables" on page 1-28

Perform Symbolic Computations

In this section...

"Differentiate Symbolic Expressions" on page 1-12
"Integrate Symbolic Expressions" on page 1-13
"Solve Equations" on page 1-15
"Simplify Symbolic Expressions" on page 1-17
"Substitutions in Symbolic Expressions" on page 1-18
"Plot Symbolic Functions" on page 1-22

Differentiate Symbolic Expressions

With the Symbolic Math Toolbox software, you can find

- Derivatives of single-variable expressions
- Partial derivatives
- Second and higher order derivatives
- Mixed derivatives

For in-depth information on taking symbolic derivatives see "Differentiation" on page 240.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following example illustrates how to take a first derivative of a symbolic expression:

```
syms x
f = sin(x)^2;
diff(f)
ans =
2*\operatorname{cos(x)*sin(x)}
```


Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not specify any variable, MATLAB chooses a default variable by its proximity to the letter x:

```
syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)
ans =
2*\operatorname{cos(x)*sin(x)}
```

For the complete set of rules MATLAB applies for choosing a default variable, see "Find a Default Symbolic Variable" on page 2-4.

To differentiate the symbolic expression f with respect to a variable y, enter:

```
syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y)
ans =
-2*}\operatorname{cos}(y)*\operatorname{sin}(y
```


Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y, enter:

```
syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)
ans =
2*sin(y)^2 - 2*}\operatorname{cos}(y)^
```

You get the same result by taking derivative twice: $\operatorname{diff(diff(f,y)).~To~take~mixed~}$ derivatives, use two differentiation commands. For example:

```
syms x y
f = sin(x)^2 + \operatorname{cos}(y\mp@subsup{)}{}{\wedge}2;
diff(diff(f, y), x)
ans =
0
```


Integrate Symbolic Expressions

You can perform symbolic integration including:

- Indefinite and definite integration
- Integration of multivariable expressions

For in-depth information on the int command including integration with real and complex parameters, see "Integration" on page 2-57.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the symbolic expression:
syms x
$f=\sin (x)^{\wedge} 2$;
To find the indefinite integral, enter
int (f)
ans =
$x / 2-\sin (2 * x) / 4$

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of integration. If you do not specify any variable, MATLAB chooses a default variable by the proximity to the letter x :

```
syms x y n
f = x^n + y^n;
int(f)
ans =
x*y^n + (x*x^n)/(n + 1)
```

For the complete set of rules MATLAB applies for choosing a default variable, see "Find a Default Symbolic Variable" on page 2-4.

You also can integrate the expression $f=x^{\wedge} n+y^{\wedge} n$ with respect to y

```
syms x y n
f = x^n + y^n;
int(f, y)
ans =
x^n*y + (y*y^n)/(n + 1)
```

If the integration variable is n, enter

```
syms x y n
f = x^n + y^n;
int(f, n)
ans =
x^n/log}(x)+\mp@subsup{y}{}{\wedge}n/log(y
```


Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the int function:

```
syms x y n
f = x^n + y^n;
int(f, 1, 10)
ans =
piecewise(n == -1, log(10) + 9/y, n ~= -1,...
    (10*10^n - 1)/(n + 1) + 9*y^n)
```


If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, it returns an unresolved integral:

```
syms x
int(sin(sinh(x)))
ans =
int(sin(sinh(x)), x)
```


Solve Equations

You can solve different types of symbolic equations including:

- Algebraic equations with one symbolic variable
- Algebraic equations with several symbolic variables
- Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations, see "Equation Solving".

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can solve the equation by calling the solve function. For example, solve this equation:

```
syms x
solve(x^3 - 6*x^2 == 6 - 11*x)
ans =
    1
2
3
```

If you do not specify the right side of the equation, solve assumes that it is zero:

```
syms x
solve(x^3 - 6*x^2 + 11*x - 6)
ans =
    1
2
3
```


Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which this equation should be solved. For example, solve this multivariable equation with respect to y :

```
syms x y
solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)
ans =
        1
    2*x
    -3*x
```

If you do not specify any variable, you get the solution of an equation for the alphabetically closest to x variable. For the complete set of rules MATLAB applies for choosing a default variable see "Find a Default Symbolic Variable" on page 2-4.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:

```
syms x y z
[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)
x =
    0
    2
y =
    0
    2
z =
    0
    8
```


Simplify Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you to manipulate the output of a symbolic expression. For example, the following polynomial of the golden ratio phi

```
phi = (1 + sqrt(sym(5)))/2;
```

f = phi^2 - phi - 1
returns

```
f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2
```

You can simplify this answer by entering

```
simplify(f)
```

and get a very short answer:
ans $=$
0

Symbolic simplification is not always so straightforward. There is no universal simplification function, because the meaning of a simplest representation of a symbolic expression cannot be defined clearly. Different problems require different forms of the same mathematical expression. Knowing what form is more effective for solving your particular problem, you can choose the appropriate simplification function.

For example, to show the order of a polynomial or symbolically differentiate or integrate a polynomial, use the standard polynomial form with all the parentheses multiplied out and all the similar terms summed up. To rewrite a polynomial in the standard form, use the expand function:

```
syms x
f = (x^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)
ans =
x^10 - 1
```

The factor simplification function shows the polynomial roots. If a polynomial cannot be factored over the rational numbers, the output of the factor function is the standard polynomial form. For example, to factor the third-order polynomial, enter:

```
syms x
g = x^3 + 6* x^2 + 11*x + 6;
factor(g)
ans =
[ x + 3, x + 2, x + 1]
```

The nested (Horner) representation of a polynomial is the most efficient for numerical evaluations:

```
syms x
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)
ans =
x*(x*}(\mp@subsup{x}{}{*}(\mp@subsup{x}{}{*}(x+1)+1)+1) + 1
```

For a list of Symbolic Math Toolbox simplification functions, see "Choose Function to Rearrange Expression" on page 2-95.

Substitutions in Symbolic Expressions

Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function. For example, evaluate the symbolic expression f at the point $x=1 / 3$:

```
syms x
f=2*x^2 - 3*x + 1;
subs(f, 1/3)
ans =
2/9
```

The subs function does not change the original expression f :

```
f
f =
2*x^2 - 3*x + 1
```


Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for which you want to make the substitution. For example, to substitute the value $x=3$ in the symbolic expression

```
syms x y
f = x^2*y + 5*x*sqrt(y);
```

enter the command
subs(f, x, 3)
ans $=$
$9 * y+15 * y^{\wedge}(1 / 2)$

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example to replace the variable y with the variable x, enter

```
subs(f, y, x)
ans =
x^3 + 5* x^(3/2)
```


Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients. There are two ways to substitute a matrix into a polynomial: element by element and according to matrix multiplication rules.

Element-by-Element Substitution

To substitute a matrix at each element, use the subs command:

```
syms x
f = x^3 - 15*x^2 - 24*x + 350;
A = [1 2 3; 4 5 6];
subs(f,A)
ans =
[ 312, 250, 170]
[ 78, -20, -118]
```

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix multiplication rules, a matrix must be square. For example, you can substitute the magic square A into a polynomial f:

1 Create the polynomial:

```
syms x
f= x^3 - 15*x^2 - 24*x + 350;
```

2 Create the magic square matrix:

```
A = magic(3)
A =
\begin{tabular}{lll}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{tabular}
```

3 Get a row vector containing the numeric coefficients of the polynomial f :
b = sym2poly(f)
b =
$\begin{array}{llll}1 & -15 & -24 & 350\end{array}$
4 Substitute the magic square matrix A into the polynomial f. Matrix A replaces all occurrences of x in the polynomial. The constant times the identity matrix eye (3) replaces the constant term of f :

A^3 - 15*A^2 - 24*A + 350*eye(3)

```
ans =
\begin{tabular}{rrr}
-10 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -10
\end{tabular}
```

The polyvalm command provides an easy way to obtain the same result:

```
polyvalm(b,A)
ans =
\begin{tabular}{rrr}
-10 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -10
\end{tabular}
```


Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs command. Suppose you want to replace some of the elements of a symbolic circulant matrix A

```
syms a b c
A = [a b c; c a b; b c a]
A =
[ a, b, c]
[ c, a, b]
[ b, c, a]
```

To replace the $(2,1)$ element of A with beta and the variable b throughout the matrix with variable alpha, enter

```
alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)
```

The result is the matrix:

```
\(A=\)
[ a, alpha, c]
beta, a, alpha]
[ alpha, c, a]
```

For more information, see "Substitute Elements in Symbolic Matrices" on page 2-110.

Plot Symbolic Functions

Symbolic Math Toolbox provides the plotting functions:

- fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian coordinates.
- fplot3 to create 3-D parametric plots.
- ezpolar to create plots in polar coordinates.
- fsurf to create surface plots.
- fcontour to create contour plots.
- fmesh to create mesh plots.

Explicit Function Plot

Create a 2-D line plot by using fplot. Plot the expression $x^{3}-6 x^{2}+11 x-6$.
syms x
$\mathrm{f}=\mathrm{x}^{\wedge} 3-6 * \mathrm{x}^{\wedge} 2+11 * x-6$;
fplot(f)

Add labels for the x- and y-axes. Generate the title by using texlabel (f). Show the grid by using grid on. For details, see "Add Title, Axis Labels, and Legend to Graph" (MATLAB).

```
xlabel('x')
ylabel('y')
title(texlabel(f))
grid on
```


Implicit Function Plot

Plot equations and implicit functions using fimplicit.
Plot the equation $\left(x^{2}+y^{2}\right)^{4}=\left(x^{2}-y^{2}\right)^{2}$ over $-1<x<1$.
syms x y
eqn $=\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge} 4==\left(x^{\wedge} 2-y^{\wedge} 2\right)^{\wedge} 2$; fimplicit(eqn, [-1 1])

3-D Plot

Plot 3-D parametric lines by using fplot3.
Plot the parametric line

$$
\begin{gathered}
x=t^{2} \sin (10 t) \\
y=t^{2} \cos (10 t) \\
z=t .
\end{gathered}
$$

syms t
fplot3(t^2*sin(10*t), t^2* $\cos (10 * t), t)$

Create Surface Plot

Create a 3-D surface by using fsurf.
Plot the paraboloid $z=x^{2}+y^{2}$.
syms x y
fsurf($\left.x^{\wedge} 2+y^{\wedge} 2\right)$

See Also

More About

- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Functions" on page 1-7
- "Create Symbolic Matrices" on page 1-9
- "Use Assumptions on Symbolic Variables" on page 1-28

Use Assumptions on Symbolic Variables

In this section...

"Default Assumption" on page 1-28
"Set Assumptions" on page 1-28
"Check Existing Assumptions" on page 1-29
"Delete Symbolic Objects and Their Assumptions" on page 1-29

Default Assumption

In Symbolic Math Toolbox, symbolic variables are complex variables by default. For example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if a symbolic variable is assumed to be complex or real by using assumptions. If z is complex, assumptions (z) returns an empty symbolic object:

```
assumptions(z)
```

ans =
Empty sym: 1-by-0

Set Assumptions

To set an assumption on a symbolic variable, use the assume function. For example, assume that the variable x is nonnegative:

```
syms x
assume(x >= 0)
```

assume replaces all previous assumptions on the variable with the new assumption. If you want to add a new assumption to the existing assumptions, use assumeAlso. For example, add the assumption that x is also an integer. Now the variable x is a nonnegative integer:

```
assumeAlso(x,'integer')
```

assume and assumeAlso let you state that a variable or an expression belongs to one of these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using sym or syms. For example, create the real symbolic variables a and b, and the positive symbolic variable c:

```
a = sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');
```

or more efficiently:
syms a b real
syms c positive

The assumptions that you can assign to a symbolic object with sym or syms are real, rational, integer and positive.

Check Existing Assumptions

To see all assumptions set on a symbolic variable, use the assumptions function with the name of the variable as an input argument. For example, this command returns the assumptions currently used for the variable x :

```
assumptions(x)
```

To see all assumptions used for all symbolic variables in the MATLAB workspace, use assumptions without input arguments:
assumptions
For details, see "Check Assumptions Set On Variables" on page 3-69.

Delete Symbolic Objects and Their Assumptions

Symbolic objects and their assumptions are stored separately. When you set an assumption that x is real using
syms x
assume (x, 'real')
you actually create a symbolic object x and the assumption that the object is real. The object is stored in the MATLAB workspace, and the assumption is stored in the symbolic engine. When you delete a symbolic object from the MATLAB workspace using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a new symbolic variable x later, it inherits the assumption that x is real instead of getting a default assumption. If later you solve an equation and simplify an expression with the symbolic variable x, you could get incomplete results. For example, the assumption that x is real causes the polynomial $x^{2}+1$ to have no roots:

```
syms x real
clear x
syms x
solve(x^2 + 1 == 0, x)
ans =
Empty sym: 0-by-1
```

The complex roots of this polynomial disappear because the symbolic variable x still has the assumption that x is real stored in the symbolic engine. To clear the assumption, enter

```
assume(x,'clear')
```

After you clear the assumption, the symbolic object stays in the MATLAB workspace. If you want to remove both the symbolic object and its assumption, use two subsequent commands:

1 To clear the assumption, enter
assume(x,'clear')
2 To delete the symbolic object, enter
clear x
For details on clearing symbolic variables, see "Clear Assumptions and Reset the Symbolic Engine" on page 3-68.

See Also

More About

- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Functions" on page 1-7
- "Create Symbolic Matrices" on page 1-9
- "Perform Symbolic Computations" on page 1-12

Using Symbolic Math Toolbox Software

- "Find Symbolic Variables in Expressions, Functions, Matrices" on page 2-3
- "Units of Measurement Tutorial" on page 2-5
- "Units and Unit Systems List" on page 2-13
- "Unit Conversions and Unit Systems" on page 2-31
- "Differentiation" on page 2-40
- "Functional Derivatives Tutorial" on page 2-46
- "Limits" on page 2-54
- "Integration" on page 2-57
- "Symbolic Summation" on page 2-65
- "Taylor Series" on page 2-68
- "Padé Approximant" on page 2-71
- "Find Asymptotes, Critical and Inflection Points" on page 2-80
- "Simplify Symbolic Expressions" on page 2-87
- "Abbreviate Common Terms in Long Expressions" on page 2-93
- "Choose Function to Rearrange Expression" on page 2-95
- "Extract Numerators and Denominators of Rational Expressions" on page 2-106
- "Substitute Variables in Symbolic Expressions" on page 2-108
- "Substitute Elements in Symbolic Matrices" on page 2-110
- "Substitute Scalars with Matrices" on page 2-112
- "Evaluate Symbolic Expressions Using subs" on page 2-114
- "Choose Symbolic or Numeric Arithmetic" on page 2-115
- "Increase Precision of Numeric Calculations" on page 2-117
- "Recognize and Avoid Round-Off Errors" on page 2-119
- "Increase Speed by Reducing Precision" on page 2-124
- "Numeric to Symbolic Conversion" on page 2-126
- "Basic Algebraic Operations" on page 2-130
- "Linear Algebraic Operations" on page 2-132
- "Eigenvalues" on page 2-137
- "Jordan Canonical Form" on page 2-142
- "Singular Value Decomposition" on page 2-144
- "Solve Algebraic Equation" on page 2-146
- "Solve Differential Equation Numerically" on page 2-152
- "Select Numeric or Symbolic Solver" on page 2-155
- "Solve System of Algebraic Equations" on page 2-157
- "Troubleshoot Equation Solutions from solve Function" on page 2-168
- "Solve System of Linear Equations" on page 2-173
- "Solve Equations Numerically" on page 2-176
- "Solve Differential Equation" on page 2-187
- "Solve a System of Differential Equations" on page 2-192
- "Solve Differential Algebraic Equations (DAEs)" on page 2-198
- "Solve Semilinear DAE System" on page 2-210
- "Solve DAEs Using Mass Matrix Solvers" on page 2-218
- "Fourier and Inverse Fourier Transforms" on page 2-225
- "Solve Differential Equations Using Laplace Transform" on page 2-230
- "Solve Difference Equations Using Z-Transform" on page 2-238
- "Create Plots" on page 2-245
- "Generate C or Fortran Code from Symbolic Expressions" on page 2-257
- "Generate MATLAB Functions from Symbolic Expressions" on page 2-259
- "Generate MATLAB Function Blocks from Symbolic Expressions" on page 2-263
- "Generate Simscape Equations from Symbolic Expressions" on page 2-265

Find Symbolic Variables in Expressions, Functions, Matrices

To find symbolic variables in an expression, function, or matrix, use symvar. For example, find all symbolic variables in symbolic expressions f and g :

```
syms a b n t x
f = x^n;
g = sin(a*t + b);
symvar(f)
ans =
[ n, x]
```

Here, symvar sorts all returned variables alphabetically. Similarly, you can find the symbolic variables in g by entering:

```
symvar(g)
ans =
[ a, b, t]
```

symvar also can return the first n symbolic variables found in a symbolic expression, matrix, or function. To specify the number of symbolic variables that you want symvar to return, use the second parameter of symvar. For example, return the first two variables found in symbolic expression g :

```
symvar(g, 2)
ans =
[ b, t]
```

Notice that the first two variables in this case are not a and b. When you call symvar with two arguments, it finds symbolic variables by their proximity to x before sorting them alphabetically.

When you call symvar on a symbolic function, symvar returns the function inputs before other variables.

```
syms x y w z
```

$f(w, z)=x^{*} w+y^{*} z ;$
symvar(f)

```
ans =
[ w, z, x, y]
```

When called with two arguments for symbolic functions, symvar also follows this behavior.

```
symvar(f, 2)
ans =
[ W, z]
```


Find a Default Symbolic Variable

If you do not specify an independent variable when performing substitution, differentiation, or integration, MATLAB uses a default variable. The default variable is typically the one closest alphabetically to x or, for symbolic functions, the first input argument of a function. To find which variable is chosen as a default variable, use the symvar(f, 1) command. For example:
syms s t
$f=s+t ;$
symvar(f, 1)
ans =
t
syms sx tx
$f=s x+t x ;$
symvar(f, 1)
ans =
tx
For more information on choosing the default symbolic variable, see symvar.

Units of Measurement Tutorial

Use units of measurement with Symbolic Math Toolbox. This page shows how to define units, use units in equations (including differential equations), and verify the dimensions of expressions.

```
In this section...
"Define and Convert Units" on page 2-5
"Use Temperature Units in Absolute or Difference Forms" on page 2-6
"Verify Dimensions" on page 2-7
"Use Units in Differential Equations" on page 2-9
```


Define and Convert Units

Load units by using symunit.
u = symunit;
Specify a unit by using u. unit. For example, specify a distance of 5 meters, a weight of 50 kilograms, and a speed of 10 kilometers per hour. In displayed output, units are placed in square brackets [].

```
d = 5*u.m
w = 50*u.kg
s = 10*u.km/u.hr
d =
5*[m]
w =
50*[kg]
s =
10*([km]/[h])
```

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Units are treated like other symbolic expressions and can be used in any standard operation or function. Units are not automatically simplified, which provides flexibility. Common alternate names for units are supported. Plurals are not supported.

Add 500 meters and 2 kilometers. The resulting distance is not automatically simplified.

```
d = 500*u.m + 2*u.km
d =
2*[km] + 500*[m]
```

Simplify d by using simplify. The simplify function automatically chooses the unit to simplify to.

```
d = simplify(d)
```

d $=$
$(5 / 2) *[k m]$

Instead of automatically choosing a unit, rewrite d in terms of a specific unit by using rewrite. Rewrite d in terms of meters.

```
d = rewrite(d,u.m)
```

d $=$
2500*[m]

There are more unit conversion and unit system options. See "Unit Conversions and Unit Systems" on page 2-31.

Find the speed if the distance d is crossed in 50 seconds. The result has the correct units.

```
t = 50*u.s;
s = d/t
s =
50*([m]/[s])
```


Use Temperature Units in Absolute or Difference Forms

By default, temperatures are assumed to represent differences and not absolute measurements. For example, $5 * u$. Celsius is assumed to represent a temperature difference of 5 degrees Celsius. This assumption allows arithmetical operations on temperature values.

To represent absolute temperatures, use kelvin, so that you do not have to distinguish an absolute temperature from a temperature difference.

Rewrite 23 degrees Celsius to kelvin, treating it first as a temperature difference and then as an absolute temperature.

```
u = symunit;
T = 23*u.Celsius;
diffK = rewrite(T,u.K)
diffK =
23*[K]
absK = rewrite(T,u.K,'Temperature','absolute')
absK =
(5923/20)*[K]
```


Verify Dimensions

In longer expressions, visually checking for units is difficult. You can check the dimensions of expressions automatically by verifying the dimensions of an equation.

First, define the kinematic equation $v^{2}=v_{0}^{2}+2 a s$, where v represents velocity, a represents acceleration, and s represents distance. Assume s is in kilometers and all other units are in SI base units. To demonstrate dimension checking, the units of a are intentionally incorrect.

```
syms v v0 a s
u = symunit;
eqn = (v*u.m/u.s)^2 == (v0*u.m/u.s)^2 + 2*a*u.m/u.s*s*u.km
eqn =
v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2*a*s)*(([km]*[m])/[s])
```

Observe the units that appear in eqn by using findUnits. The returned units show that both kilometers and meters are used to represent distance.

```
findUnits(eqn)
ans =
[ [km], [m], [s]]
```

Check if the units have the same dimensions (such as length or time) by using checkUnits with the 'Compatible' input. MATLAB assumes symbolic variables are dimensionless. checkUnits returns logical 0 (false), meaning the units are incompatible and not of the same physical dimensions.

```
checkUnits(eqn,'Compatible')
ans =
    logical
    0
```

Looking at eqn, the acceleration a has incorrect units. Correct the units and recheck for compatibility again. eqn now has compatible units.

```
eqn = (v*u.m/u.s)^2 == (v0*u.m/u.s)^2 + 2*a*u.m/u.s^2*s*u.km;
checkUnits(eqn,'Compatible')
ans =
    logical
        1
```

Now, to check that each dimension is consistently represented by the same unit, use checkUnits with the 'Consistent' input. checkUnits returns logical 0 (false) because meters and kilometers are both used to represent distance in eqn.

```
checkUnits(eqn,'Consistent')
ans =
    logical
        0
```

Rewrite eqn to SI base units to make the units consistent. Run checkUnits again. eqn has both compatible and consistent units.

```
eqn = rewrite(eqn,'SI')
eqn =
    v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2000*a*s)*([m]^2/[s]^2)
checkUnits(eqn)
ans =
    struct with fields:
```

 Consistent: 1
 Compatible: 1
 After you finish working with units and only need the dimensionless equation or expression, separate the units and the equation by using separateUnits.
[eqn,units] = separateUnits(eqn)

```
eqn =
v^2 == v0^2 + 2000*a*s
units =
1*([m]^2/[s]^2)
```

You can return the original equation with units by multiplying eqn with units and expanding the result.

```
expand(eqn*units)
ans =
v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2000*a*s)*([m]^2/[s]^2)
```

To calculate numeric values from your expression, substitute for symbolic variables using subs, and convert to numeric values using double or vpa.

Solve eqn for v. Then find the value of v where $v 0=5, a=2.5$, and $s=10$. Convert the result to double.

```
v = solve(eqn,v);
v = v(2); % choose the positive solution
vSol = subs(v,[v0 a s],[5 2.5 10]);
vSol = double(vSol)
vSol =
    223.6627
```


Use Units in Differential Equations

Use units in differential equations just as in standard equations. This section shows how to use units in differential equations by deriving the velocity relations $v=v_{0}+a t$ and
$v^{2}=v_{0}^{2}+2 a s$ starting from the definition of acceleration $a=\frac{d v}{d t}$.
Represent the definition of acceleration symbolically using SI units. Given that the velocity V has units, V must be differentiated with respect to the correct units as $\mathrm{T}=$ t *u.s and not just t .
syms $V(t)$ a
u = symunit;
$\mathrm{T}=\mathrm{t} * \mathrm{u} . \mathrm{s} ; \quad$ \% time in seconds
$A=a * u \cdot m / u . s^{\wedge} 2 ; \quad \%$ acceleration in meters per second
eqn1 $=A==\operatorname{diff}(V, T)$

```
eqn1(t) =
a*([m]/[s]^2) == diff(V(t), t)*(1/[s])
```

Because the velocity V is unknown and does not have units, eqn1 has incompatible and inconsistent units.

```
checkUnits(eqn1)
```

ans =
struct with fields:
Consistent: 0
Compatible: 0

Solve eqn1 for V with the condition that the initial velocity is v_{0}. The result is the equation $v(t)=v_{0}+a t$.

```
syms v0
```

cond $=\mathrm{V}(0)==\mathrm{v} 0 * u . \mathrm{m} / \mathrm{u} . \mathrm{s}$;
eqn2 $=V==$ dsolve(eqn1,cond)
eqn2 $(\mathrm{t})=$
$V(t)=\operatorname{vo*}([m] /[s])+a * t^{*}([m] /[s])$

Check that the result has the correct dimensions by substituting rhs (eqn2) into eqn1 and using checkUnits.

```
checkUnits(subs(eqn1,V,rhs(eqn2)))
ans =
    struct with fields:
```

 Consistent: 1
 Compatible: 1
 Now, derive $v^{2}=v_{0}^{2}+2 a s$. Because velocity is the rate of change of distance, substitute V with the derivative of distance S . Again, given that S has units, S must be differentiated with respect to the correct units as $\mathrm{T}=\mathrm{t} * \mathrm{u} . \mathrm{s}$ and not just t .

```
syms S(t)
eqn2 = subs(eqn2,V,diff(S,T))
eqn2(t) =
diff(S(t), t)*(l/[s]) == v0*([m]/[s]) + a*t*([m]/[s])
```

Solve eqn2 with the condition that the initial distance covered is 0 . Get the expected form of S by using expand.

```
cond2 = S(0) == 0;
eqn3 = S == dsolve(eqn2,cond2);
eqn3 = expand(eqn3)
eqn3(t) =
S(t) == t*v0*[m] + ((a*t^2)/2)*[m]
```

You can use this equation with the units in symbolic workflows. Alternatively, you can remove the units by returning the right side using rhs, separating units by using separateUnits, and using the resulting unitless expression.

```
[S units] = separateUnits(rhs(eqn3))
```

```
S(t) =
(a*t^2)/2 + v0*t
units(t) =
[m]
```

When you need to calculate numeric values from your expression, substitute for symbolic variables using subs, and convert to numeric values using double or vpa.

Find the distance traveled in 8 seconds where v0 $=20$ and $a=1.3$. Convert the result to double.

```
S = subs(S,[v0 a],[20 1.3]);
dist = S(8);
dist = double(dist)
dist =
    201.6000
```


See Also

checkUnits|findUnits|isUnit|newUnit|rewrite|separateUnits| symunit2str|unitConversionFactor

More About

- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

External Websites

- The International System of Units (SI)

Units and Unit Systems List

List of units, SI unit prefixes, and unit systems in Symbolic Math Toolbox. For details, see "Units of Measurement Tutorial" on page 2-5. Common alternate names for units are supported and map to the name listed here. Plurals are not supported.

In this section...

"Units List" on page 2-13
"SI Unit Prefixes List" on page 2-27
"Unit Systems List" on page 2-28

Units List

Length

- Ao - angstrom
- a_0-Bohr radius
- au - astronomical unit
- ch - chain
- ft-foot
- ft_US - U.S. survey foot
- ftm - fathom
- fur - furlong
- gg - gauge
- hand
- in - inch
- inm - international nautical mile
- land-league
- li-link
- line
- ly - light-year
- m-meter (SI)
- mi-mile
- mi_US - U.S. survey mile
- mil
- nmile - British imperial nautical mile
- pc-parsec
- pt - point
- rod
- span
- xu-x unit
- xu_Cu - x unit (copper)
- xu_Mo - x unit (molybdenum)
- yd - yard

Mass

- Mt - metric megaton
- ct-carat
- cwt - U.S. customary short hundredweight
- cwt_UK - British imperial short hundredweight
- dalton - atomic mass constant
- dr-dram
- g-gram
- gr-grain
- hyl
- kt - metric kiloton
- lbm - pound mass
- m_e - electron mass
- oz-ounce
- quarter
- slug
- stone
- t - metric ton
- tn - U.S. customary short ton
- ton_UK - British imperial ton

Time

- d - day
- fortnight - 14 days
- h-hour
- min - minute
- month_30-30-day month
- s - second (SI)
- week - 7-day week
- year_360-360-day year
- year_Julian - Julian year
- year_Gregorian - Gregorian year

Absorbed Dose or Dose Equivalent

- Gy - gray (SI)
- Rad - absorbed radiation dose
- Sv - sievert (SI)
- rem - roentgen equivalent man

Acceleration

- Gal-gal
- g_n - earth gravitational acceleration

Activity

- Bq-becquerel (SI)
- Ci-curie

Amount of Substance

- item - number of items
- mol - mole (SI)
- molecule - number of molecules

Angular Momentum

- Nms - newton meter second
- h_bar - reduced Planck constant
- h_c - Planck constant

Area

- a - are
- ac-acre
- barn
- circ_mil - circular mil
- circ_inch - circular inch
- ha - metric hectare
- ha_US - U.S. survey hectare
- ro-rood
- twp - township

Capacitance

- F - farad (SI)
- abF - abfarad
- statF - statfarad

Catalytic Activity

- kat - katal (SI)

Conductance

- S - siemens (SI)
- abS -absiemens
- statS - statsiemens

Data Transfer Rate

- Bd - baud
- bps - bit per second

Digital Information

- B - byte
- bit - basic unit of information

Dose Equivalent

- Sv - sievert (SI)

Dynamic Viscosity

- P-poise
- reyn - reynolds

Electric Charge

- C - coulomb (SI)
- Fr-franklin
- abC-abcoulomb
- e - elementary charge
- statC - statcoulomb

Electric Current

- A - ampere (SI)
- Bi - biot
- abA-abampere
- statA - statampere

Electric Dipole Moment

- debye

Electric Potential

- V - volt (SI)
- abV - abvolt
- statV - statvolt

Electric Potential or Electromotive Force

- V - volt (SI)
- abV - abvolt
- statV - statvolt

Energy or Work or Heat

- Btu_IT - British thermal unit (International Table)
- Btu_th - British thermal unit (thermochemical)
- E_h - Hartree energy
- J - joule (SI)
- Nm - newton meter
- Wh - watt hour
- Ws - watt second
- cal_4 - calorie (4 degree Celsius)
- cal_20 - calorie (20 degree Celsius)
- cal_15-calorie (15 degree Celsius)
- cal_IT - calorie (International Table)
- cal_th - calorie (thermochemical)
- cal_mean - calorie (mean)
- eV - electronvolt
- erg
- kcal_4 - kilocalorie (4 degree Celsius)
- kcal_20 - kilocalorie (20 degree Celsius)
- kcal_15-kilocalorie (15 degree Celsius)
- kcal_IT - kilocalorie (International Table)
- kcal_th - kilocalorie (thermochemical)
- kcal_mean - kilocalorie (mean)
- kpm-kilopond meter
- therm

Energy Per Temperature

- k_B - Boltzmann constant

European Currency

- Cent - cent
- EUR - Euro

Magnetic Field Strength

- Oe - oersted

Flow Rate

- gpm - U.S. customary gallon per minute
- gpm_UK - British imperial gallon per minute
- lpm - liter per minute

Force

- N - newton (SI)
- dyn - dyne
- kgf - kilogram force
- kip
- kp - kilopond
- lbf - pound force
- ozf-ounce force
- p - pond
- pdl-poundal
- sn-sthene
- tonf-short ton force

Former European Currency

- ATS - Austrian Schilling
- BEF - Belgian Franc
- DM - German Mark
- ESP - Spanish Peseta
- FIM - Finnish Markka
- FRF - French Franc
- IEP - Irish Pound
- ITL - Italian Lire
- LUF - Luxembourgian Franc
- NLG - Dutch Gulden
- PTE - Portugese Escudo

Frequency

- Hz - hertz (SI)

Frequency of Rotation

- rpm - revolution per minute
- rps - revolution per second

Fuel Consumption

- l_100km - liter per 100 km

Fuel Economy

- mpg - mile per gallon

Gravity

- G_c - Newtonian constant of gravitation

Heat

- Btu_IT - British thermal unit (International Table)
- Btu_th - British thermal unit (thermochemical)
- cal_4-calorie (4 degree Celsius)
- cal_20 - calorie (20 degree Celsius)
- cal_15-calorie (15 degree Celsius)
- cal_IT - calorie (International Table)
- cal_th - calorie (thermochemical)
- cal_mean - calorie (mean)
- kcal_4 - kilocalorie (4 degree Celsius)
- kcal_20 - kilocalorie (20 degree Celsius)
- kcal_15-kilocalorie (15 degree Celsius)
- kcal_IT - kilocalorie (International Table)
- kcal_th - kilocalorie (thermochemical)
- kcal_mean - kilocalorie (mean)
- therm

Illuminance

- lx - lux (SI)
- nx - nox
- ph - phot

Inductance

- H - henry (SI)
- abH - abhenry
- statH - stathenry

Ionising Dosage

- R - roentgen

Kinematic Viscosity

- St - stokes
- newt

Luminance

- asb-apostilb
- sb-stilb

Luminous Flux

- lm - lumen (SI)

Luminous Intensity

- cd - candela (SI)
- cp - candlepower

Magnetic Flux

- Mx - maxwell
- Wb - weber (SI)
- abWb - abweber
- statWb-statweber

Magnetic Flux Density

- G - gauss
- T - tesla (SI)
- abT-abtesla
- statT-stattesla

Magnetic Force

- Gb - gilbert

Mass Per Length

- den-denier
- tex - filament tex

Particle Per Amount of Substance

- N_A - Avogadro constant

Plane Angle

- arcsec - arcsecond
- arcmin-arcminute
- deg-degree
- rad - radian (SI)
- rev-revolution

Power

- HP_E - electrical horsepower
- HP_I - mechanical horsepower
- HP_UK - British imperial horsepower
- HP_DIN - metric horsepower (DIN 66036)
- PS_SAE - net horsepower (SAE J1349)
- PS_DIN - horsepower (DIN 70020)
- poncelet

Power

- HP_E - electrical horsepower
- HP_I - mechanical horsepower
- HP_UK - British imperial horsepower
- HP_DIN - metric horsepower (DIN 66036)
- PS_SAE - net horsepower (SAE J1349)
- PS_DIN - horsepower (DIN 70020)
- W - watt (SI)
- poncelet

Pressure

- Ba - barye
- Pa - pascal (SI)
- Torr-torr
- at-technical atmosphere
- atm - standard atmosphere
- bar
- cmHg - centimeter of mercury (conventional)
- cmH2O - centimeter of water (conventional)
- ftHg - foot of mercury (conventional)
- ftH20 - foot of water (conventional)
- inHg - inch of mercury (conventional)
- inH2O - inch of water (conventional)
- ksf - kip per square foot
- ksi - kip per square inch
- mH2O - meter of water (conventional)
- mHg - meter of mercury (conventional)
- mmHg - millimeter of mercury (conventional)
- mmH2O - millimeter of water (conventional)
- psf - pound force per square foot
- psi - pound force per square inch
- pz-pieze

Pressure or Stress

- Ba-barye
- Pa - pascal (SI)
- Torr-torr
- at - technical atmosphere
- atm - standard atmosphere
- bar
- cmHg - centimeter of mercury (conventional)
- cmH2O - centimeter of water (conventional)
- ftHg - foot of mercury (conventional)
- ftH20 - foot of water (conventional)
- inHg - inch of mercury (conventional)
- inH2O - inch of water (conventional)
- ksf - kip per square foot
- ksi - kip per square inch
- mH2O - meter of water (conventional)
- mHg - meter of mercury (conventional)
- mmHg - millimeter of mercury (conventional)
- mmH2O - millimeter of water (conventional)
- psf - pound force per square foot
- psi - pound force per square inch
- pz-pieze

Radiation

- lan - langley

Radioactivity

- Bq - becquerel (SI)
- Ci - curie

Reciprocal Length

- kayser

Refractive Power of Lenses

- dpt - diopter

Resistance

- Ohm - ohm (SI)
- abOhm -abohm
- stat0hm - statohm

Solid Angle

- sr-steradian (SI)

Substance Per Volume

- molarity

Temperature

- Celsius - degree Celsius (SI)
- Fahrenheit - degree Fahrenheit
- K - kelvin (SI)
- Rankine - degree Rankine
- Reaumur - degree Reaumur

Velocity

- Kyne - kyne
- c_0-speed of light in vacuum
- fpm - foot per minute
- fps - foot per second
- kmh - kilometer per hour
- knot_UK - British imperial knot
- kts - international knot
- mach - speed of sound
- mph - mile per hour

Volume

- barrel
- bbl - U.S. customary dry barrel
- bu_UK - British imperial bushel
- chaldron
- dry_bu - U.S. customary dry bushel
- dry_pk - U.S. customary dry peck
- dry_pt - U.S. customary dry pint
- dry_qt - U.S. customary dry quart
- dry_gal - U.S. customary dry gallon
- fldr - U.S. customary fluid dram
- fldr_UK - British imperial fluid drachm (dram)
- floz-U.S. customary fluid ounce
- floz_UK - British imperial fluid ounce
- gal - U.S. customary liquid gallon
- gal_UK - British imperial gallon
- gill - U.S. customary fluid gill
- gill_UK - British imperial gill
- igal - British imperial gallon
- l - liter
- liq_pt - U.S. customary liquid pint
- liq_qt - U.S. customary liquid quart
- minim-U.S. customary minim
- minim_UK - British imperial minim
- pint - U.S. customary liquid pint
- pint_UK - British imperial pint
- pk_UK - British imperial peck
- pottle-British imperial pottle
- qt_UK - British imperial quart
- quart - U.S. customary liquid quart

SI Unit Prefixes List

SI unit prefixes in Symbolic Math Toolbox. Every unit marked by SI in the units list accepts SI prefixes. For example, m accepts nm, mcm, mm, cm, km and so on.

Prefix	Input Forms	Example using meters u.m where u = symunit
Yotta 10^{24}	Y, yotta	u.Ym, u. yottam
Zetta 10^{21}	Z, zetta	u.Zm, u. zettam
Exa 10^{18}	E, exa	u. Em, u.exam
Peta 10^{15}	P, peta	u. Pm, u.petam
Tera 10^{12}	T, tera	u. Tm, u.teram
Giga 10^{9}	G, giga	u.gigam, u.Gm
Mega 10^{6}	M, mega	u.Mm, u.megam
Kilo 10^{3}	h, kilo	u.km, u. kilom
Hecto 10^{2}	da, deka, deca	u.dam, u.dekam, u.decam
Deka 10^{1}	d, deci	u.dm, u.decim
Deci 10^{-1}	c, centi	u. cm, u. centim
Centi 10^{-2}	m, milli	u.m, u.millim
Milli 10^{-3}	mc, micro, u	u.nm, u. nanom
Micro 10^{-6}	n, nano	u.pm, u.picom
Nano 10^{-9}	p, pico	u.fm, u.femtom
Pico 10^{-12}	f, femto	u.am, u.attom
Femto 10^{-15}	a, atto	u. zm, u. zeptom
Atto 10^{-18}	z, zepto	u.ym, u. yoctom
Zepto 10^{-21}	y, yocto	
Yocto 10^{-24}		

Unit Systems List

Available units systems in Symbolic Math Toolbox are listed below. For details, see "Unit Conversions and Unit Systems" on page 2-31.

Unit System	Base Units	Derived Units
SI units ('SI')	As defined.	As defined.

Unit System	Base Units	Derived Units
CGS units ('CGS')	```baseUnits('CGS') ans = [[cm], [g], [s], [K]]```	```derivedUnits('CGS') ans = [[Gal], [dyn], [erg],```
US units ('US')	```baseUnits('US') ans = [[lbm], [s], [ft], [A],```	derivedUnits('US') ans = [cdF],[ni@T]], [BK$]$] [H], [V] [W], [psf], [Ohm], [T], [sr], [Fahrenheit], [gal
Electrostatic units ('ESU')	```baseUnits('ESU') ans = [[cm], [g], [s], [K], [```	```derivedUnits('ESU') ans = #at[G]]], [dyn], [erg], [E [statH], [statS], [statC```
Gaussian units (' GU ')	```baseUnits('GU') ans = [[cm], [g], [s], [K], [```	derivedUnits('GU') ans = fil IGal], [dyn], [erg], [Bi], [Mx], [0e], [debye
Electromagnetic units ('EMU')	```baseUnits('EMU') ans = [[cm], [g], [s], [K], [```	```derivedUnits('EMU') ans = &AIGal], [dyn], [erg], [E [abF], [abH], [abS], [ab```

See Also

checkUnits|isUnit|newUnit|rewrite|separateUnits|symunit| symunit2str|unitConversionFactor

See Also

Related Examples

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31

External Websites

- The International System of Units (SI)

Unit Conversions and Unit Systems

Convert between units with Symbolic Math Toolbox. This page shows conversions between units and between systems of units, such as SI, CGS, or a user-defined unit system.

In this section...

"Convert Units" on page 2-31
"Temperature Unit Conversion" on page 2-32
"Convert to SI, CGS, or US Unit Systems" on page 2-33
"Define Custom Unit System from Existing System" on page 2-35
"Define Custom Unit System Directly" on page 2-37
"Unit System Definition" on page 2-38

Convert Units

Convert between units by using rewrite.
Convert 1.2 meters to centimeters.

```
u = symunit;
len = 1.2*u.m;
len = rewrite(len,u.cm)
len =
120*[cm]
```

Convert len to inches. The result is in exact symbolic form. Separate units and convert to double.

```
len = rewrite(len,u.in)
len =
(6000/127)*[in]
[len units] = separateUnits(len);
len = double(len)
len =
    47.2441
```

Calculate the force needed to accelerate a mass of 5 kg at $2 \mathrm{~m} / \mathrm{s}^{2}$.

```
m = 5*u.kg;
a = 2*u.m/u.s^2;
F = m*a
F =
10*(([kg]*[m])/[s]^2)
```

Convert the result to newton.

```
F = rewrite(F,u.N)
F =
10*[N]
```

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Calculate the energy when force F is applied for 3 meters. Convert the result to joule.

```
d = 3*u.m;
E = F*d
E =
30*[N]*[m]
E = rewrite(E,u.J)
E =
30*[J]
```

Convert E to kilowatt-hour.
E = rewrite(E,u.kWh)
$\mathrm{E}=$
$(1 / 120000) *[\mathrm{kWh}]$

Temperature Unit Conversion

Temperatures can represent either absolute temperatures or temperature differences. By default, temperatures are assumed to be differences. Convert temperatures assuming temperatures are absolute by specifying the 'Temperature' input as 'absolute'.

Rewrite 23 degrees Celsius to degrees Kelvin, first as a temperature difference and then as an absolute temperature.

```
u = symunit;
T = 23*u.Celsius;
relK = rewrite(T,u.K,'Temperature','difference')
relk =
23*[K]
absK = rewrite(T,u.K,'Temperature','absolute')
absK =
(5923/20)*[K]
```

Because the value 0 is dimensionless and 0 degrees cannot be represented, convert 0 degrees between temperature units by using cell input.

Convert 0 degrees Celsius to degrees Fahrenheit.

```
tC = {0,u.Celsius};
tF = rewrite(tC,u.Fahrenheit,'Temperature','Absolute')
tF =
32*[Fahrenheit]
```


Convert to SI, CGS, or US Unit Systems

Automatically convert to the correct units by converting to a unit system. Further, converting to the derived units of a unit system attempts to select convenient units. Available unit systems include SI, CGS, and US. For all unit systems, see "Unit Systems List" on page 2-28. In addition, you can define custom unit systems.

Calculate the force due to a 5 kg mass accelerating at $2 \mathrm{~m} / \mathrm{s}^{2}$. The resulting units are hard to read. Convert them to convenient units by specifying the SI and Derived options. rewrite automatically chooses the correct units of newton.

```
u = symunit;
m = 5*u.kg;
a = 2*u.m/u.s^2;
F = m*a
F =
10*(([kg]*[m])/[s]^2)
```

```
F = rewrite(F,'SI','Derived')
F =
10*[N]
```

Convert F to US units. By default, the converted units are base units. For convenience, also convert into derived units by specifying the Derived option. The derived units are easier to read.

```
F = rewrite(F,'US')
F =
(1250000000000/17281869297)*(([ft]*[lbm])/[s]^2)
```

F = rewrite(F,'US','Derived')
$\mathrm{F}=$
$(20000000000000 / 8896443230521) *[$ lbf $]$

Convert F to CGS derived units.

```
F = rewrite(F,'CGS','Derived')
F =
1000000*[dyn]
```

Convert a specification in SI to US derived units. Specify the temperatures as absolute.

```
loadCell = [ 3*u.kg; % capacity
    50*u.mm; % length
        15*u.mm; % width
        10*u.mm; % height
        -10*u.Celsius; % minimum temperature
        40*u.Celsius; % maximum temperature
        ];
loadCell = rewrite(loadCell,'US','derived','Temperature','absolute')
loadCell =
    (300000000/45359237)*[lbm]
                            (125/762)*[ft]
                                (25/508)*[ft]
                (25/762)*[ft]
            14*[Fahrenheit]
            104*[Fahrenheit]
```

If rewrite does not choose your preferred unit, then adjust the result with further rewrite commands. Here, inches are more convenient than feet. Convert the result to inches.

```
loadCell = rewrite(loadCell,u.inch)
loadCell =
    (300000000/45359237)*[lbm]
                        (250/127)*[in]
                                (75/127)*[in]
                            (50/127)*[in]
            14*[Fahrenheit]
            104*[Fahrenheit]
```

The exact symbolic values are hard to read. Separate the units and convert to double.

```
[loadCellDouble loadCellUnits] = separateUnits(loadCell);
loadCellDouble = double(loadCellDouble)
loadCellDouble =
    6.6139
    1.9685
    0.5906
    0.3937
    14.0000
    104.0000
```

Alternatively, approximate the result to high precision by using vpa. The vpa function also keeps the symbolic units because it returns symbolic output.

```
loadCell = vpa(loadCell)
loadCell =
    6.6138678655463274216892140403508*[ lbm}
        1.968503937007874015748031496063*[in]
        0.5905511811023622047244094488189*[in]
        0.3937007874015748031496062992126*[in]
                            14.0*[Fahrenheit]
                            104.0*[Fahrenheit]
```


Define Custom Unit System from Existing System

Custom unit systems provide flexibility in converting units. You can easily define a custom unit system by modifying a default unit system. Alternatively, you can define the system
directly. For definitions of unit system, base units, and derived units, see "Unit System Definition" on page 2-38.

In photonics, commonly used units are nanosecond (ns), electron volt (eV), and nanometer (nm). Define a unit system with these units by modifying the SI unit system. Get SI base and derived units by using baseUnits and derivedUnits. Modify the units by using subs.

```
u = symunit;
bunits = baseUnits('SI');
bunits = subs(bunits,[u.m u.s],[u.nm u.ns])
bunits =
[ [kg], [ns], [nm], [A], [cd], [mol], [K]]
dunits = derivedUnits('SI');
dunits = subs(dunits,u.J,u.eV)
dunits =
[ [F], [C], [S], [H], [V], [eV], [N], [lx], [lm], [Wb], [W], [Pa],...
    [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]
```

Note Do not define variables called baseUnits and derivedUnits because the variables prevent access to the baseUnits and derivedUnits functions.

Define the new unit system by using newUnitSystem.

```
phSys = newUnitSystem('photonics',bunits,dunits)
phSys =
    "photonics"
```

Calculate the energy of a photon of frequency 1 GHz and convert the result to derived units of the phSys system. The result is in electron volts.

```
f = 1*u.GHz;
E = u.h_c*f;
E = rewrite(E,phSys,'Derived')
E =
0.0000041356676623401643884479280999879*[eV]
```

The exact symbolic result is hard to read. Separate the units and convert to double.

```
[E Eunits] = separateUnits(E);
E = double(E)
E =
    4.1357e-06
```

After completing calculations, remove the unit system.
removeUnitSystem(phSys)

Define Custom Unit System Directly

Define a custom unit system for atomic units (au).
Define these base units:

Dimension	Unit	Implementation
Mass	Electron rest mass	u.m_e
Elementary charge	Electron charge	u.e
Length	Bohr radius $\left(a_{0}\right)$	u. Bohr
Time	\hbar / E_{h}	Define by using newUnit.

```
u = symunit;
t_au = newUnit('t_au',u.hbar/u.E_h);
bunits = [u.m_e u.e u.Bohr u.t_au]
bunits =
[ [m_e], [e], [a_0], [t_au]]
```

Define these derived units:

Dimension	Unit	Implementation
Angular momentum	Reduced Planck's constant	u. hbar
Energy	Hartree	u.E_h
Electric dipole moment	$e a_{0}$	Define by using newUnit.
Magnetic dipole moment	2 Bohr Magneton $=e \hbar / 2 m_{\mathrm{e}}$	Define by using newUnit.
Electric potential	E_{h} / e	Define by using newUnit.

edm_au = newUnit('edm_au',u.e*u.bohr);
mdm_au = newUnit('mdm_au', u.e*u.hbar/(2*u.me));

```
ep_au = newUnit('ep_au', u.E_h/u.e);
dunits = [u.hbar u.E_h u.edm_\overline{au u.mdm_au u.ep_au]}
dunits =
[ [h_bar], [E_h], [edm_au], [mdm_au], [ep_au]]
```

Define the unit system.

```
auSys = newUnitSystem('atomicUnits',bunits,dunits)
auSys =
    "atomicUnits"
```

Rewrite the properties of a proton to atomic units.

```
proton = [ 1.672624898e-27*u.kg; %mass
    1.6021766208e-19*u.C; % charge
    5.4e-24*u.e*u.cm; % electric dipole moment
    1.4106067873e-26*u.J/u.T; % magnetic dipole moment
    ];
proton = rewrite(proton,auSys,'Derived')
proton =
    1836.1559670674356174696928918542*[m e]
    1.00000000000000000578208778346486*[e]
0.0000000000000010204521077472272506008435148061*[edm_au]
        0.0015210322058038370229109632800588*[mdm_au]
```

After completing calculations, remove the unit system and the added units.

```
removeUnitSystem(auSys)
removeUnit([u.t_au u.edm_au u.mdm_au u.ep_au])
```


Unit System Definition

A unit system is a collection of base units and derived units that follows these rules:

- Base units must be independent in terms of the dimensions mass, time, length, electric current, luminous intensity, amount of substance, and temperature. Therefore, a unit system has up to 7 base units. As long as the independence is satisfied, any unit can be a base unit, including units such as newton or watt.
- A unit system can have less than 7 base units. For example, mechanical systems need base units only for the dimensions length, mass, and time.
- Derived units in a unit system must have a representation in terms of the products of powers of the base units for that system. Unlike base units, derived units do not have to be independent.
- Derived units are optional and added for convenience of representation. For example, $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$ is abbreviated by newton.
- An example of a unit system is the SI unit system, which has 7 base units: kilogram, second, meter, ampere, candela, mol, and kelvin. There are 22 derived units found by calling derivedUnits('SI').

See Also

baseUnits|derivedUnits | newUnitSystem| removeUnit|removeUnitSystem| rewrite|symunit

More About

- "Units of Measurement Tutorial" on page 2-5
- "Units and Unit Systems List" on page 2-13

External Websites

- The International System of Units (SI)

Differentiation

To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a symbolic expression:
syms x
f $=\sin \left(5^{*} x\right)$;
The command
diff(f)
differentiates f with respect to x :

```
ans =
5*}\operatorname{cos}(5*x
```

As another example, let
$g=\exp (x) * \cos (x) ;$
where $\exp (x)$ denotes e^{x}, and differentiate g :
$y=\operatorname{diff}(g)$
y =
$\exp (x) * \cos (x)-\exp (x) * \sin (x)$
To find the derivative of g for a given value of x, substitute x for the value using subs and return a numerical value using vpa. Find the derivative of g at $x=2$.

```
vpa(subs(y,x,2))
```


ans $=$

-9.7937820180676088383807818261614
To take the second derivative of g, enter

```
diff(g,2)
```

ans =
$-2 * \exp (x) * \sin (x)$

You can get the same result by taking the derivative twice:

```
diff(diff(g))
```

```
ans =
-2*exp(x)*sin(x)
```

In this example, MATLAB software automatically simplifies the answer. However, in some cases, MATLAB might not simplify an answer, in which case you can use the simplify command. For an example of such simplification, see "More Examples" on page 2-42.

Note that to take the derivative of a constant, you must first define the constant as a symbolic expression. For example, entering

```
c = sym('5');
diff(c)
```

returns
ans $=$
0
If you just enter
diff(5)
MATLAB returns
ans =
[]
because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables

To differentiate an expression that contains more than one symbolic variable, specify the variable that you want to differentiate with respect to. The diff command then calculates the partial derivative of the expression with respect to that variable. For example, given the symbolic expression
syms s t
$\mathrm{f}=\sin \left(\mathrm{s}^{*} \mathrm{t}\right) ;$
the command
diff(f,t)
calculates the partial derivative $\partial f / \partial t$. The result is

```
ans =
s*}\operatorname{cos}(\textrm{s}*\textrm{t}
```

To differentiate f with respect to the variable s , enter

```
diff(f,s)
```

which returns:

```
ans =
t*}\operatorname{cos}(\textrm{s}*\textrm{t}
```

If you do not specify a variable to differentiate with respect to, MATLAB chooses a default variable. Basically, the default variable is the letter closest to x in the alphabet. See the complete set of rules in "Find a Default Symbolic Variable" on page 2-4. In the preceding example, $\operatorname{diff}(f)$ takes the derivative of f with respect to t because the letter t is closer to x in the alphabet than the letter s is. To determine the default variable that MATLAB differentiates with respect to, use symvar:

```
symvar(f, 1)
```

```
ans =
```

t

Calculate the second derivative of f with respect to t :

```
diff(f, t, 2)
```

This command returns

```
ans =
-s^2*sin(s*t)
```

Note that diff(f, 2) returns the same answer because t is the default variable.

More Examples

To further illustrate the diff command, define a, b, x, n, t, and theta in the MATLAB workspace by entering
syms a b x n t theta
This table illustrates the results of entering $\operatorname{diff}(f)$.

f	diff(f)
$\begin{aligned} & \text { syms x } \mathrm{n} \\ & \mathrm{f}=\mathrm{x}^{\wedge} \mathrm{n} \end{aligned}$	$\begin{aligned} & \operatorname{diff}(f) \\ & \text { ans }= \\ & n^{*} x^{\wedge}(n-1) \end{aligned}$
$\begin{aligned} & \text { syms a b t } \\ & f=\sin \left(a^{*} t+b\right) ; \end{aligned}$	```diff(f) ans = a*\operatorname{cos(b + a*t)}```
syms theta $f=\exp \left(i^{*} \text { theta }\right) ;$	```diff(f) ans = exp(theta*1i)*1i```

To differentiate the Bessel function of the first kind, besselj (nu,z), with respect to z, type

```
syms nu z
b = besselj(nu,z);
db = diff(b)
```

which returns

```
db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)
```

The diff function can also take a symbolic matrix as its input. In this case, the differentiation is done element-by-element. Consider the example

```
syms a x
A = [cos(a*x),\operatorname{sin}(a*x);-\operatorname{sin}(a*x),\operatorname{cos(a*x)]}]
```

which returns

```
A =
[ cos(a*x), sin(a*x)]
[ - sin(a*x), cos(a*x)]
```

The command
$\operatorname{diff}(A)$
returns

```
ans =
[ -a*sin(a*x), a*\operatorname{cos(a*x)]}
[ -a*\operatorname{cos(a*x), -a*sin(a*x)]}
```

You can also perform differentiation of a vector function with respect to a vector argument. Consider the transformation from Euclidean (x, y, z) to spherical (r, λ, φ) coordinates as given by $x=r \cos \lambda \cos \varphi, y=r \cos \lambda \sin \phi$, and $z=r \sin \lambda$. Note that λ corresponds to elevation or latitude while φ denotes azimuth or longitude.

To calculate the Jacobian matrix, J, of this transformation, use the jacobian function. The mathematical notation for J is

$$
J=\frac{\partial(x, y, z)}{\partial(r, \lambda, \varphi)}
$$

For the purposes of toolbox syntax, use l for λ and f for φ. The commands

```
syms r l f
x = r*
y = r*}\operatorname{cos(l)*sin(f);
z = r*sin(l);
J = jacobian([x; y; z], [r l f])
```

return the Jacobian

```
J =
[ cos(f)*\operatorname{cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]}
```



```
[ sin(l), r*cos(l), 0]
```

and the command

```
detJ = simplify(det(J))
```

returns

```
detJ =
-r^2*}\operatorname{cos}(l
```

The arguments of the jacobian function can be column or row vectors. Moreover, since the determinant of the Jacobian is a rather complicated trigonometric expression, you can use simplify to make trigonometric substitutions and reductions (simplifications).

A table summarizing diff and jacobian follows.

Mathematical Operator	MATLAB Command
$\frac{d f}{d x}$	$\operatorname{diff(f)\text {or}\operatorname {diff}(f,\mathrm {x})}$
$\frac{d f}{d a}$	$\operatorname{diff(f,~a)}$
$\frac{d^{2} f}{d b^{2}}$	$\operatorname{diff(f,~b,~2)}$
$J=\frac{\partial(r, t)}{\partial(u, v)}$	$\mathrm{J}=$ jacobian $([\mathrm{r} ; \mathrm{t}],[\mathrm{u} ; \mathrm{v}])$

Functional Derivatives Tutorial

This example shows how to use functional derivatives in the Symbolic Math Toolbox ${ }^{\mathrm{TM}}$ using the example of the wave equation. The wave equation for a string fixed at its ends is solved using functional derivatives. A functional derivative is the derivative of a functional with respect to the function that the functional depends on. The Symbolic Math Toolbox ${ }^{\text {TM }}$ implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the motion of waves, from the motion of a string to the propagation of an electromagnetic wave, and is an important equation in physics. You can apply the techniques illustrate in this example to applications in the calculus of variations from solving the Brachistochrone problem to finding minimal surfaces of soap bubbles.

Consider a string of length L suspended between the two points $x=0$ and $x=L$. The string has a characteristic density per unit length and a characteristic tension. Define the length, density, and tension as constants for later use. For simplicity, set these constants to 1 .

```
Length = 1;
Density = 1;
Tension = 1;
```

If the string is in motion, the string's kinetic and potential energies are a function of its displacement from rest $S(x, t)$, which varies with position x and time t. If d is the density per unit length, the kinetic energy is

$$
T=\int_{0}^{L} \frac{d}{2}\left(\frac{d}{d t} S(x, t)\right)^{2} d x
$$

The potential energy is

$$
V=\int_{0}^{L} \frac{r}{2}\left(\frac{d}{d x} S(x, t)\right)^{2} d x
$$

where r is the tension.
Enter these equations in MATLAB ${ }^{\mathrm{TM}}$. Since length must be positive, set this assumption. This assumption allows simplify to simplify the resulting equations into the expected form.

```
syms S(x,t) d r v L
assume(L>0)
T(x,t) = int(d/2*diff(S,t)^2,x,0,L);
V(x,t) = int(r/2*diff(S,x)^2,x,0,L);
```

The action A is T-V. The Principle of Least Action states that action is always minimized. Determine the condition for minimum action, by finding the functional derivative of A with respect to S using functionalDerivative and equate it to zero.

```
A = T-V;
eqn = functionalDerivative(A,S) == 0
eqn(x, t) =
Lr}\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{}{2}}S(x,t)-Ld\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{t}{}{2}}S(x,t)=
```

Simplify the equation using simplify. Convert the equation into its expected form by substituting for r / d with the square of the wave velocity v .

```
eqn = simplify(eqn)/r;
eqn = subs(eqn,r/d,v^2)
eqn(x, t) =
\frac{\frac{\partial}{2}}{\partial\mp@subsup{t}{}{2}}S(x,t)
```

Solve the equation using the method of separation of variables. Set $S(x, t)=$ $U(x) * V(t)$ to separate the dependence on position x and time t. Separate both sides of the resulting equation using children.

```
syms U(x) V(t)
eqn2 = subs(eqn,S(x,t),U(x)*V(t));
eqn2 = eqn2/(U(x)*V(t))
eqn2(x, t) =
\frac{\frac{\partial}{2}}{\partial\mp@subsup{t}{}{2}}V(t)
```

```
tmp = children(eqn2);
```

Both sides of the equation depend on different variables, yet are equal. This is only possible if each side is a constant. Equate each side to an arbitrary constant C to get two differential equations.

```
syms C
eqn3 = tmp(1) == C
eqn3 =
\frac{\frac{\partial\mp@subsup{}{}{2}}{\partial\mp@subsup{t}{}{2}}V(t)}{\mp@subsup{v}{}{2}V(t)}=C
eqn4 = tmp(2) == C
eqn4 =
\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{x}{}{2}}U(x)
```

Solve the differential equations using dsolve with the condition that displacement is 0 at $x=0$ and $t=0$. Simplify the equations to their expected form using simplify with the Steps option set to 50.

```
V(t) = dsolve(eqn3,V(0)==0,t);
U(x) = dsolve(eqn4,U(0)==0,x);
V(t) = simplify(V(t),'Steps',50)
V(t) =
-2C C3 sinh(\sqrt{}{C}tv)
U(x) = simplify(U(x),'Steps',50)
U(x) =
2C}\mp@subsup{C}{6}{}\operatorname{sinh}(\sqrt{}{C}x
```

Obtain the constants in the equations.

```
p1 = setdiff(symvar(U(x)),sym([C,x]))
p1 =
C6
p2 = setdiff(symvar(V(t)),sym([C,v,t]))
p2 =
C3
```

The string is fixed at the positions $x=0$ and $x=L$. The condition $U(0)=0$ already
exists. Apply the boundary condition that $\mathrm{U}(\mathrm{L})=0$ and solve for C .
eqn_bc = U(L) == 0;
[solC,param,cond] = solve(eqn_bc,C,'ReturnConditions',true)
solC =
$-\frac{k^{2} \pi^{2}}{L^{2}}$
param =
k
cond $=$
$C_{6} \neq 0 \wedge 1 \leq k \wedge k \in \mathbb{Z}$
assume(cond)

The solution $S(x, t)$ is the product of $U(x)$ and $V(t)$. Find the solution, and substitute the characteristic values of the string into the solution to obtain the final form of the solution.

```
S(x,t) = U(x)*V(t);
S = subs(S,C,solC);
S = subs(S,[L v],[Length sqrt(Tension/Density)]);
```

The parameters p1 and p2 determine the amplitude of the vibrations. Set p1 and p2 to 1 for simplicity.

```
S = subs(S,[p1 p2],[1 1]);
S = simplify(S,'Steps',50)
S(x, t) =
4 sin}(\pikt)\operatorname{sin}(\pikx
```

The string has different modes of vibration for different values of k. Plot the first four modes for an arbitrary value of time t. Use the param argument returned by solve to address parameter k. Prior to R2016a, use ezplot instead of fplot.

```
Splot(x) = S(x,0.3);
figure(1)
hold on
grid on
ymin = double(coeffs(Splot));
for i = 1:4
    yplot = subs(Splot,param,i);
    fplot(yplot,[0 Length])
end
ylim([-ymin ymin])
legend('k = 1','k = 2','k = 3','k = 4','Location','best')
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Modes of a string')
```


The wave equation is linear. This means that any linear combination of the allowed modes is a valid solution to the wave equation. Hence, the full solution to the wave equation with the given boundary conditions and initial values is a sum over allowed modes

$$
F(x, t)=\sum_{k=n}^{m} A_{k} \sin (\pi k t) \sin (\pi k x),
$$

where A_{k} denotes arbitrary constants.
Use symsum to sum the first five modes of the string. On a new figure, display the resulting waveform at the same instant of time as the previous waveforms for comparison.

```
figure(2)
S5(x) = 1/5*symsum(S,param,1,5);
fplot(subs(S5,t,0.3),[0 Length])
ylim([-ymin ymin])
grid on
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Summation of first 5 modes')
```

Summation of first 5 modes

The figure shows that summing modes allows you to model a qualitatively different waveform. Here, we specified the initial condition is $S(x, t=0)=0$ for all x.

You can calculate the values A_{k} in the equation $F(x, t)=\sum_{k=n}^{m} A_{k} \sin (\pi k t) \sin (\pi k x)$ by specifying a condition for initial velocity

$$
u_{t}(x, t=0)=F_{t}(x, 0)
$$

The appropriate summation of modes can represent any waveform, which is the same as using the Fourier series to represent the string's motion.

Limits

The fundamental idea in calculus is to make calculations on functions as a variable "gets close to" or approaches a certain value. Recall that the definition of the derivative is given by a limit

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the limits of functions directly. The commands

```
syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
```

which return
ans =
$-\sin (x)$
and
limit((1 + x/n)^n, n, inf)
which returns
ans =
$\exp (x)$
illustrate two of the most important limits in mathematics: the derivative (in this case of $\cos (x)$) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software. For example, you can calculate the limit of $x /|x|$, whose graph is shown in the following figure, as x approaches 0 from the left or from the right. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(x/abs(x), [-1 1], 'ShowPoles', 'off')

To calculate the limit as x approaches 0 from the left,

$$
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|},
$$

```
enter
syms x
limit(x/abs(x), x, 0, 'left')
ans =
    -1
```

To calculate the limit as x approaches 0 from the right,

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1
$$

enter
syms x

```
limit(x/abs(x), x, 0, 'right')
```

ans $=$
1

Since the limit from the left does not equal the limit from the right, the two- sided limit does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For example,
syms x
limit(x/abs(x), x, 0)
returns
ans $=$
NaN
Observe that the default case, limit(f) is the same as limit($f, x, 0$). Explore the options for the limit command in this table, where f is a function of the symbolic object x.

Mathematical Operation	MATLAB Command
$\lim _{x \rightarrow 0} f(x)$	limit(f)
$\lim _{x \rightarrow a} f(x)$	$\begin{aligned} & \operatorname{limit}(f, x, a) \text { or } \\ & \operatorname{limit}(f, a) \end{aligned}$
$\lim _{x \rightarrow a^{-}} f(x)$	limit(f, x, a, 'left')
$\lim _{x \rightarrow a^{+}} f(x)$	limit(f, x, a, 'right')

Integration

If f is a symbolic expression, then
int(f)
attempts to find another symbolic expression, F, so that $\operatorname{diff}(F)=f$. That is, int (f) returns the indefinite integral or antiderivative of f (provided one exists in closed form). Similar to differentiation,

```
int(f,v)
```

uses the symbolic object v as the variable of integration, rather than the variable determined by symvar. See how int works by looking at this table.

Mathematical Operation	MATLAB Command
$\int x^{n} d x= \begin{cases}\log (x) & \text { if } n=-1 \\ \frac{x^{n+1}}{n+1} & \text { otherwise }\end{cases}$	int ($\left.x^{\wedge} \mathrm{n}\right)$ or int ($\mathrm{x}^{\wedge} \mathrm{n}, \mathrm{x}$)
$\int_{0}^{\pi / 2} \sin (2 x) d x=1$	$\begin{aligned} & \text { int }\left(\sin \left(2^{*} x\right), 0, p i / 2\right) \text { or int }(\sin (2 * x), \\ & x, 0, p i / 2) \end{aligned}$
$\begin{aligned} & g=\cos (a t+b) \\ & \int g(t) d t=\sin (a t+b) / a \end{aligned}$	$g=\cos \left(a^{*} t+b\right) \operatorname{int}(\mathrm{g})$ orint (g, t)
$\int J_{1}(z) d z=-J_{0}(z)$	```int(besselj(1, z)) or int(besselj(1, z) z)```

In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral:

- The antiderivative, F, may not exist in closed form.
- The antiderivative may define an unfamiliar function.
- The antiderivative may exist, but the software can't find it.
- The software could find the antiderivative on a larger computer, but runs out of time or memory on the available machine.

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For example, create the symbolic variables

```
syms a b theta x y n u z
```

The following table illustrates integration of expressions containing those variables.

f	int(f)
$\begin{aligned} & \text { syms } x \text { n } \\ & f=x^{\wedge} n ; \end{aligned}$	```int(f) ans = piecewise(n == -1, log(x), n ~= -1,... x^(n + 1)/(n + 1))```
$\begin{aligned} & \text { syms } y \\ & f=y^{\wedge}(-1) ; \end{aligned}$	$\begin{aligned} & \hline \operatorname{int}(\mathrm{f}) \\ & \operatorname{ans}= \\ & \log (\mathrm{y}) \end{aligned}$
$\begin{aligned} & \text { syms } \times n \\ & \mathrm{f}=\mathrm{n}^{\wedge} \mathrm{x} ; \end{aligned}$	$\begin{aligned} & \hline \operatorname{int}(f) \\ & \text { ans }= \\ & n^{\wedge} x / \log (n) \end{aligned}$
$\begin{aligned} & \text { syms a b theta } \\ & \mathrm{f}=\sin (\mathrm{a} \text { theta+b); } \end{aligned}$	```int(f) ans = -cos(b + a*theta)/a```
$\begin{aligned} & \text { syms } u \\ & f=1 /\left(1+u^{\wedge} 2\right) ; \end{aligned}$	$\begin{aligned} & \text { int (f) } \\ & \text { ans = } \\ & \operatorname{atan}(u) \end{aligned}$
$\begin{aligned} & \text { syms } x \\ & f=\exp \left(-x^{\wedge} 2\right) ; \end{aligned}$	```int(f) ans = (pi^(1/2)*erf(x))/2```

In the last example, $\exp \left(-x^{\wedge} 2\right)$, there is no formula for the integral involving standard calculus expressions, such as trigonometric and exponential functions. In this case, MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function f, it just returns int(f).

Definite integration is also possible.

Definite Integral	Command
$\int_{a}^{b} f(x) d x$	$\operatorname{int}(\mathrm{f}, \mathrm{a}, \mathrm{b})$
$\int_{a}^{b} f(v) d v$	$\operatorname{int}(\mathrm{f}, \mathrm{v}, \mathrm{a}, \mathrm{b})$

Here are some additional examples.

f	a, b	int(f, a, b)
$\begin{aligned} & \text { syms } x \\ & f=x^{\wedge} 7 ; \end{aligned}$	$\begin{aligned} & a=0 ; \\ & b=1 ; \end{aligned}$	$\begin{aligned} & \text { int(f, a, b) } \\ & \text { ans = } \\ & 1 / 8 \end{aligned}$
$\begin{aligned} & \text { syms } x \\ & \mathrm{f}=1 / \mathrm{x} \end{aligned}$	$\begin{aligned} & a=1 ; \\ & b=2 ; \end{aligned}$	```int(f, a, b) ans = log(2)```
$\begin{aligned} & \text { syms } x \\ & \mathrm{f}=\log (\mathrm{x})^{*} \operatorname{sqrt}(\mathrm{x}) ; \end{aligned}$	$\begin{aligned} & a=0 ; \\ & b=1 ; \end{aligned}$	$\begin{aligned} & \operatorname{int}(f, a, b) \\ & \text { ans }= \\ & -4 / 9 \end{aligned}$
$\begin{aligned} & \text { syms } x \\ & f=\exp \left(-x^{\wedge} 2\right) ; \end{aligned}$	$\begin{aligned} & a=0 ; \\ & b=i n f ; \end{aligned}$	```int(f, a, b) ans = pi^(1/2)/2```
$\begin{aligned} & \text { syms z } \\ & \mathrm{f}=\text { besselj }(1, z)^{\wedge} 2 ; \end{aligned}$	$\begin{aligned} & a=0 ; \\ & b=1 ; \end{aligned}$	```int(f, a, b) ans = hypergeom([3/2, 3/2],... [2, 5/2, 3], -1)/12```

For the Bessel function (besselj) example, it is possible to compute a numerical approximation to the value of the integral, using the double function. The commands
syms z
$a=\operatorname{int}\left(\operatorname{besselj}(1, z)^{\wedge} 2,0,1\right)$
return
$a=$
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12
and the command
a = double(a)
returns
a =
0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the "value" of various parameters. For example, if a is any positive real number, the expression

$$
e^{-a x^{2}}
$$

is the positive, bell shaped curve that tends to 0 as x tends to $\pm \infty$. You can create an example of this curve, for $a=1 / 2$. Prior to R2016a, use ezplot instead of fplot.
syms x
$a=\operatorname{sym}(1 / 2)$;
$f=\exp \left(-a^{*} x^{\wedge} 2\right)$;
fplot(f)

However, if you try to calculate the integral

$$
\int_{-\infty}^{\infty} e^{-a x^{2}} d x
$$

without assigning a value to a, MATLAB assumes that a represents a complex number, and therefore returns a piecewise answer that depends on the argument of a. If you are only interested in the case when a is a positive real number, use assume to set an assumption on a:
syms a
assume(a > 0)

Now you can calculate the preceding integral using the commands

syms x

$\mathrm{f}=\exp \left(-\mathrm{a}^{*} \mathrm{x}^{\wedge} 2\right)$;
int(f, x, -inf, inf)
This returns
ans =
$p i^{\wedge}(1 / 2) / a^{\wedge}(1 / 2)$

Integration with Complex Parameters

To calculate the integral

$$
\int_{-\infty}^{\infty} \frac{1}{a^{2}+x^{2}} d x
$$

for complex values of a, enter

```
syms a x clear
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)
```

syms is used with the clear option to clear the all assumptions on a. For more information about symbolic variables and assumptions on them, see "Delete Symbolic Objects and Their Assumptions" on page 1-29.

The preceding commands produce the complex output

```
F =
(pi*signIm(1i/a))/a
```

The function signIm is defined as:


```
To evaluate F at a = 1 + i, enter
g = subs(F, 1 + i)
g =
pi*(1/2 - 1i/2)
double(g)
ans =
    1.5708 - 1.5708i
```


High-Precision Numerical Integration Using Variable-Precision Arithmetic

High-precision numerical integration is implemented in the vpaintegral function of the Symbolic Math Toolbox. vpaintegral uses variable-precision arithmetic in contrast to the MATLAB integral function, which uses double-precision arithmetic.

Integrate besseli(5,25*u).*exp(-u*25) by using both integral and vpaintegral. The integral function returns NaN and issues a warning while vpaintegral returns the correct result.

```
syms u
f = besseli(5,25*x).*exp(-x*25);
fun = @(u)besseli(5,25*u).*exp(-u*25);
usingIntegral = integral(fun, 0, 30)
usingVpaintegral = vpaintegral(f, 0, 30)
```

```
Warning: Infinite or Not-a-Number value encountered.
usingIntegral =
    NaN
usingVpaintegral =
0.688424
```

For more information, see vpaintegral.

Symbolic Summation

Symbolic Math Toolbox provides two functions for calculating sums:

- sum finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB sum, the symbolic sum function does not work on multidimensional arrays. For details, follow the MATLAB sum page.
- symsum finds the sum of a symbolic series.

In this section...

"Comparing symsum and sum" on page 2-65
"Computational Speed of symsum versus sum" on page 2-66
"Output Format Differences Between symsum and sum" on page 2-66

Comparing symsum and sum

You can find definite sums by using both sum and symsum. The sum function sums the input over a dimension, while the symsum function sums the input over an index.


```
substituting the index values for k in the expression. Then, sum the resulting vector using
sum.
syms k
f = 1/k^2;
V = subs(f, k, 1:10)
S_sum = sum(V)
V =
[ 1, 1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 1/64, 1/81, 1/100]
S sum =
1968329/1270080
```

Find the same sum by using symsum by specifying the index and the summation limits. sum and symsum return identical results.

S_symsum = symsum(f, k, 1, 10)

S symsum =

1968329/1270080

Computational Speed of symsum versus sum

For summing definite series, symsum can be faster than sum. For summing an indefinite series, you can only use symsum.

You can demonstrate that symsum can be faster than sum by summing a large definite
series such as $S=\sum_{k=1}^{100000} k^{2}$.
To compare runtimes on your computer, use the following commands.
syms k
tic
sum(sym(1:100000).^2);
toc
tic
symsum(k^2, k, 1, 100000);
toc

Output Format Differences Between symsum and sum

symsum can provide a more elegant representation of sums than sum provides. Demonstrate this difference by comparing the function outputs for the definite series

```
S= 泣秋.
    To simplify the solution, assume x > 1.
syms x
assume(x > 1)
S_sum = sum(x.^(1:10))
S_symsum = symsum(x^k, k, 1, 10)
S sum =
x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^^2 + x
S_symsum =
x^11/(x - 1) - x/(x - 1)
```

Show that the outputs are equal by using isAlways. The isAlways function returns logical 1 (true), meaning that the outputs are equal.
isAlways(S_sum == S_symsum)
ans $=$
logical
1
For further computations, clear the assumptions.
assume(x, 'clear')

Taylor Series

The statements

```
syms x
f = 1/(5 + 4* cos(x));
T = taylor(f, 'Order', 8)
return
T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9
```

which is all the terms up to, but not including, order eight in the Taylor series for $f(x)$:

$$
\sum_{n=0}^{\infty}(x-a)^{n} \frac{f^{(n)}(a)}{n!}
$$

Technically, T is a Maclaurin series, since its expansion point is a $=0$.
The command

```
pretty(T)
```

prints T in a format resembling typeset mathematics:

6	4	2
49 x	$5 \times$	
131220	1458	81

These commands
syms x
$\mathrm{g}=\exp \left(\mathrm{x}^{*} \sin (\mathrm{x})\right)$;
t = taylor(g, 'ExpansionPoint', 2, 'Order', 12);
generate the first 12 nonzero terms of the Taylor series for g about $x=2$.
t is a large expression; enter
size(char(t))

ans =

to find that t has about 100,000 characters in its printed form. In order to proceed with using t , first simplify its presentation:

```
t = simplify(t);
size(char(t))
ans =
```

 16988
 Next, plot these functions together to see how well this Taylor approximation compares to the actual function g :

```
xd = 1:0.05:3;
yd = subs(g,x,xd);
fplot(t, [1, 3])
hold on
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function')
legend('Taylor','Function')
```

Taylor approximation vs. actual function

Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden for this example.

Padé Approximant

The Padé approximant of order [m, n] approximates the function $f(x)$ around $x=x_{0}$ as

$$
\frac{a_{0}+a_{1}\left(x-x_{0}\right)+\ldots+a_{m}\left(x-x_{0}\right)^{m}}{1+b_{1}\left(x-x_{0}\right)+\ldots+b_{n}\left(x-x_{0}\right)^{n}} .
$$

The Padé approximant is a rational function formed by a ratio of two power series. Because it is a rational function, it is more accurate than the Taylor series in approximating functions with poles. The Padé approximant is represented by the Symbolic Math Toolbox function pade.

When a pole or zero exists at the expansion point $x=x_{0}$, the accuracy of the Padé approximant decreases. To increase accuracy, an alternative form of the Padé approximant can be used which is

$$
\frac{\left(x-x_{0}\right)^{p}\left(a_{0}+a_{1}\left(x-x_{0}\right)+\ldots+a_{m}\left(x-x_{0}\right)^{m}\right)}{1+b_{1}\left(x-x_{0}\right)+\ldots+b_{n}\left(x-x_{0}\right)^{n}} .
$$

The pade function returns the alternative form of the Padé approximant when you set the OrderMode input argument to Relative.

The Padé approximant is used in control system theory to model time delays in the response of the system. Time delays arise in systems such as chemical and transport processes where there is a delay between the input and the system response. When these inputs are modeled, they are called dead-time inputs. This example shows how to use the Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs using Padé approximants.

The behavior of a first-order system is described by this differential equation

$$
\tau \frac{d y(t)}{d t}+y(t)=a x(t)
$$

Enter the differential equation in MATLAB.

```
syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp
F = tau*diff(y)+y == a*x;
```

Find the Laplace transform of F using laplace.

```
F = laplace(F,t,s)
F=
```

laplace $(y(t), t, s)-\tau(y(0)-s$ laplace $(y(t), t, s))=a$ laplace $(x(t), t, s)$

Assume the response of the system at $\mathrm{t}=0$ is 0 . Use subs to substitute for $\mathrm{y}(0)=0$.

```
F = subs(F,y(0),0)
```

$F=$

```
laplace(y(t),t,s) +s v laplace(y(t),t,s)=a laplace(x(t),t,s)
```

To collect common terms, use simplify.
F = simplify (F)
$F=$
$(s \tau+1)$ laplace $(y(t), t, s)=a$ laplace $(x(t), t, s)$
For readability, replace the Laplace transforms of $x(t)$ and $y(t)$ with $x S(s)$ and $y S(s)$.
$F=\operatorname{subs}(F,[\operatorname{laplace}(x(t), t, s)$ laplace $(y(t), t, s)],[x S(s) y S(s)])$
$F=$
$\mathrm{yS}(s)(s \tau+1)=a \mathrm{xS}(s)$
The Laplace transform of the transfer function is $y S(s) / x S(s)$. Divide both sides of the equation by $x S(s)$ and use subs to replace $y S(s) / x S(s)$ with $H(s)$.
$F=F / x S(s) ;$
$F=\operatorname{subs}(F, y S(s) / x S(s), H(s))$
$F=$
$H(s)(s \tau+1)=a$
Solve the equation for $\mathrm{H}(\mathrm{s})$. Substitute for $\mathrm{H}(\mathrm{s})$ with a dummy variable, solve for the dummy variable using solve, and assign the solution back to $\mathrm{H}(\mathrm{s})$.
$F=\operatorname{subs}(F, H(s), t m p) ;$
$H(s)=$ solve(F,tmp)
$H(s)=$
$\frac{a}{s \tau+1}$

The input to the first-order system is a time-delayed step input. To represent a step input, use heaviside. Delay the input by three time units. Find the Laplace transform using laplace.

```
step = heaviside(t - 3);
```

step $=$ laplace(step)
step =
$\frac{\mathrm{e}^{-3 s}}{s}$

Find the response of the system, which is the product of the transfer function and the input.

```
y = H(s)*step
y =
a (\mp@subsup{\textrm{e}}{}{-3s}
```

To allow plotting of the response, set parameters a and tau to their values. For a and tau, choose values 1 and 3, respectively.
y = subs(y,[a tau],[1 3]);
y = ilaplace(y,s);
Find the Pade approximant of order [2 2] of the step input using the Order input argument to pade.
stepPade22 = pade(step,'Order',[2 2])
stepPade22 =

$$
\frac{3 s^{2}-4 s+2}{2 s(s+1)}
$$

Find the response to the input by multiplying the transfer function and the Padé approximant of the input.

```
yPade22 = H(s)*stepPade22
yPade22 =
a(3\mp@subsup{s}{}{2}-4s+2)
```

Find the inverse Laplace transform of yPade22 using ilaplace.

```
yPade22 = ilaplace(yPade22,s)
```

yPade22 =
$a+\frac{9 a \mathrm{e}^{-s}}{2 \tau-2}-\frac{a \mathrm{e}^{-\frac{s}{\tau}}\left(2 \tau^{2}+4 \tau+3\right)}{\tau(2 \tau-2)}$

To plot the response, set parameters a and tau to their values of 1 and 3, respectively.

```
yPade22 = subs(yPade22,[a tau],[1 3])
```

yPade22 =
$\frac{9 \mathrm{e}^{-s}}{4}-\frac{11 \mathrm{e}^{-\frac{s}{3}}}{4}+1$

Plot the response of the system y and the response calculated from the Padé approximant yPade22.

```
hold on
grid on
fplot([y yPade22],[0 20])
title('Pade Approximant for dead-time step input')
legend('Response to dead-time step input',...
    'Pade approximant [2 2]',...
    'Location', 'Best')
```


The [2 2] Padé approximant does not represent the response well because a pole exists at the expansion point of 0 . To increase the accuracy of pade when there is a pole or zero at the expansion point, set the OrderMode input argument to Relative and repeat the steps. For details, see pade.
stepPade22Rel = pade(step,'Order',[2 2],'OrderMode','Relative')
stepPade22Rel =
$\frac{3 s^{2}-6 s+4}{s\left(3 s^{2}+6 s+4\right)}$
yPade22Rel $=\mathrm{H}(\mathrm{s}) *$ stepPade22Rel

$$
\begin{gathered}
\text { yPade22Rel }= \\
\frac{a\left(3 s^{2}-6 s+4\right)}{s(s \tau+1)\left(3 s^{2}+6 s+4\right)} \\
\text { yPade22Rel }=\text { ilaplace(yPade22Rel) } \\
\text { yPade22Rel }= \\
a-\frac{a \mathrm{e}^{-\frac{t}{\tau}}\left(4 \tau^{2}+6 \tau+3\right)}{\sigma_{1}}+\frac{12 a \tau \mathrm{e}^{-t}\left(\cos \left(\frac{\sqrt{3} t}{3}\right)-\sqrt{3} \sin \left(\frac{\sqrt{3} t}{3}\right)\left(\frac{36 a-72 a \tau}{36 a \tau}+1\right)\right)}{\sigma_{1}}
\end{gathered}
$$

where

$$
\begin{aligned}
\sigma_{1}=4 \tau^{2} & -6 \tau+3 \\
& \text { yPade22Rel = subs(yPade22Rel,[a tau],[ll } 3 \text {] }) \\
& \text { yPade22Rel }= \\
& \frac{12 \mathrm{e}^{-t}\left(\cos \left(\frac{\sqrt{3} t}{3}\right)+\frac{2 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{3}\right)}{3}\right)}{7}-\frac{19 \mathrm{e}^{-\frac{t}{3}}}{7}+1 \\
& \text { fplot(yPade22Rel,[0 20],'DisplayName','Relative Pade approximant [2 2]') }
\end{aligned}
$$

The accuracy of the Padé approximant can also be increased by increasing its order. Increase the order to [45] and repeat the steps. The [n-1 n] Padé approximant is better at approximating the response at $t=0$ than the [$n \mathrm{n}$] Padé approximant.
stepPade45 = pade(step,'Order',[4 5])
stepPade45 =
$\frac{27 s^{4}-180 s^{3}+540 s^{2}-840 s+560}{s\left(27 s^{4}+180 s^{3}+540 s^{2}+840 s+560\right)}$
yPade45 = H(s)*stepPade45
yPade45 =

$$
\begin{aligned}
& \frac{a\left(27 s^{4}-180 s^{3}+540 s^{2}-840 s+560\right)}{s(s \tau+1)\left(27 s^{4}+180 s^{3}+540 s^{2}+840 s+560\right)} \\
& \text { yPade45 = subs(yPade45, [a tau], [1 3]) } \\
& \text { yPade45 }= \\
& \frac{27 s^{4}-180 s^{3}+540 s^{2}-840 s+560}{s(3 s+1)\left(27 s^{4}+180 s^{3}+540 s^{2}+840 s+560\right)} \\
& \text { yPade45 = ilaplace(yPade45) } \\
& \text { yPade45 }= \\
& \frac{294120\left(\sum_{k=1}^{4} \frac{\mathrm{e}^{\sigma_{2} t} \sigma_{2}{ }^{2}}{\sigma_{1}}\right)}{1001}-\frac{2721 \mathrm{e}^{-\frac{t}{3}}}{1001}+\frac{46440\left(\sum_{k=1}^{4} \frac{\mathrm{e}^{\sigma_{2} t} \sigma_{2}^{3}}{\sigma_{1}}\right)}{1001}+\frac{172560\left(\sum_{k=1}^{4} \frac{\mathrm{e}^{\sigma_{2} t}}{\sigma_{1}}\right)}{143}+\frac{101520\left(\sum_{k=1}^{4} \frac{\sigma_{2} \mathrm{e}^{\sigma_{2} t}}{12\left(90 \sigma_{2}+45 \sigma_{2}^{2}+9 \sigma_{2}^{3}+70\right)}\right.}{143}+1
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma_{1}=12\left(45 \sigma_{2}{ }^{2}+9 \sigma_{2}^{3}+90 \sigma_{2}+70\right) \\
& \sigma_{2}=\operatorname{root}\left(s_{5}^{4}+\frac{20 s_{5}^{3}}{3}+20 s_{5}^{2}+\frac{280 s_{5}}{9}+\frac{560}{27}, s_{5}, k\right) \\
& \text { yPade45 }=\mathrm{vpa}(\text { yPade45 }) \\
& \text { yPade } 45=
\end{aligned}
$$

fplot(yPade45,[0 20],'DisplayName','Pade approximant [4 5]')

The following points have been shown:

- Padé approximants can model dead-time step inputs.
- The accuracy of the Padé approximant increases with the increase in the order of the approximant.
- When a pole or zero exists at the expansion point, the Padé approximant is inaccurate about the expansion point. To increase the accuracy of the approximant, set the OrderMode option to Relative. You can also use increase the order of the denominator relative to the numerator.

Find Asymptotes, Critical and Inflection Points

This section describes how to analyze a simple function to find its asymptotes, maximum, minimum, and inflection point. The section covers the following topics:

In this section...

"Define a Function" on page 2-80
"Find Asymptotes" on page 2-81
"Find Maximum and Minimum" on page 2-82
"Find Inflection Point" on page 2-84

Define a Function

The function in this example is

$$
f(x)=\frac{3 x^{2}+6 x-1}{x^{2}+x-3}
$$

To create the function, enter the following commands:

```
syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom
f =
(3*x^2 + 6*x - 1)/(x^2 + x - 3)
```

Plot the function f by using fplot. The fplot function automatically shows horizontal asymptotes. Prior to R2016a, use ezplot instead of fplot.
fplot(f)

Find Asymptotes

To mathematically find the horizontal asymptote of f, take the limit of f as x approaches positive infinity:

```
limit(f, inf)
ans =
3
```

The limit as x approaches negative infinity is also 3 . This result means the line $y=3$ is a horizontal asymptote to f.

To find the vertical asymptotes of f, set the denominator equal to 0 and solve by entering the following command:

```
roots = solve(denom)
```

This returns the solutions to $x^{2}+x-3=0$:

roots =

$$
\begin{aligned}
& 13^{\wedge}(1 / 2) / 2-1 / 2 \\
& 13^{\wedge}(1 / 2) / 2-1 / 2
\end{aligned}
$$

This tells you that vertical asymptotes are the lines

$$
x=\frac{-1+\sqrt{13}}{2},
$$

and

$$
x=\frac{-1-\sqrt{13}}{2} .
$$

Find Maximum and Minimum

You can see from the graph that f has a local maximum between the points $x=-2$ and $x=$ 0 , and might have a local minimum between $x=-6$ and $x=-2$. To find the x-coordinates of the maximum and minimum, first take the derivative of f :

```
f1 = diff(f)
f1 =
(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x - 1))/( (x^2 + x - 3)^2
```

To simplify this expression, enter
f1 = simplify(f1)
f1 =

```
    -(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2
```

You can display f1 in a more readable form by entering pretty(f1)
which returns

```
    2
3 x + 16 x + 17
    2 2
    (x + x - 3)
```

Next, set the derivative equal to 0 and solve for the critical points:

```
crit_pts = solve(f1)
crit pts =
    13^(1/2)/3 - 8/3
    13^(1/2)/3 - 8/3
```

It is clear from the graph of f that it has a local minimum at

$$
x_{1}=\frac{-8-\sqrt{13}}{3}
$$

and a local maximum at

$$
x_{2}=\frac{-8+\sqrt{13}}{3} .
$$

Note MATLAB does not always return the roots to an equation in the same order.

You can plot the maximum and minimum of f with the following commands:

```
fplot(f)
hold on
plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-4.8,5.5,'Local minimum')
text(-2,4,'Local maximum')
hold off
```


Find Inflection Point

To find the inflection point of f, set the second derivative equal to 0 and solve.

```
f2 = diff(f1);
inflec_pt = solve(f2,'MaxDegree',3);
double(inflec_pt)
```

This returns
ans $=$

$$
\begin{aligned}
& -5.2635+0.0000 i \\
& -1.3682-0.8511 i \\
& -1.3682+0.8511 i
\end{aligned}
$$

In this example, only the first entry is a real number, so this is the only inflection point. (Note that in other examples, the real solutions might not be the first entries of the answer.) Since you are only interested in the real solutions, you can discard the last two entries, which are complex numbers.

```
inflec_pt = inflec_pt(1);
```

To see the symbolic expression for the inflection point, enter

```
pretty(simplify(inflec_pt))
```

$2^{2 / 3} 13^{1 / 3}(13-3 \operatorname{sqrt}(13))^{1 / 3} 2^{2 / 3} 13^{1 / 3}(3 \operatorname{sqrt}(13)+13)^{1 / 3}$

6
6
Plot the inflection point. The extra argument, [-96], in fplot extends the range of x values in the plot so that you see the inflection point more clearly, as shown in the following figure.

```
fplot(f, [-9 6])
hold on
plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,1,'Inflection point')
hold off
```


Simplify Symbolic Expressions

Simplification of a mathematical expression is not a clearly defined subject. There is no universal idea as to which form of an expression is simplest. The form of a mathematical expression that is simplest for one problem turns out to be complicated or even unsuitable for another problem. For example, the following two mathematical expressions present the same polynomial in different forms:

```
(x + 1)(x - 2)(x + 3)(x - 4),
x4}-2\mp@subsup{x}{}{3}-13\mp@subsup{x}{}{2}+14x+24
```

The first form clearly shows the roots of this polynomial. This form is simpler for working with the roots. The second form serves best when you want to see the coefficients of the polynomial. For example, this form is convenient when you differentiate or integrate polynomials.

If the problem you want to solve requires a particular form of an expression, the best approach is to choose the appropriate simplification function. See "Choose Function to Rearrange Expression" on page 2-95.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier, simplify.
If you do not need a particular form of expressions (expanded, factored, or expressed in particular terms), use simplify to shorten mathematical expressions. For example, use this simplifier to find a shorter form for a final result of your computations.
simplify works on various types of symbolic expressions, such as polynomials, expressions with trigonometric, logarithmic, and special functions. For example, simplify these polynomials.

```
syms x y
simplify((1 - x^2)/(1 - x))
simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1))
ans =
x + 1
ans =
x^12 - 1
```

Simplify expressions involving trigonometric functions.

```
simplify(\operatorname{cos}(x)^(-2) - tan(x)^2)
simplify(cos(x)^2 - sin(x)^2)
ans =
1
ans =
cos(2*x)
```

Simplify expressions involving exponents and logarithms. In the third expression, use $\log (\operatorname{sym}(3))$ instead of $\log (3)$. If you use $\log (3)$, then MATLAB calculates $\log (3)$ with the double precision, and then converts the result to a symbolic number.

```
simplify(exp(x)*exp(y))
simplify(exp(x) - exp(x/2)^2)
simplify(log(x) + log(sym(3)) - log(3*x) + (exp(x) - 1)/(exp(x/2) + 1))
ans =
exp(x + y)
ans =
0
ans =
exp(x/2) - 1
```

Simplify expressions involving special functions.

```
simplify(gamma(x + 1) - x*gamma(x))
simplify(besselj(2, x) + besselj(0, x))
ans =
0
ans =
(2*besselj(1, x))/x
```

You also can simplify symbolic functions by using simplify.

```
syms f(x,y)
f(x,y) = exp(x)*exp(y)
f = simplify(f)
f(x, y) =
exp(x)*exp(y)
```

```
f(x, y) =
exp(x+y)
```


Simplify Using Options

By default, simplify uses strict simplification rules and ensures that simplified expressions are always mathematically equivalent to initial expressions. For example, it does not combine logarithms.

```
syms x
simplify(log(x^2) + log(x))
ans =
log(x^2) + log(x)
```

You can apply additional simplification rules which are not correct for all values of parameters and all cases, but using which simplify can return shorter results. For this approach, use IgnoreAnalyticConstraints. For example, simplifying the same expression with IgnoreAnalyticConstraints, you get the result with combined logarithms.

```
simplify(log(x^2) + log(x),'IgnoreAnalyticConstraints',true)
ans =
3*log(x)
```

IgnoreAnalyticConstraints provides a shortcut allowing you to simplify expressions under commonly used assumptions about values of the variables. Alternatively, you can set appropriate assumptions on variables explicitly. For example, combining logarithms is not valid for complex values in general. If you assume that x is a real value, simplify combines logarithms without IgnoreAnalyticConstraints.

```
assume(x,'real')
simplify(log(x^2) + log(x))
ans =
log(x^3)
```

For further computations, clear the assumption on x .

```
syms x clear
```

Another approach that can improve simplification of an expression or function is the syntax simplify(f, 'Steps ', n), where n is a positive integer that controls how many
steps simplify takes. Specifying more simplification steps can help you simplify the expression better, but it takes more time. By default, $n=1$. For example, create and simplify this expression. The result is shorter than the original expression, but it can be simplified further.

```
syms x
y = (cos(x)^2 - sin(x)^2)*sin}(2*x)*(\operatorname{exp}(2*x)-2*exp(x) + 1)/\ldots..
    ((\operatorname{cos}(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
simplify(y)
ans =
(\operatorname{sin}(4*x)*(exp(x) - 1))/(2*\operatorname{cos}(4*x)*(exp(x) + 1))
```

Specify the number of simplification steps for the same expression. First, use 25 steps.

```
simplify(y,'Steps',25)
ans =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))
```

Use 50 steps to simplify the expression even further.

```
simplify(y,'Steps',50)
ans =
(tan(4*x)*\operatorname{tanh}(x/2))/2
```

Suppose, you already simplified an expression or function, but want to simplify it further. The more efficient approach is to simplify the result instead of simplifying the original expression.
syms x

```
y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...
    ((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
    y = simplify(y)
y =
(\operatorname{sin}(4*x)*(exp(x) - 1))/(2*\operatorname{cos}(4*x)*(exp(x) + 1))
y = simplify(y,'Steps',25)
y =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))
y = simplify(y,'Steps',50)
```

```
y =
(tan(4*x)*\operatorname{tanh}(x/2))/2
```


Simplify Using Assumptions

Some expressions cannot be simplified in general, but become much shorter under particular assumptions. For example, simplifying this trigonometric expression without additional assumptions returns the original expression.

```
syms n
simplify(sin(2*n*pi))
ans =
sin(2*pi*n)
```

However, if you assume that variable n represents an integer, the same trigonometric expression simplifies to 0 .

```
assume(n,'integer')
```

simplify(sin(2*n*pi))
ans =
0

For further computations, clear the assumption.
syms n clear

Simplify Fractions

You can use the general simplification function, simplify, to simplify fractions. However, Symbolic Math Toolbox offers a more efficient function specifically for this task: simplifyFraction. The statement simplifyFraction(f) represents the expression f as a fraction, where both the numerator and denominator are polynomials whose greatest common divisor is 1 . For example, simplify these expressions.

```
syms x y
simplifyFraction((x^3 - 1)/(x - 1))
ans =
x^2 + x + 1
simplifyFraction((x^3 - x^2*y - x* y^2 + y^3)/( (x^3 + y^3))
```

```
ans =
(x^2 - 2* }\mp@subsup{x}{}{*}y+\mp@subsup{y}{}{\wedge}2)/(\mp@subsup{x}{}{\wedge}2-\mp@subsup{x}{}{*}y+\mp@subsup{y}{}{\wedge}2
```

By default, simplifyFraction does not expand expressions in the numerator and denominator of the returned result. To expand the numerator and denominator in the resulting expression, use the Expand option. For comparison, first simplify this fraction without Expand.

```
simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4)
ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(exp(x) + 1)^3
```

Now, simplify the same expressions with Expand.

```
simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4,'Expand',true)
ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)
```


Abbreviate Common Terms in Long Expressions

Often, long expressions contain several instances of the same subexpression. Such expressions look shorter if you replace the subexpression with an abbreviation. For example, solve this equation.

```
syms x
s = solve(sqrt(x) + 1/x == 1, x)
s =
    (1/(18*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
    (3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
    (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 +...
    (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2
    ((3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
    (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 + 1/(18*(25/54 -...
    (23^(1/2)*108^(1/2))/108)^(1/3)) +...
    (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2
```

The returned result is a long expression that might be difficult to parse. To represent it in a more familiar typeset form, use pretty. When displaying results, the pretty function can use abbreviations to shorten long expressions.

```
pretty(s)
```


where


```
    #1 == -----------------------
        2
        / 25 sqrt(23) sqrt(108) \1/3
```

```
#2 == | |- ---------------- |
```

pretty uses an internal algorithm to choose which subexpressions to abbreviate. It also can use nested abbreviations. For example, the term \#1 contains the subexpression abbreviated as \#2. This function does not provide any options to enable, disable, or control abbreviations.
subexpr is another function that you can use to shorten long expressions. This function abbreviates only one common subexpression and, unlike pretty, it does not support nested abbreviations. It also does not let you choose which subexpressions to replace.

Use the second input argument of subexpr to specify the variable name that replaces the common subexpression. For example, replace the common subexpression in s by variable t.

```
[s1,t] = subexpr(s,'t')
sl =
    (1/(18*t^(1/3)) - (3^(1/2)*(1/(9*t^(1/3)) -...
    t^(1/3))*1i)/2 + t^(1/3)/2 + 1/3)^2
    ((3^(1/2)*(1/(9*t^(1/3)) - t^(1/3))*li)/2 +...
    1/(18*t^(1/3)) + t^(1/3)/2 + 1/3)^2
t =
25/54 - (23^(1/2)*108^(1/2))/108
```

For the syntax with one input argument, subexpr uses variable sigma to abbreviate the common subexpression. Output arguments do not affect the choice of abbreviation variable.

```
[s2,sigma] = subexpr(s)
s2 =
    (1/(18*sigma^(1/3)) - (3^(1/2)*(1/(9*sigma^(1/3)) - ...
    sigma^(1/3))*1i)/2 + sigma^(1/3)/2 + 1/3)^2
    ((3^(1/2)*(1/(9*sigma^(1/3)) - sigma^(1/3))*1i)/2 +...
    1/(18*sigma^(1/3)) + sigma^(1/3)/2 + 1/3)^2
sigma =
25/54 - (23^(1/2)*108^(1/2))/108
```


Choose Function to Rearrange Expression

Type of Transformation	Function
"Combine Terms of Same Algebraic Structures" on page 2-95	combine
"Expand Expressions" on page 2-97	expand
"Factor Expressions" on page 2-98	factor
"Extract Subexpressions from Expression" on page 2-100	children
"Collect Terms with Same Powers" on page 2-101	collect
"Rewrite Expressions in Terms of Other Functions" on page 2-102	rewrite
"Compute Partial Fraction Decompositions of Expressions" on page 2-103	partfrac
"Compute Normal Forms of Rational Expressions" on page 2-104	simplifyFraction
"Represent Polynomials Using Horner Nested Forms" on page 2-104	horner

Combine Terms of Same Algebraic Structures

Symbolic Math Toolbox provides the combine function for combining subexpressions of an original expression. The combine function uses mathematical identities for the functions you specify. For example, combine the trigonometric expression.

```
syms x y
combine(2*sin(x)*\operatorname{cos}(x),'sincos')
ans =
sin(2*x)
```

If you do not specify a target function, combine uses the identities for powers wherever these identities are valid:

- $a^{b} a^{c}=a^{b+c}$
- $a^{c} b^{c}=(a b)^{c}$
- $\left(a^{b}\right)^{c}=a^{b c}$

For example, by default the function combines the following square roots.

```
combine(sqrt(2)*sqrt(x))
ans =
(2*x)^(1/2)
```

The function does not combine these square roots because the identity is not valid for negative values of variables.

```
combine(sqrt(x)*sqrt(y))
ans =
x^(1/2)*y^(1/2)
```

To combine these square roots, use the IgnoreAnalyticConstraints option.

```
combine(sqrt(x)*sqrt(y),'IgnoreanalyticConstraints',true)
ans =
(x*y)^(1/2)
```

IgnoreAnalyticConstraints provides a shortcut allowing you to combine expressions under commonly used assumptions about values of the variables. Alternatively, you can set appropriate assumptions on variables explicitly. For example, assume that x and y are positive values.

```
assume([x,y],'positive')
combine(sqrt(x)*sqrt(y))
ans =
(x*y)^(1/2)
```

For further computations, clear the assumptions on x and y.
syms x y clear
As target functions, combine accepts atan, exp, gamma, int, log, sincos, and sinhcosh.

Expand Expressions

For elementary expressions, use the expand function to transform the original expression by multiplying sums of products. This function provides an easy way to expand polynomials.

```
expand((x-1)*(x-2)*(x-3))
ans =
    x^3 - 6*x^2 + 11*x - 6
expand(x*(x*(x-6) + 11) - 6)
ans =
x^3 - 6*x^2 + 11*x - 6
```

The function also expands exponential and logarithmic expressions. For example, expand this expression containing exponentials.

```
expand(exp(x + y)*(x + exp(x - y)))
ans =
exp(2*x) + x*exp(x)*exp(y)
```

Expand this logarithm. Expanding logarithms is not valid for generic complex values, but it is valid for positive values.

```
syms a b c positive
expand(log(a*b*c))
ans =
log(a) + log(b) + log(c)
```

For further computations, clear the assumptions.

```
syms a b c clear
```

Alternatively, use the IgnoreAnalyticConstraints option when expanding logarithms.

```
expand(log(a*b*c),'IgnoreAnalyticConstraints',true)
ans =
log(a) + log(b) + log(c)
```

expand also works on trigonometric expressions. For example, expand this expression.

```
expand(cos(x + y))
ans =
cos(x)*\operatorname{cos}(y)-\operatorname{sin}(x)*\operatorname{sin}(y)
```

expand uses mathematical identities between the functions.

```
expand(sin(5*x))
```

ans $=$
$\sin (x)-12 * \cos (x)^{\wedge} 2^{*} \sin (x)+16 * \cos (x)^{\wedge} 4 * \sin (x)$
expand (cos(3*acos(x)))
ans $=$
$4^{*} x^{\wedge} 3-3 * x$
expand works recursively for all subexpressions.

```
expand((sin(3*x) + 1)*(cos(2*x) - 1))
```

ans $=$
$2 * \sin (x)+2 * \cos (x)^{\wedge} 2-10 * \cos (x)^{\wedge} 2 * \sin (x)+8 * \cos (x)^{\wedge} 4 * \sin (x)-2$

To prevent the expansion of all trigonometric, logarithmic, and exponential subexpressions, use the option ArithmeticOnly.

```
expand(exp(x + y)*(x + exp(x - y)),'ArithmeticOnly',true)
ans =
exp(x - y)*exp(x + y) + x*exp (x + y)
expand((sin(3*x) + 1)*(cos(2*x) - 1),'Arithmetic0nly',true)
ans =
cos(2*x) - sin(3*x) + cos(2*x)*sin(3*x) - 1
```


Factor Expressions

To return all irreducible factors of an expression, use the factor function. For example, find all irreducible polynomial factors of this polynomial expression. The result shows that this polynomial has three roots: $x=1, x=2$, and $x=3$.

```
syms x
factor(x^3 - 6* x^2 + 11*x - 6)
```

```
ans =
[x-3, x - 1, x - 2]
```

If a polynomial expression is irreducible, factor returns the original expression.

```
factor(x^3 - 6*x^2 + 11*x - 5)
ans =
x^3 - 6* (x^2 + 11*x - 5
```

Find irreducible polynomial factors of this expression. By default, factor uses factorization over rational numbers keeping rational numbers in their exact symbolic form. The resulting factors for this expression do not show polynomial roots.

```
factor(x^6 + 1)
ans =
[ x^2 + 1, x^4 - x^2 + 1]
```

Using other factorization modes lets you factor this expression further. For example, factor the same expression over complex numbers.

```
factor(x^6 + 1,'FactorMode','complex')
ans =
[ x + 0.86602540378443864676372317075294 + 0.5i,...
    x + 0.86602540378443864676372317075294 - 0.5i,...
    x + 1.0i,...
    x - 1.0i,...
    x - 0.86602540378443864676372317075294 + 0.5i,...
    x - 0.86602540378443864676372317075294 - 0.5i]
```

factor also works on expressions other than polynomials and rational expressions. For example, you can factor the following expression that contains logarithm, sine, and cosine functions. Internally, factor converts such expressions into polynomials and rational expressions by substituting subexpressions with variables. After computing irreducible factors, the function restores original subexpressions.

```
factor((log(x)^2 - 1)/(cos(x)^2 - sin(x)^2))
ans =
[ log(x) - 1, log(x) + 1, 1/(cos(x) - sin(x)), 1/(cos(x) + sin(x))]
```

Use factor to factor symbolic integers and symbolic rational numbers.

```
factor(sym(902834092))
factor(1/sym(210))
ans =
[ 2, 2, 47, 379, 12671]
ans =
[ 1/2, 1/3, 1/5, 1/7]
```

factor also can factor numbers larger than flintmax that the MATLAB factor cannot. To represent a large number accurately, place the number in quotation marks.

```
factor(sym('41758540882408627201'))
ans =
[ 479001599, 87178291199]
```


Extract Subexpressions from Expression

The children function returns the subexpressions of an expression.
Define an expression f with several subexpressions.

```
syms x y
f = exp(3*x)*y^3 + exp(2*x)*y^2 + exp(x)*y;
```

Extract the subexpressions of f by using chlidren.

```
expr = children(f)
expr =
[ y^2*}\operatorname{exp(2*x), y^3*}\operatorname{exp(3*x), y*exp(x)]
```

You can extract lower-level subexpressions by calling children repeatedly on the results.

Extract the subexpressions of expr(1) by calling children repeatedly. When the input to children is a vector, the output is a cell array.

```
expr1 = children(expr(1))
expr2 = children(expr1)
expr1 =
[ y^2, exp(2*x)]
expr2 =
```

```
1\times2 cell array
    {1\times2 sym} {1\times1 sym}
```

Access the contents of the cell array expr2 using braces.

```
expr2{1}
expr2{2}
ans =
[ y, 2]
ans =
2*x
```


Collect Terms with Same Powers

If a mathematical expression contains terms with the same powers of a specified variable or expression, the collect function reorganizes the expression by rouping such terms. When calling collect, specify the variables that the function must consider as unknowns. The collect function regards the original expression as a polynomial in the specified unknowns, and groups the coefficients with equal powers. Group the terms of an expression with the equal powers of x.

```
syms x y z
expr = x*y^4 + x*z + 2*x^3 + x^2* **z +...
    3*x^3*y^4* *^2 + y* z^2 + 5* x* y*z;
collect(expr, x)
ans =
(3*y^4* z^2 + 2)*x^3 + y* z*x^2 + (y^4 + 5* z*y + z)*x + y*z^2
```

Group the terms of the same expression with the equal powers of y.

```
collect(expr, y)
ans =
(3*x^3*z^2 + x)*y^4 + (x^2*z + 5*x*z + z^2)*y + 2*x^3 + z*x
```

Group the terms of the same expression with the equal powers of z.

```
collect(expr, z)
ans =
(3*x^3*y^4 + y)*z^2 + (x + 5*x*y + x^2*y)*z + 2*x^3 + x* ' y^4
```

If you do not specify variables that collect must consider as unknowns, the function uses symvar to determine the default variable.

```
collect(expr)
ans =
(3*y^4* z^2 + 2)*x^3 + y* z** *^2 + (y^4 + 5* z*y + z)*x + y* '^^2
```

Collect terms of an expression with respect to several unknowns by specifying those unknowns as a vector.

```
collect(expr, [y,z])
ans =
3*x^3* y^4* z^2 + x* y^4 + y* z^2 + (x^2 + 5*x)*y*z + x*z + 2* *^3
```


Rewrite Expressions in Terms of Other Functions

To present an expression in terms of a particular function, use rewrite. This function uses mathematical identities between functions. For example, rewrite an expression containing trigonometric functions in terms of a particular trigonometric function.

```
syms x
rewrite(sin(x),'tan')
ans =
(2*\operatorname{tan}(x/2))/(tan(x/2)^2 + 1)
rewrite(cos(x),'tan')
ans =
-(tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)
rewrite(sin(2*x) + cos(3*x)^2,'tan')
ans =
(tan((3*x)/2)^2 - 1)^2/(tan((3*x)/2)^2 + 1)^2 +...
(2*\operatorname{tan}(x))/(tan(x)^2 + 1)
```

Use rewrite to express these trigonometric functions in terms of the exponential function.

```
rewrite(sin(x),'exp')
ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
```

```
rewrite(cos(x),'exp')
ans =
exp(-x*li)/2 + exp(x*1i)/2
```

Use rewrite to express these hyperbolic functions in terms of the exponential function.

```
rewrite(sinh(x),'exp')
ans =
exp(x)/2 - exp(-x)/2
rewrite(cosh(x),'exp')
ans =
exp(-x)/2 + exp(x)/2
```

rewrite also expresses inverse hyperbolic functions in terms of logarithms.
rewrite(asinh(x),'log')
ans $=$
$\log \left(x+\left(x^{\wedge} 2+1\right)^{\wedge}(1 / 2)\right)$
rewrite(acosh(x),'log')
ans $=$
$\log \left(x+(x-1)^{\wedge}(1 / 2) *(x+1)^{\wedge}(1 / 2)\right)$

Compute Partial Fraction Decompositions of Expressions

The partfrac function returns a rational expression in the form of a sum of a polynomial and rational terms. In each rational term, the degree of the numerator is smaller than the degree of the denominator. For some expressions, partfrac returns visibly simpler forms.

```
syms x
n = x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247;
d = x^6 + 14* (^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108;
partfrac(n/d, x)
ans =
1/(x + 1) + 1/(x + 2)^2 + 1/(x + 3)^3 + 1
```

The denominators in rational terms represent the factored common denominator of the original expression.

```
factor(d)
ans =
[ x + 1, x + 2, x + 2, x + 3, x + 3, x + 3]
```


Compute Normal Forms of Rational Expressions

The simplifyFraction function represents the original rational expression as a single rational term with expanded numerator and denominator. The greatest common divisor of the numerator and denominator of the returned expression is 1 . This function is more efficient for simplifying fractions than the simplify function.

```
syms x y
simplifyFraction((x^3 + 3* y^2)/(x^2 - y^2) + 3)
ans =
(x^3 + 3*x^2)/(x^2 - y^2)
```

simplifyFraction cancels common factors that appear in numerator and denominator.

```
simplifyFraction(x^2/(x + y) - y^2/(x + y))
```

ans $=$
x - y
simplifyFraction also handles expressions other than polynomials and rational functions. Internally, it converts such expressions into polynomials or rational functions by substituting subexpressions with identifiers. After normalizing the expression with temporary variables, simplifyFraction restores the original subexpressions.

```
simplifyFraction((exp(2*x) - exp(2*y))/(exp(x) - exp(y)))
ans =
exp(x) + exp(y)
```


Represent Polynomials Using Horner Nested Forms

The Horner, or nested, form of a polynomial expression is efficient for numerical evaluation because it often involves fewer arithmetical operations than other mathematically equivalent forms of the same polynomial. Typically, this form of an expression is numerically stable. To represent a polynomial expression in a nested form, use the horner function.

```
syms x
horner(x^3 - 6* x^2 + 11*x - 6)
ans =
x*(x*(x - 6) + 11) - 6
```

If polynomial coefficients are floating-point numbers, the resulting Horner form represents them as rational numbers.

```
horner(1.1 + 2.2*x + 3.3*x^2)
ans =
x*((33*x)/10 + 11/5) + 11/10
```

To convert the coefficients in the result to floating-point numbers, use vpa.

```
vpa(ans)
ans =
x*(3.3*x + 2.2) + 1.1
```


Extract Numerators and Denominators of Rational Expressions

To extract the numerator and denominator of a rational symbolic expression, use the numden function. The first output argument of numden is a numerator, the second output argument is a denominator. Use numden to find numerators and denominators of symbolic rational numbers.

```
[n,d] = numden(1/sym(3))
n =
1
d =
3
```

Use numden to find numerators and denominators of a symbolic expressions.

```
syms x y
[n,d] = numden((x^2 - y^2)/(x^2 + y^2))
n =
x^2 - y^2
d =
x^2 + y^2
```

Use numden to find numerators and denominators of symbolic functions. If the input is a symbolic function, numden returns the numerator and denominator as symbolic functions.

```
syms f(x) g(x)
f(x) = sin(x)/\mp@subsup{x}{}{\wedge}2;
g(x) = cos(x)/x;
[n,d] = numden(f)
n(x) =
sin(x)
d(x) =
x^2
[n,d] = numden(f/g)
n(x) =
sin(x)
```

```
d(x) =
x*}\operatorname{cos}(x
```

numden converts the input to its one-term rational form, such that the greatest common divisor of the numerator and denominator is 1 . Then it returns the numerator and denominator of that form of the expression.

```
[n,d] = numden(x/y + y/x)
n =
x^2 + y^2
d =
x*y
```

numden works on vectors and matrices. If an input is a vector or matrix, numden returns two vectors or two matrices of the same size as the input. The first vector or matrix contains numerators of each element. The second vector or matrix contains denominators of each element. For example, find numerators and denominators of each element of the 3-by-3 Hilbert matrix.

```
H = sym(hilb(3))
H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
[n,d] = numden(H)
n =
[ 1, 1, 1]
[ 1, 1, 1]
[ 1, 1, 1]
d =
[ 1, 2, 3]
[ 2, 3, 4]
[ 3, 4, 5]
```


Substitute Variables in Symbolic Expressions

Solve the following trigonometric equation using the ReturnConditions option of the solver to obtain the complete solution. The solver returns the solution, parameters used in the solution, and conditions on those parameters.

```
syms x
eqn = sin(2*x) + cos(x) == 0;
[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)
solx =
    pi/2 + pi*k
    2*pi*k - pi/6
    (7*pi)/6 + 2*pi*k
params =
k
conds =
    in(k, 'integer')
    in(k, 'integer')
    in(k, 'integer')
```

Replace the parameter k with a new symbolic variable a. First, create symbolic variables k and a . (The solver does not create variable k in the MATLAB workspace.)

```
syms k a
```

Now, use the subs function to replace k by a in the solution vector solx, parameters params, and conditions conds.

```
solx = subs(solx, k, a)
params = subs(params, k, a)
conds = subs(conds, k, a)
solx =
            pi/2 + pi*a
    2*pi*a - pi/6
    (7*pi)/6 + 2*pi*a
params =
a
conds =
    in(a, 'integer')
    in(a, 'integer')
    in(a, 'integer')
```

Suppose, you know that the value of the parameter a is 2 . Substitute a with 2 in the solution vector solx.

```
subs(solx, a, 2)
ans =
    (5*pi)/2
    (23*pi)/6
    (31*pi)/6
```

Alternatively, substitute params with 2. This approach returns the same result.

```
subs(solx, params, 2)
ans =
    (5*pi)/2
    (23*pi)/6
    (31*pi)/6
```

Substitute parameter a with a floating-point number. The toolbox converts numbers to floating-point values, but it keeps intact the symbolic expressions, such as sym(pi), $\exp (\operatorname{sym}(1))$, and so on.

```
subs(solx, params, vpa(2))
```

ans $=$
2.5*pi
3.8333333333333333333333333333333*pi
5.1666666666666666666666666666667 *pi

Approximate the result of substitution with floating-point values by using vpa on the result returned by subs.
vpa(subs(solx, params, 2))
ans $=$
7.8539816339744830961566084581988
12.042771838760874080773466302571
16.231562043547265065390324146944

Substitute Elements in Symbolic Matrices

Create a 3-by-3 circulant matrix using the backward shift.

```
syms a b c
M = [a b c; b c a; c a b]
M =
[ a, b, c]
[ b, c, a]
[ c, a, b]
```

Replace variable b in this matrix by the expression $\mathrm{a}+1$. The subs function replaces all b elements in matrix M with the expression a +1 .

```
M = subs(M, b, a + 1)
```


You also can specify the value to replace by indexing into matrix. That is, to replace all elements whose value is c, you can specify the value to replace as $c, M(1,3)$ or $M(3,1)$.

Replace all elements whose value is $M(1,3)=c$ with the expression $a+2$.

```
M = subs(M, M(1,3), a + 2)
M =
[ a, a + 1, a + 2]
[ a + 1, a + 2, a]
[ a + 2, a, a + 1]
```

Tip To replace a particular element of a matrix with a new value while keeping all other elements unchanged, use the assignment operation. For example, $M(1,1)=2$ replaces only the first element of the matrix M with the value 2 .

Find eigenvalues and eigenvectors of the matrix.

```
[V,E] = eig(M)
V =
[ 1, 3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2]
```

```
[ 1, - 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2]
[ 1, 1, 1]
E =
```


Replace the symbolic parameter a with the value 1 .
subs (E, a, 1)
ans $=$
[6, 0, 0]
[0, 3^(1/2), 0]
[0, 0, -3^(1/2)]

Substitute Scalars with Matrices

Create the following expression representing the sine function.

```
syms w t
f = sin(w*t);
```

Suppose, your task involves creating a matrix whose elements are sine functions with angular velocities represented by a Toeplitz matrix. First, create a 4 -by- 4 Toeplitz matrix.

```
W = toeplitz(sym([3 2 1 0]))
W =
[ 3, 2, 1, 0]
[ 2, 3, 2, 1]
[ 1, 2, 3, 2]
[ 0, 1, 2, 3]
```

Next, replace the variable w in the expression f with the Toeplitz matrix W. When you replace a scalar in a symbolic expression with a matrix, subs expands the expression into a matrix. In this example, subs expands $f=\sin \left(w^{*} t\right)$ into a 4 -by- 4 matrix whose elements are $\sin \left(w^{*} t\right)$. Then it replaces w in that matrix with the corresponding elements of the Toeplitz matrix W.

```
F = subs(f, w, W)
F =
[ sin(3*t), sin(2*t), sin(t), 0]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ 0, sin(t), sin(2*t), sin(3*t)]
```

Find the sum of these sine waves at $t=\pi, t=\pi / 2, t=\pi / 3, t=\pi / 4, t=\pi / 5$, and $t=\pi / 6$. First, find the sum of all elements of matrix F. Here, the first call to sum returns a row vector containing sums of elements in each column. The second call to sum returns the sum of elements of that row vector.

```
S = sum(sum(F))
S =
6*sin(2*t) + 4*sin(3*t) + 4*sin(t)
```

Now, use subs to evaluate S for particular values of the variable t.

```
subs(S, t, sym(pi)./[1:6])
```

```
[ 0,...
0,...
5*3^(1/2), 4*2^(1/2) + 6,...
2^(1/2)*(5 - 5^(1/2))^^(1/2) + (5*2^(1/2)*(5^(1/2) + 5)^(1/2))/2,...
3*3^(1/2) + 6]
```

You also can use subs to replace a scalar element of a matrix with another matrix. In this case, subs expands the matrix to accommodate new elements. For example, replace zero elements of the matrix F with a column vector [1;2]. The original 4 -by-4 matrix F expands to an 8-by-4 matrix. The subs function duplicates each row of the original matrix, not only the rows containing zero elements.

```
F = subs(F, 0, [1;2])
F=
[ sin(3*t), sin(2*t), sin(t), 1]
[ sin(3*t), sin(2*t), sin(t), 2]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ 1, sin(t), sin(2*t), sin(3*t)]
[ 2, sin(t), sin(2*t), sin(3*t)]
```


Evaluate Symbolic Expressions Using subs

When you assign a value to a symbolic variable, expressions containing the variable are not automatically evaluated. Instead, evaluate expressions by using subs.

Define the expression $y=x^{\wedge} 2$.
syms x
$y=x^{\wedge} 2$;
Assign 2 to x. The value of y is still $x^{\wedge} 2$ instead of 4 .
$x=2$;
y
$y=$
$x^{\wedge} 2$
If you change the value of x again, the value of y stays $x^{\wedge} 2$. Instead, evaluate y with the new value of x by using subs.

```
subs(y)
```

```
ans =
```

4

The evaluated result is 4 . However, y has not changed. Change the value of y by assigning the result to y.
$y=\operatorname{subs}(y)$
$y=$
4
Show that y is independent of x after this assignment.
$x=5$;
subs (y)
ans =
4

Choose Symbolic or Numeric Arithmetic

Symbolic Math Toolbox operates on numbers by using either symbolic or numeric arithmetic. Numeric arithmetic is either variable precision or double precision. The following information compares symbolic, variable-precision, and double-precision arithmetic.

	Symbolic	Variable Precision	Double Precision
Example: Find $\sin (п)$	```a = sym(pi) sin(a) a = pi ans = 0```	```b = vpa(pi) sin(b) b = 3.1415926535897932 ans = -3.2101083013100396```	pi sin(pi) ans $=$ 8462843 A862795 ans $=$ $069342245883668 e-40$
Functions Used	sym	vpa digits	double
Round-Off Errors	No, finds exact results	Yes, magnitude depends on precision used	Yes, has 16 digits of precision
Speed	Slowest	Faster, depends on precision used	Faster
Memory Usage	Greatest	Adjustable, depends on precision used	Least

Symbolic Arithmetic

By default, Symbolic Math Toolbox uses exact numbers, such as $1 / 3$, sqrt(2), or pi, to perform exact symbolic computations on page 1-12.

Variable-Precision Arithmetic

Variable-precision arithmetic using vpa is the recommended approach for numeric calculations in Symbolic Math Toolbox. For greater precision, increase the number of significant digits on page 2-117. For faster computations and decreased memory usage, decrease the number of significant digits on page 2-124.

Double-Precision Arithmetic

Double-precision, floating-point arithmetic uses the same precision as most numeric computations in MATLAB. This arithmetic is recommended when you do not have Symbolic Math Toolbox or are using functions that do not accept symbolic input. Otherwise, exact symbolic numbers and variable-precision arithmetic are recommended. To approximate a value with double precision, use the double function.

Increase Precision of Numeric Calculations

By default, MATLAB uses 16 digits of precision. For higher precision, use the vpa function in Symbolic Math Toolbox. vpa provides variable precision which can be increased without limit.

When you choose variable-precision arithmetic, by default, vpa uses 32 significant decimal digits of precision. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115. You can set a higher precision by using the digits function.

Approximate a sum using the default precision of 32 digits. If at least one input is wrapped with vpa, all other inputs are converted to variable precision automatically.

```
vpa(1/3) + 1/2
```

ans =
0.83333333333333333333333333333333

You must wrap all inner inputs with vpa, such as $\exp (v p a(200))$. Otherwise, the inputs are automatically converted to double by MATLAB.

Increase the precision to 50 digits by using digits and save the old value of digits in digits0ld. Repeat the sum.

```
digitsOld = digits(50);
sum50 = vpa(1/3) + 1/2
sum50 =
0.83333333333333333333333333333333333333333333333333
```

Restore the old value of digits for further calculations.

```
digits(digits0ld)
```

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does not accept symbolic values, convert symbolic values to double precision by using double.

Check the current digits setting by calling digits.

```
digits
```

Digits = 32

Change the precision for a single vpa call by specifying the precision as the second input to vpa. This call does not affect digits. For example, approximate pi with 100 digits.

```
vpa(pi,100)
ans =
3.14159265358979323846264338327950288419716939937510582097494
4592307816406286208998628034825342117068
digits % digits remains 32
Digits = 32
```

Variable precision can be increased arbitrarily. Find pi to 500 digits.

```
digitsOld = digits(500);
vpa(pi)
digits(digitsOld)
ans =
3.1415926535897932384626433832795028841971693993751058209749
445923078164062862089986280348253421170679821480865132823066
470938446095505822317253594081284811174502841027019385211055
596446229489549303819644288109756659334461284756482337867831
652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919
530921861173819326117931051185480744623799627495673518857527
248912279381830119491
```

digits and vpa control the number of significant decimal digits. For example, approximating $1 / 111$ with four-digit accuracy returns six digits after the decimal point because the first two digits are zeros.

```
vpa(1/111,4)
ans =
0.009009
```

Note If you want to increase performance by decreasing precision, see "Increase Speed by Reducing Precision" on page 2-124.

Recognize and Avoid Round-Off Errors

When approximating a value numerically, remember that floating-point results can be sensitive to the precision used. Also, floating-point results are prone to round-off errors. The following approaches can help you recognize and avoid incorrect results.

In this section...

"Use Symbolic Computations When Possible" on page 2-119
"Perform Calculations with Increased Precision" on page 2-120
"Compare Symbolic and Numeric Results" on page 2-122
"Plot the Function or Expression" on page 2-122

Use Symbolic Computations When Possible

Performing computations symbolically on page 2-115 is recommended because exact symbolic computations are not prone to round-off errors. For example, standard mathematical constants have their own symbolic representations in Symbolic Math Toolbox:
pi
sym(pi)
ans $=$
3.1416
ans =
pi
Avoid unnecessary use of numeric approximations. A floating-point number approximates a constant; it is not the constant itself. Using this approximation, you can get incorrect results. For example, the heaviside special function returns different results for the sine of sym(pi) and the sine of the numeric approximation of pi:

```
heaviside(sin(sym(pi)))
heaviside(sin(pi))
ans =
1/2
ans =
1
```


Perform Calculations with Increased Precision

The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta function $\zeta(z)$ have the same real part $\mathfrak{R}(z)=1 / 2$. To locate possible zeros of the Zeta function, plot its absolute value $|\zeta(1 / 2+i y)|$. The following plot shows the first three nontrivial roots of the Zeta function | $\zeta(1 / 2+i y) \mid$. Prior to R2016a, use ezplot instead of fplot.
syms y
fplot(abs(zeta(1/2 + i*y)), [0 30])

Use the numeric solver vpasolve to approximate the first three zeros of this Zeta function:

```
vpasolve(zeta(1/2 + i*y), y, 15)
vpasolve(zeta(1/2 + i*y), y, 20)
vpasolve(zeta(1/2 + i*y), y, 25)
ans =
14.134725141734693790457251983562
ans =
21.022039638771554992628479593897
ans =
25.010857580145688763213790992563
```

Now, consider the same function, but slightly increase the real part, $\zeta\left(\frac{1000000001}{20000000000}+i y\right)$. According to the Riemann hypothesis, this function does not have a zero 2 for any ped value y. If you use vpasolve with the 10 significant decimal digits, the solver finds the following (nonexisting) zero of the Zeta function:

```
old = digits;
digits(10)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
ans =
14.13472514
```

Increasing the number of digits shows that the result is incorrect. The Zeta function
$\zeta\left(\frac{1000000001}{2000000000}+i y\right)$ does not have a zero for any real value $14<y<15$:
digits(15)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
digits(old)
ans $=$
$14.1347251417347+0.000000000499989207306345 i$
For further computations, restore the default number of digits:
digits(old)

Compare Symbolic and Numeric Results

Bessel functions with half-integer indices return exact symbolic expressions. Approximating these expressions by floating-point numbers can produce very unstable results. For example, the exact symbolic expression for the following Bessel function is:

```
B = besselj(53/2, sym(pi))
B =
(351*2^(1/2)*(119409675/pi^4 - 20300/pi^2 - 315241542000/pi^6...
    + 445475704038750/pi^8 - 366812794263762000/pi^10 +...
    182947881139051297500/pi^12 - 55720697512636766610000/pi^14...
    + 10174148683695239020903125/pi^16 - 1060253389142977540073062500/pi^18...
    + 57306695683177936040949028125/pi^20 - 1331871030107060331702688875000/pi^22...
    + 8490677816932509614604641578125/pi^24 + 1))/pi^2
```

Use vpa to approximate this expression with the 10-digit accuracy:

```
vpa(B, 10)
```

ans $=$
-2854. 225191

Now, call the Bessel function with the floating-point parameter. Significant difference between these two approximations indicates that one or both results are incorrect:

```
besselj(53/2, pi)
ans =
    6.9001e-23
```

Increase the numeric working precision to obtain a more accurate approximation for B :

```
vpa(B, 50)
```

ans =
0.000000000000000000000069001456069172842068862232841396473796597233761161

Plot the Function or Expression

Plotting the results can help you recognize incorrect approximations. For example, the numeric approximation of the following Bessel function returns:

```
B = besselj(53/2, sym(pi));
vpa(B, 10)
```

ans $=$
-2854. 225191
Plot this Bessel function for the values of x around 53/2. The function plot shows that the approximation is incorrect:
syms x
fplot(besselj(x, sym(pi)), [26 27])

Increase Speed by Reducing Precision

Increase MATLAB's speed by reducing the precision of your calculations. Reduce precision by using variable-precision arithmetic provided by the vpa and digits functions in Symbolic Math Toolbox. When you reduce precision, you are gaining performance by reducing accuracy. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

For example, finding the Riemann zeta function of the large matrix C takes a long time. First, initialize C.

```
[X,Y] = meshgrid((0:0.0025:.75),(5:-0.05:0));
C = X + Y*i;
```

Then, find the time taken to calculate zeta (C).

```
tic
zeta(C);
toc
Elapsed time is 340.204407 seconds.
```

Now, repeat this operation with a lower precision by using vpa. First, change the precision used by vpa to a lower precision of 10 digits by using digits. Then, use vpa to reduce the precision of C and find zeta(C) again. The operation is significantly faster.

```
digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc
Elapsed time is 113.792543 seconds.
```

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does not accept symbolic values, convert symbolic values to double precision by using double.

For larger matrices, the difference in computation time can be even more significant. For example, consider the 1001-by-301 matrix C.

```
    [X,Y] = meshgrid((0:0.0025:.75),(5:-0.005:0));
C = X + Y*i;
```

Running zeta(vpa(C)) with 10-digit precision takes 15 minutes, while running zeta (C) takes three times as long.

```
digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc
Elapsed time is 886.035806 seconds.
tic
zeta(C);
toc
Elapsed time is 2441.991572 seconds.
```

Note If you want to increase precision, see "Increase Precision of Numeric Calculations" on page 2-117.

Numeric to Symbolic Conversion

This topic shows how Symbolic Math Toolbox converts numbers into symbolic form. For an overview of symbolic and numeric arithmetic, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

To convert numeric input to symbolic form, use the sym command. By default, sym returns a rational approximation of a numeric expression.

```
t = 0.1;
sym(t)
ans =
1/10
```

sym determines that the double-precision value 0.1 approximates the exact symbolic value $1 / 10$. In general, sym tries to correct the round-off error in floating-point inputs to return the exact symbolic form. Specifically, sym corrects round-off error in numeric inputs that match the forms $p / q, p \Pi / q,(p / q)^{1 / 2}, 2^{q}$, and 10^{q}, where p and q are modestsized integers.

For these forms, demonstrate that sym converts floating-point inputs to the exact symbolic form. First, numerically approximate $1 / 7$, pi, and $1 / \sqrt{2}$.

```
N1 = 1/7
N2 = pi
N3 = 1/sqrt(2)
N1 =
    0.1429
N2 =
    3.1416
N3 =
    0.7071
```

Convert the numeric approximations to exact symbolic form. sym corrects the round-off error.

```
S1 = sym(N1)
S2 = sym(N2)
S3 = sym(N3)
S1 =
1/7
```

```
S2 =
pi
S3 =
2^(1/2)/2
```

To return the error between the input and the estimated exact form, use the syntax sym(num, 'e'). See "Conversion to Rational Symbolic Form with Error Term" on page 2128.

You can force sym to accept the input as is by placing the input in quotes. Demonstrate this behavior on the previous input 0.142857142857143 . The sym function does not convert the input to $1 / 7$.

```
sym('0.142857142857143')
```

ans =
0.142857142857143

When you convert large numbers, use quotes to exactly represent them. Demonstrate this behavior by comparing sym (133333333333333333333) with sym('13333333333333333333').
sym(1333333333333333333)
sym('1333333333333333333')
ans =
1333333333333333248
ans =
1333333333333333333
You can specify the technique used by sym to convert floating-point numbers using the optional second argument, which can be ' f ', ' r ', 'e', or ' d '. The default flag is ' r ', for rational form on page 2-128.

In this section...

"Conversion to Rational Symbolic Form" on page 2-128
"Conversion by Using Floating-Point Expansion" on page 2-128
"Conversion to Rational Symbolic Form with Error Term" on page 2-128
"Conversion to Decimal Form" on page 2-129

Conversion to Rational Symbolic Form

Convert input to exact rational form by calling sym with the ' r ' flag. This is the default behavior when you call sym without flags.
sym(t, 'r')
ans =
1/10

Conversion by Using Floating-Point Expansion

If you call sym with the flag ' f ', sym converts double-precision, floating-point numbers to their numeric value by using $N^{*} 2^{\wedge} e$, where N and e are the exponent and mantissa respectively.

Convert t by using a floating-point expansion.
sym(t, 'f')
ans $=$
3602879701896397/36028797018963968

Conversion to Rational Symbolic Form with Error Term

If you call sym with the flag ' e ', sym returns the rational form of t plus the error between the estimated, exact value for t and its floating-point representation. This error is expressed in terms of eps (the floating-point relative precision).

Convert t to symbolic form. Return the error between its estimated symbolic form and its floating-point value.

```
sym(t, 'e')
ans =
eps/40 + 1/10
```

The error term eps/40 is the difference between sym('0.1') and sym(0.1).

Conversion to Decimal Form

If you call sym with the flag ' d ', sym returns the decimal expansion of the input. The digits function specifies the number of significant digits used. The default value of digits is 32 .

```
sym(t,'d')
ans =
0.100000000000000000555111512312578
```

Change the number of significant digits by using digits.

```
digitsOld = digits(7);
sym(t,'d')
ans =
0.1
```

For further calculations, restore the old value of digits.
digits(digits0ld)

Basic Algebraic Operations

Basic algebraic operations on symbolic objects are the same as operations on MATLAB objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The statements
syms t
G = [cos(t) $\sin (\mathrm{t}) ;-\sin (\mathrm{t}) \cos (\mathrm{t})]$
create this transformation matrix.
G =
[$\cos (t), \sin (t)]$
[-sin(t), cos(t)]
Applying the Givens transformation twice should simply be a rotation through twice the angle. The corresponding matrix can be computed by multiplying G by itself or by raising G to the second power. Both
$A=G * G$
and
$A=G^{\wedge} 2$
produce

```
A =
[ cos(t)^2 - sin(t)^2, 2* cos(t)*sin(t)]
[ -2*}\operatorname{cos}(t)*\operatorname{sin}(t),\operatorname{cos}(t)^2 - sin(t)^2
```

The simplify function

```
A = simplify(A)
```

uses a trigonometric identity to return the expected form by trying several different identities and picking the one that produces the shortest representation.

```
A =
[ cos(2*t), sin(2*t)]
[ - sin(2*t), cos(2*t)]
```

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming this by
$\mathrm{I}=\mathrm{G} .{ }^{\prime} * \mathrm{G}$
which produces
I =
$\left[\cos (t)^{\wedge} 2+\sin (t)^{\wedge} 2, \quad 0\right]$
[$\left.0, \cos (t)^{\wedge} 2+\sin (t)^{\wedge} 2\right]$
and then
I = simplify(I)
I =
[1, 0]
[0, 1]

Linear Algebraic Operations

The following examples show how to do several basic linear algebraic operations using Symbolic Math Toolbox software.

The command
H = hilb(3)
generates the 3-by-3 Hilbert matrix. With format short, MATLAB prints

```
H =
\begin{tabular}{lll}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{tabular}
```

The computed elements of H are floating-point numbers that are the ratios of small integers. Indeed, H is a MATLAB array of class double. Converting H to a symbolic matrix
$H=\operatorname{sym}(H)$
gives

```
H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
```

This allows subsequent symbolic operations on H to produce results that correspond to the infinitely precise Hilbert matrix, sym(hilb(3)), not its floating-point approximation, hilb(3). Therefore,

```
inv(H)
```

produces
ans =
[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]
and
$\operatorname{det}(H)$
yields
ans =
1/2160
You can use the backslash operator to solve a system of simultaneous linear equations. For example, the commands

```
% Solve Hx = b
b = [1; 1; 1];
x = H\b
```

produce the solution
x $=$
3
-24
30

All three of these results, the inverse, the determinant, and the solution to the linear system, are the exact results corresponding to the infinitely precise, rational, Hilbert matrix. On the other hand, using digits(16), the command

```
digits(16)
V = vpa(hilb(3))
```

returns

```
V =
[ 1.0, 0.5, 0.33333333333333333]
0.5, 0.3333333333333333, 0.25]
```

The decimal points in the representation of the individual elements are the signal to use variable-precision arithmetic. The result of each arithmetic operation is rounded to 16 significant decimal digits. When inverting the matrix, these errors are magnified by the matrix condition number, which for hilb(3) is about 500. Consequently,

```
inv(V)
```

which returns

```
ans =
[ 9.0, -36.0, 30.0]
```

```
[ -36.0, 192.0, -180.0]
[ 30.0, -180.0, 180.0]
```

shows the loss of two digits. So does
1/det(V)
which gives

```
ans =
    2160.000000000018
```

and
$\mathrm{V} \backslash \mathrm{b}$
which is
ans $=$
3.0
-24.0
30.0

Since H is nonsingular, calculating the null space of H with the command
null(H)
returns an empty matrix:
ans $=$
Empty sym: 1-by-0

Calculating the column space of H with

```
colspace(H)
```

returns a permutation of the identity matrix:

```
ans =
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]
```

A more interesting example, which the following code shows, is to find a value s for $H(1,1)$ that makes H singular. The commands

```
syms S
H(1,1) = s
Z = det(H)
sol = solve(Z)
produce
H =
[ s, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
Z =
s/240 - 1/270
sol =
8/9
```

Then
$H=\operatorname{subs}(H, s, s o l)$
substitutes the computed value of sol for s in H to give

```
H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
```

Now, the command
$\operatorname{det}(H)$
returns
ans $=$
0
and
inv(H)
produces the message
ans =
FAIL
because H is singular. For this matrix, null space and column space are nontrivial:

```
Z = null(H)
C = colspace(H)
Z =
3/10
    -6/5
    1
C =
[ 1, 0]
[ 0, 1]
[ -3/10, 6/5]
```

It should be pointed out that even though H is singular, vpa (H) is not. For any integer value d, setting digits(d), and then computing inv(vpa(H)) results in an inverse with elements on the order of $10^{\wedge} \mathrm{d}$.

Eigenvalues

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and eigenvectors of A are computed, respectively, using the commands $E=\operatorname{eig}(A)$ and $[V, E]=\operatorname{eig}(A)$.

The variable-precision counterparts are $\mathrm{E}=\mathrm{eig}(\mathrm{vpa}(\mathrm{A}))$ and $[\mathrm{V}, \mathrm{E}]=$ eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of $A, \operatorname{det}(A-x * I)$, which is computed by charpoly (A).

The matrix H from the last section provides the first example:

```
H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])
H =
[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
```

The matrix is singular, so one of its eigenvalues must be zero. The statement

$$
[T, E]=\operatorname{eig}(H)
$$

produces the matrices T and E . The columns of T are the eigenvectors of H and the diagonal elements of E are the eigenvalues of H :

```
T =
```



```
E =
[0, 0, 0, 0]
0, 32/45 - 12589^(1/2)/180, 
```

It may be easier to understand the structure of the matrices of eigenvectors, T , and eigenvalues, E, if you convert T and E to decimal notation. To do so, proceed as follows. The commands

```
Td = double(T)
Ed = double(E)
```

return

```
Td =
\begin{tabular}{ccc} 
& 0.3000 & -0.8098 \\
-1.2000 & 0.6309 & 1.4182 \\
1.0000 & 1.0000 & 1.0000
\end{tabular}
Ed =
\begin{tabular}{lrr}
0 & 0 & 0 \\
0 & 0.0878 & 0 \\
0 & 0 & 1.3344
\end{tabular}
```

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td) is the same as the basis for the null space found in the last section. The other two eigenvalues
are the result of applying the quadratic formula to $x^{2}-\frac{64}{45} x+\frac{253}{2160}$ which is the
quadratic factor in factor (charpoly (H, x)):

```
syms x
g = factor(charpoly(H, x))/x
solve(g(3))
g =
[ 1/(2160*x), 1, (2160*x^2 - 3072*x + 253)/x]
ans =
    32/45 - 12589^(1/2)/180
    12589^(1/2)/180 + 32/45
```

Closed form symbolic expressions for the eigenvalues are possible only when the characteristic polynomial can be expressed as a product of rational polynomials of degree four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates this requirement. The statement
$R=\operatorname{sym}($ rosser $)$
generates

611,	196,	-192,	407,	-8,	-52,	9,	$29]$
196,	899,	113,	-192,	-71,	-43,	-8,	-44]
-192,	113,	899,	196,	61,	49,	8,	$52]$
407,	-192,	196,	611,	8,	44,	59,	-23]
-8,	-71,	61,	8,	411,	-599,	208,	208]
-52,	-43,	49,	44,	-599,	411,	208,	208]
-49,	-8,	8 ,	59,	208,	208,	99,	-911]
29,	-44,	52,	-23,	208,	208,	-911,	99

The commands

```
p = charpoly(R, x);
pretty(factor(p))
produce
```


The characteristic polynomial (of degree 8) factors nicely into the product of two linear terms and three quadratic terms. You can see immediately that four of the eigenvalues are 0,1020 , and a double root at 1000 . The other four roots are obtained from the remaining quadratics. Use

```
eig(R)
to find all these values
ans =
                0
1000
1000
1020
510 - 100*26^(1/2)
100*26^(1/2) + 510
    10*10405^(1/2)
    10*10405^(1/2)
```

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have a characteristic polynomial that factors into such simple form. If you change the two "corner" elements of R from 29 to 30 with the commands

```
S = R;
S(1,8) = 30;
S(8,1) = 30;
```

and then try

```
p = charpoly(S, x)
```

you find

```
p =
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...
    - 5327831918568*x^4 + 4287832912719760*x^3...
```

```
- 1082699388411166000*x^2 + 51264008540948000*x...
+ 40250968213600000
```

You also find that factor (p) is p itself. That is, the characteristic polynomial cannot be factored over the rationals.

For this modified Rosser matrix

$$
F=e i g(S)
$$

returns

```
F =
    1020.053214255892
    -0.17053529728769
    0.2180398054830161
        999.9469178604428
        1000.120698293384
        1019.524355263202
        1019.993550129163
        1020.420188201505
```

Notice that these values are close to the eigenvalues of the original Rosser matrix.
It is also possible to try to compute eigenvalues of symbolic matrices, but closed form solutions are rare. The Givens transformation is generated as the matrix exponential of the elementary matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Symbolic Math Toolbox commands

```
syms t
A = sym([0 1; -1 0]);
G = expm(t*A)
return
G =
[ exp(-t*li)/2 + exp(t*li)/2,
    (exp(-t*li)*li)/2 - (exp(t*li)*li)/2]
[ - (exp(-t*1i)*1i)/2 + (exp(t*1i)*1i)/2,
    exp(-t*li)/2 + exp(t*li)/2]
```

You can simplify this expression using simplify:

```
G = simplify(G)
G =
[ cos(t), sin(t)]
[ - sin(t), cos(t)]
```

Next, the command
$\mathrm{g}=\mathrm{eig}(\mathrm{G})$
produces

```
g =
cos(t) - sin(t)*1i
cos(t) + sin(t)*li
```

You can rewrite g in terms of exponents:

```
g = rewrite(g, 'exp')
g =
    exp(-t*li)
        exp(t*li)
```


Jordan Canonical Form

The Jordan canonical form (Jordan normal form) results from attempts to convert a matrix to its diagonal form by a similarity transformation. For a given matrix A, find a nonsingular matrix V , so that $\operatorname{inv}(\mathrm{V}) * \mathrm{~A} * \mathrm{~V}$, or, more succinctly, $\mathrm{J}=\mathrm{V} \backslash \mathrm{A} * \mathrm{~V}$, is "as close to diagonal as possible." For almost all matrices, the Jordan canonical form is the diagonal matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors. This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues cannot be converted to diagonal forms. The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead of zero. The statement

```
J = jordan(A)
```

computes the Jordan canonical form of A. The statement

$$
[\mathrm{V}, \mathrm{~J}]=\operatorname{jordan}(\mathrm{A})
$$

also computes the similarity transformation where $\mathrm{J}=\operatorname{inv}(\mathrm{V}) * \mathrm{~A} * \mathrm{~V}$. The columns of V are the generalized eigenvectors of A.

The Jordan form is extremely sensitive to changes. Almost any change in A causes its Jordan form to be diagonal. This implies that A must be known exactly (i.e., without round-off error, etc.) and makes it very difficult to compute the Jordan form reliably with floating-point arithmetic. Thus, computing the Jordan form with floating-point values is unreliable and not recommended.

For example, let

```
A = sym([12,32,66,116;-25,-76,-164,-294;
    21,66,143,256;-6,-19,-41,-73])
A =
[ 12, 32, 66, 116]
[ -25, -76, -164, -294]
[ 21, 66, 143, 256]
[ -6, -19, -41, -73]
```

Then
$[\mathrm{V}, \mathrm{J}]=\mathrm{jordan}(\mathrm{A})$
produces

```
V =
[4, -2, 4, 3]
[ -6, 8, -11, -8]
[ 4, -7, 10, 7]
[-1, 2, -3, -2]
] =
[ 1, 1, 0, 0]
[ 0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]
```

Show that J and inv(V)*A*V are equal by using isequal. The isequal function returns logical 1 (true) meaning that the inputs are equal.

```
isequal(J, inv(V)*A*V)
ans =
    logical
        1
```

From J, we see that A has a double eigenvalue at 1, with a single Jordan block, and a double eigenvalue at 2, also with a single Jordan block. The matrix has only two eigenvectors, $\mathrm{V}(:, 1)$ and $\mathrm{V}(:, 3)$. They satisfy

```
A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)
```

The other two columns of V are generalized eigenvectors of grade 2 . They satisfy

```
A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)
```

In mathematical notation, with $v_{j}=v(:, j)$, the columns of V and eigenvalues satisfy the relationships

$$
\begin{aligned}
& \left(A-\lambda_{1} I\right) v_{2}=v_{1} \\
& \left(A-\lambda_{2} I\right) v_{4}=v_{3} .
\end{aligned}
$$

Singular Value Decomposition

Singular value decomposition expresses an m-by-n matrix A as A $=U^{*} S^{*} V^{\prime}$. Here, S is an m-by-n diagonal matrix with singular values of A on its diagonal. The columns of the m-by-m matrix U are the left singular vectors for corresponding singular values. The columns of the n-by- n matrix V are the right singular vectors for corresponding singular values. V^{\prime} is the Hermitian transpose (the complex conjugate of the transpose) of V .

To compute the singular value decomposition of a matrix, use svd. This function lets you compute singular values of a matrix separately or both singular values and singular vectors in one function call. To compute singular values only, use svd without output arguments
svd (A)
or with one output argument
$\mathrm{S}=\operatorname{svd}(\mathrm{A})$
To compute singular values and singular vectors of a matrix, use three output arguments:

```
[U,S,V] = svd(A)
```

svd returns two unitary matrices, U and V , the columns of which are singular vectors. It also returns a diagonal matrix, S , containing singular values on its diagonal. The elements of all three matrices are floating-point numbers. The accuracy of computations is determined by the current setting of digits.

Create the n-by-n matrix A with elements defined by $A(i, j)=1 /(i-j+1 / 2)$. The most obvious way of generating this matrix is

```
n = 3;
for i = 1:n
    for j = 1:n
        A(i,j) = sym(1/(i-j+1/2));
    end
end
```

For $n=3$, the matrix is
A
A =
[2, -2, -2/3]

```
[ 2/3, 2, -2]
[ 2/5, 2/3, 2]
```

Compute the singular values of this matrix. If you use svd directly, it will return exact symbolic result. For this matrix, the result is very long. If you prefer a shorter numeric result, convert the elements of A to floating-point numbers using vpa. Then use svd to compute singular values of this matrix using variable-precision arithmetic:

```
S = svd(vpa(A))
S =
    3.1387302525015353960741348953506
    3.0107425975027462353291981598225
    1.6053456783345441725883965978052
```

Now, compute the singular values and singular vectors of A :

```
[U,S,V] = svd(A)
U =
[ 0.53254331027335338470683368360204, 0.76576895948802052989304092179952,\ldots.
    0.36054891952096214791189887728353]
[ -0.82525689650849463222502853672224, 0.37514965283965451993171338605042,
0.42215375485651489522488031917364]
[ 0.18801243961043281839917114171742, -0.52236064041897439447429784257224,.
S =
[ 3.1387302525015353960741348953506,
    0, 3.0107425975027462353291981598225,
    0, 0,\ldots
    1.6053456783345441725883965978052]
v =
0.18801243961043281839917114171742, 0.52236064041897439447429784257224,\ldots.
    0.83173955292075192178421874331406]
[ -0.82525689650849463222502853672224, -0.37514965283965451993171338605042,...
    0.422153754856514895224880319173641
[ 0.53254331027335338470683368360204, -0.76576895948802052989304092179952,\ldots..
    0.36054891952096214791189887728353]
```


Solve Algebraic Equation

Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This topic shows you how to solve an equation symbolically using the symbolic solver solve. To compare symbolic and numeric solvers, see "Select Numeric or Symbolic Solver" on page 2-155.

In this section...

"Solve an Equation" on page 2-146
"Return the Full Solution to an Equation" on page 2-147
"Work with the Full Solution, Parameters, and Conditions Returned by solve" on page 2147
"Visualize and Plot Solutions Returned by solve" on page 2-148
"Simplify Complicated Results and Improve Performance" on page 2-151

Solve an Equation

If eqn is an equation, solve (eqn, x) solves eqn for the symbolic variable x.
Use the == operator to specify the familiar quadratic equation and solve it using solve.

```
syms a b c x
eqn = a*x^2 + b*x + c == 0;
solx = solve(eqn, x)
solx =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
```

solx is a symbolic vector containing the two solutions of the quadratic equation. If the input eqn is an expression and not an equation, solve solves the equation eqn $==0$.

To solve for a variable other than x, specify that variable instead. For example, solve eqn for b.

```
solb = solve(eqn, b)
solb =
-(a*x^2 + c)/x
```

If you do not specify a variable, solve uses symvar to select the variable to solve for. For example, solve (eqn) solves eqn for x.

Return the Full Solution to an Equation

solve does not automatically return all solutions of an equation. Solve the equation $\cos (x)==-\sin (x)$. The solve function returns one of many solutions.

```
syms x
solx = solve(cos(x) == - sin(x), x)
solx =
-pi/4
```

To return all solutions along with the parameters in the solution and the conditions on the solution, set the ReturnConditions option to true. Solve the same equation for the full solution. Provide three output variables: for the solution to x, for the parameters in the solution, and for the conditions on the solution.

```
syms x
[solx, param, cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)
solx =
pi*k - pi/4
param =
k
cond =
in(k, 'integer')
```

solx contains the solution for x , which is $\mathrm{pi}^{*} \mathrm{k}$ - $\mathrm{pi} / 4$. The param variable specifies the parameter in the solution, which is k. The cond variable specifies the condition in (k, 'integer') on the solution, which means k must be an integer. Thus, solve returns a periodic solution starting at $\mathrm{pi} / 4$ which repeats at intervals of $\mathrm{pi} * \mathrm{k}$, where k is an integer.

Work with the Full Solution, Parameters, and Conditions Returned by solve

You can use the solutions, parameters, and conditions returned by solve to find solutions within an interval or under additional conditions.

To find values of x in the interval -2^{*} pi $<x<2 *$ pi, solve sol x for k within that interval under the condition cond. Assume the condition cond using assume.

```
assume(cond)
solk = solve(-2*pi<solx, solx<2*pi, param)
solk =
    -1
    0
    1
    2
```

To find values of x corresponding to these values of k, use subs to substitute for k in solx.

```
xvalues = subs(solx, solk)
xvalues =
    -(5*pi)/4
        -pi/4
    (3*pi)/4
    (7*pi)/4
```

To convert these symbolic values into numeric values for use in numeric calculations, use vpa.

```
xvalues = vpa(xvalues)
xvalues =
    -3.9269908169872415480783042290994
    -0.78539816339744830961566084581988
        2.3561944901923449288469825374596
        5.4977871437821381673096259207391
```


Visualize and Plot Solutions Returned by solve

The previous sections used solve to solve the equation $\cos (x)==-\sin (x)$. The solution to this equation can be visualized using plotting functions such as fplot and scatter.

Plot both sides of equation $\cos (x)==-\sin (x)$.
fplot($\cos (x))$
hold on
grid on
fplot(-sin(x))
title('Both sides of equation $\cos (x)=-\sin (x)$ ')
legend('cos(x)','-sin(x)','Location','best','AutoUpdate','off')

Calculate the values of the functions at the values of x, and superimpose the solutions as points using scatter.

```
yvalues = cos(xvalues)
yvalues =
```

$\left(\begin{array}{c}-0.70710678118654752440084436210485 \\ 0.70710678118654752440084436210485 \\ -0.70710678118654752440084436210485 \\ 0.70710678118654752440084436210485\end{array}\right)$
scatter(xvalues, yvalues)

As expected, the solutions appear at the intersection of the two plots.

Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see, "Troubleshoot Equation Solutions from solve Function" on page 2-168.

Solve Differential Equation Numerically

Numerically solve differential equations, including higher order equations, by converting equations to MATLAB functions that ode45 can solve. Convert equations by using functions from Symbolic Math Toolbox.

Define this second-order differential equation.

$$
\frac{d y^{2}}{d t}=\left(1-y^{2}\right) \frac{d y}{d t}-a y .
$$

```
syms a y(t)
eqn = diff(y, 2) == (1-y^2)*diff(y) - a*y
eqn(t) =
diff(y(t), t, t) == - a*y(t) - (y(t)^2 - 1)*diff(y(t), t)
```

Convert eqn to a system of first-order differential equations by using odeToVectorField from Symbolic Math Toolbox.

```
V = odeToVectorField(eqn)
V =
```

```
    Y[2]
```

 Y[2]
 a*Y[1] - (Y[1]^2 - 1)*Y[2]
    ```
    a*Y[1] - (Y[1]^2 - 1)*Y[2]
```

Now, substitute numeric values for any parameters in your equations. Here, let a be 1 .

```
V = subs(V,a,1)
V =
- (Y[1]^2 - 1)*Y[2] - Y[1]
```

V is symbolic, but ode45 does not accept symbolic input. Therefore, convert V to a MATLAB function by using mat labFunction. Specify the input variables as t and Y by using the 'Vars' name-value pair argument.

```
M = matlabFunction(V,'Vars',{'t','Y'})
```

$M=$
function handle with value:
@(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

Solve the system defined by M using ode45 for $0 \leq t \leq 20$. Use the initial conditions $y(0)=2$ and $y^{\prime}(0)=0$.
tspan = [0 20];
y0 = [2 0];
sol = ode45(M,tspan,y0);
Evaluate the solution over [0 20] by using deval. Plot the solution.
tVal = linspace(0,20);
yVal = deval(sol,tVal,1);
plot(tVal,yVal)
xlabel('t')
ylabel('y(t)')
title('ODE Solution')

See Also
dsolve|matlabFunction|ode45|odeToVectorField

Select Numeric or Symbolic Solver

You can solve equations to obtain a symbolic or numeric answer. For example, a solution to $\cos (x)=-1$ is pi in symbolic form and 3.14159 in numeric form. The symbolic solution is exact, while the numeric solution approximates the exact symbolic solution. Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This table can help you choose either the symbolic solver (solve) or the numeric solver (vpasolve). A possible strategy is to try the symbolic solver first, and use the numeric solver if the symbolic solver is stuck.

| Solve Equations Symbolically Using
 solve | Solve Equations Numerically Using
 vpasolve |
| :--- | :--- |
| Returns exact solutions. Solutions can then
 be approximated using vpa. | Returns approximate solutions. Precision
 can be controlled arbitrarily using digits. |
| Returns a general form of the solution. | For polynomial equations, returns all
 numeric solutions that exist. For
 nonpolynomial equations, returns the first
 numeric solution found. |
| General form allows insight into the
 solution. | Numeric solutions provide less insight. |
| Runs slower. | Runs faster. |
| Search ranges can be specified using
 inequalities. | Search ranges and starting points can be
 specified. |
| solve solves equations and inequalities
 that contain parameters. | vpasolve does not solve inequalities, nor
 does it solve equations that contain
 parameters. |
| solve can return parameterized solutions. | vpasolve does not return parameterized
 solutions. |

vpasolve uses variable-precision arithmetic. You can control precision arbitrarily using digits. For examples, see "Increase Precision of Numeric Calculations" on page 2-117.

See Also

solve| vpasolve

Related Examples

- "Solve Algebraic Equation" on page 2-146
- "Solve Equations Numerically" on page 2-176
- "Solve System of Linear Equations" on page 2-173

Solve System of Algebraic Equations

This topic shows you how to solve a system of equations symbolically using Symbolic Math Toolbox. This toolbox offers both numeric and symbolic equation solvers. For a comparison of numeric and symbolic solvers, see "Select Numeric or Symbolic Solver" on page 2-155.

In this section...

"Handle the Output of solve" on page 2-157
"Solve a Linear System of Equations" on page 2-159
"Return the Full Solution of a System of Equations" on page 2-160
"Solve a System of Equations Under Conditions" on page 2-162
"Work with Solutions, Parameters, and Conditions Returned by solve" on page 2-163
"Convert Symbolic Results to Numeric Values" on page 2-167
"Simplify Complicated Results and Improve Performance" on page 2-167

Handle the Output of solve

Suppose you have the system

$$
\begin{aligned}
& x^{2} y^{2}=0 \\
& x-\frac{y}{2}=\alpha,
\end{aligned}
$$

and you want to solve for x and y. First, create the necessary symbolic objects.

```
syms x y a
```

There are several ways to address the output of solve. One way is to use a two-output call.

```
[solx,soly] = solve(x^2*y^2 == 0, x-y/2 == a)
```

The call returns the following.

```
solx =
    0
a
```

```
soly =
    -2*a
        0
```

Modify the first equation to $x^{2} y^{2}=1$. The new system has more solutions.

```
[solx,soly] = solve(x^2*y^2 == 1, x-y/2 == a)
```

Four distinct solutions are produced.

```
solx =
    a/2 - (a^2 - 2)^(1/2)/2
    a/2 - (a^2 + 2)^(1/2)/2
    a/2 + (a^2 - 2)^^(1/2)/2
    a/2 + (a^2 + 2)^(1/2)/2
soly =
    - a - (a^2 - 2)^(1/2)
    - a - (a^2 + 2)^(1/2)
        (a^2 - 2)^(1/2) - a
        (a^2 + 2)^(1/2) - a
```

Since you did not specify the dependent variables, solve uses symvar to determine the variables.

This way of assigning output from solve is quite successful for "small" systems. For instance, if you have a 10-by-10 system of equations, typing the following is both awkward and time consuming.

```
[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)
```

To circumvent this difficulty, solve can return a structure whose fields are the solutions. For example, solve the system of equations $u^{\wedge} 2-v^{\wedge} 2=a^{\wedge} 2, u+v=1, a^{\wedge} 2-2 * a$ $=3$.
syms u v a
$\mathrm{S}=\operatorname{solve}\left(u^{\wedge} 2-v^{\wedge} 2==a^{\wedge} 2, u+v==1, a^{\wedge} 2-2 * a==3\right)$
The solver returns its results enclosed in this structure.
S =
struct with fields:
a: [2×1 sym]
u: [2×1 sym]
v: [2×1 sym]

The solutions for a reside in the "a-field" of S.
S.a

```
ans =
    -1
3
```

Similar comments apply to the solutions for u and v. The structure S can now be manipulated by the field and index to access a particular portion of the solution. For example, to examine the second solution, you can use the following statement to extract the second component of each field.

```
s2 = [S.a(2), S.u(2), S.v(2)]
s2 =
[ 3, 5, -4]
```

The following statement creates the solution matrix M whose rows comprise the distinct solutions of the system.

```
M = [S.a, S.u, S.v]
M =
[ -1, 1, 0]
[ 3, 5, -4]
```

Clear solx and soly for further use.
clear solx soly

Solve a Linear System of Equations

Linear systems of equations can also be solved using matrix division. For example, solve this system.

```
clear u v x y
syms u v x y
eqns = [x + 2*y == u, 4*x + 5*y == v];
S = solve(eqns);
sol = [S.x; S.y]
[A,b] = equationsToMatrix(eqns,x,y);
z = A\b
```

```
sol =
    (2*v)/3 - (5*u)/3
                (4*u)/3 - v/3
Z =
    (2*v)/3 - (5*u)/3
        (4*u)/3 - v/3
```

Thus, sol and z produce the same solution, although the results are assigned to different variables.

Return the Full Solution of a System of Equations

solve does not automatically return all solutions of an equation. To return all solutions along with the parameters in the solution and the conditions on the solution, set the ReturnConditions option to true.

Consider the following system of equations:

$$
\begin{aligned}
& \sin (x)+\cos (y)=\frac{4}{5} \\
& \sin (x) \cos (y)=\frac{1}{10}
\end{aligned}
$$

Visualize the system of equations using fimplicit. To set the x-axis and y-axis values in terms of pi, get the axes handles using axes in a. Create the symbolic array S of the values $-2 *$ pi to $2 *$ pi at intervals of $\mathrm{pi} / 2$. To set the ticks to S , use the XTick and YTick properties of a. To set the labels for the x-and y-axes, convert S to character vectors. Use arrayfun to apply char to every element of S to return T. Set the XTickLabel and YTickLabel properties of a to T.

```
syms x y
eqn1 = sin(x)+\operatorname{cos(y) == 4/5;}
eqn2 = sin(x)*\operatorname{cos(y) == 1/10;}
a = axes;
fimplicit(eqn1,[-2*pi 2*pi],'b');
hold on
grid on
fimplicit(eqn2,[-2*pi 2*pi],'m');
L = sym(-2*pi:pi/2:2*pi);
a.XTick = double(L);
a.YTick = double(L);
```

```
M = arrayfun(@char, L, 'Uniform0utput', false);
a.XTickLabel = M;
a.YTickLabel = M;
title('Plot of System of Equations')
legend('sin(x)+cos(y) == 4/5','sin(x)*\operatorname{cos}(y)== 1/10',...
        'Location','best','AutoUpdate','off')
```


The solutions lie at the intersection of the two plots. This shows the system has repeated, periodic solutions. To solve this system of equations for the full solution set, use solve and set the ReturnConditions option to true.

```
S = solve(eqn1, eqn2, 'ReturnConditions', true)
```

```
S =
    struct with fields:
\(\left.\begin{array}{rl}x: & {\left[\begin{array}{ll}2 \times 1 & \text { sym }\end{array}\right]} \\ y: & {[2 \times 1} \\ \text { sym }\end{array}\right]\)
```

solve returns a structure S with the fields $\mathrm{S} . \mathrm{x}$ for the solution to $\mathrm{x}, \mathrm{S} . \mathrm{y}$ for the solution to y, S. parameters for the parameters in the solution, and S.conditions for the conditions on the solution. Elements of the same index in S.x, S.y, and S.conditions form a solution. Thus, S.x(1), S.y(1), and S.conditions(1) form one solution to the system of equations. The parameters in S. parameters can appear in all solutions.

Index into S to return the solutions, parameters, and conditions.

```
S.x
S.y
S.parameters
S.conditions
ans =
    z1
    z1
ans =
    Z
    Z
ans =
[ z, z1]
ans =
    (in((z - acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...
    in((z + acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
    (in(-(pi - zl + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer') |...
    in((z1 + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer'))
        (in((z1 - asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...
    in((z1 - pi + asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
    (in((z - acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer') |...
    in((z + acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer'))
```


Solve a System of Equations Under Conditions

To solve the system of equations under conditions, specify the conditions in the input to solve.

Solve the system of equations considered above for x and y in the interval -2^{*} pi to 2*pi. Overlay the solutions on the plot using scatter.

```
Srange = solve(eqn1, eqn2, -2*pi<x, x<2*pi, -2*pi<y, y<2*pi, 'ReturnConditions', true)
scatter(Srange.x, Srange.y,'k')
```

Plot of System of Equations

Work with Solutions, Parameters, and Conditions Returned by solve

You can use the solutions, parameters, and conditions returned by solve to find solutions within an interval or under additional conditions. This section has the same goal as the previous section, to solve the system of equations within a search range, but with a
different approach. Instead of placing conditions directly, it shows how to work with the parameters and conditions returned by solve.

For the full solution S of the system of equations, find values of x and y in the interval -2^{*} pi to 2^{*} pi by solving the solutions S.x and S.y for the parameters S. parameters within that interval under the condition S. conditions.

Before solving for x and y in the interval, assume the conditions in S. conditions using assume so that the solutions returned satisfy the condition. Assume the conditions for the first solution.

```
assume(S.conditions(1))
```

Find the parameters in S. x and S.y.

```
paramx = intersect(symvar(S.x), S.parameters)
paramy = intersect(symvar(S.y), S.parameters)
paramx =
z1
paramy =
z
```

Solve the first solution of x for the parameter paramx.

```
solparamx(1,:) = solve(S.x(1) > -2*pi, S.x(1) < 2*pi, paramx)
solparamx =
[ pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
    -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
```

Similarly, solve the first solution of y for paramy.

```
solparamy(1,:) = solve(S.y(1) > -2*pi, S.y(1) < 2*pi, paramy)
solparamy =
[ acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
    - acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
```

Clear the assumptions set by S. conditions (1) using assume. Call asumptions to check that the assumptions are cleared.

```
assume(S.parameters,'clear')
assumptions
```

ans =
Empty sym: 1-by-0
Assume the conditions for the second solution.

```
assume(S.conditions(2))
```

Solve the second solution to x and y for the parameters paramx and paramy.

```
solparamx(2,:) = solve(S.x(2) > -2*pi, S.x(2) < 2*pi, paramx)
solparamy(2,:) = solve(S.y(2) > -2*pi, S.y(2) < 2*pi, paramy)
solparamx =
[ pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
    -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[ asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
    asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]
solparamy =
[ acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
    -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[ acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
    -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]
```

The first rows of paramx and paramy form the first solution to the system of equations, and the second rows form the second solution.

To find the values of x and y for these values of paramx and paramy, use subs to substitute for paramx and paramy in S. x and S.y.

```
solx(1,:) = subs(S.x(1), paramx, solparamx(1,:));
solx(2,:) = subs(S.x(2), paramx, solparamx(2,:))
soly(1,:) = subs(S.y(1), paramy, solparamy(1,:));
soly(2,:) = subs(S.y(2), paramy, solparamy(2,:))
solx =
[ pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
    -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[ asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
    asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]
soly =
[ acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
    -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[ acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
    -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]
```

Note that solx and soly are the two sets of solutions to x and to y. The full sets of solutions to the system of equations are the two sets of points formed by all possible combinations of the values in solx and soly.

Plot these two sets of points using scatter. Overlay them on the plot of the equations. As expected, the solutions appear at the intersection of the plots of the two equations.

```
for i = 1:length(solx(1,:))
    for j = 1:length(soly(1,:))
        scatter(solx(1,i), soly(1,j), 'k')
        scatter(solx(2,i), soly(2,j), 'k')
    end
end
```

Plot of System of Equations

Convert Symbolic Results to Numeric Values

Symbolic calculations provide exact accuracy, while numeric calculations are approximations. Despite this loss of accuracy, you might need to convert symbolic results to numeric approximations for use in numeric calculations. For a high-accuracy conversion, use variable-precision arithmetic provided by the vpa function. For standard accuracy and better performance, convert to double precision using double.

Use vpa to convert the symbolic solutions solx and soly to numeric form.

```
vpa(solx)
vpa(soly)
ans =
[ 2.9859135500977407388300518406219,...
    -3.2972717570818457380952349259371,...
    0.15567910349205249963259154265761,...
    -6.1275062036875339772926952239014]
[ 0.70095651347102524787213653614929,...
    2.4406361401187679905905068471302,...
    -5.5822287937085612290531502304097,...
    -3.8425491670608184863347799194288]
ans =
[ 0.86983981332387137135918515549046,...
    -5.4133454938557151055661016110685
    -0.86983981332387137135918515549046,...
        5.4133454938557151055661016110685]
[ 1.4151172233028441195987301489821,...
    -4.8680680838767423573265566175769,...
    -1.4151172233028441195987301489821,...
    4.8680680838767423573265566175769]
```


Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see, "Troubleshoot Equation Solutions from solve Function" on page 2-168.

Troubleshoot Equation Solutions from solve Function

If solve returns solutions that look complicated, or if solve cannot handle an input, there are many options. These options simplify the solution space for solve. These options also help solve when the input is complicated, and might allow solve to return a solution where it was previously stuck.

```
In this section...
"Return Only Real Solutions" on page 2-168
"Apply Simplification Rules" on page 2-168
"Use Assumptions to Narrow Results" on page 2-169
"Simplify Solutions" on page 2-171
"Tips" on page 2-171
```


Return Only Real Solutions

Solve the equation $x^{\wedge} 5-1==0$. This equation has five solutions.

```
syms x
solve(x^5 - 1 == 0, x)
ans =
    (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4
    (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4
    5^(1/2)/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4
    5^(1/2)/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4
```

If you only need real solutions, specify the Real option as true. The solve function returns the one real solution.

```
solve(x^5 - 1, x, 'Real', true)
ans =
1
```


Apply Simplification Rules

Solve the following equation. The solve function returns a complicated solution.

```
syms x
solve(x^(5/2) + 1/x^(5/2) == 1, x)
```

ans =
$1 /\left(1 / 2-\left(3^{\wedge}(1 / 2) * 1 i\right) / 2\right)^{\wedge}(2 / 5)$
$1 /\left(\left(3^{\wedge}(1 / 2) * 1 i\right) / 2+1 / 2\right)^{\wedge}(2 / 5)$
$-\left(5^{\wedge}(1 / 2) / 4-\left(2^{\wedge}(1 / 2) *\left(5-5^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) * 1 i\right) / 4+1 / 4\right) /\left(1 / 2-\left(3^{\wedge}(1 / 2)^{*} 1 i\right) / 2\right)^{\wedge}(2 / 5)$
$-\left(\left(2^{\wedge}(1 / 2) *\left(5-5^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2)^{*} 1 i\right) / 4+5^{\wedge}(1 / 2) / 4+1 / 4\right) /\left(1 / 2-\left(3^{\wedge}(1 / 2) * 1 i\right) / 2\right)^{\wedge}(2 / 5)$
$-\left(5^{\wedge}(1 / 2) / 4-\left(2^{\wedge}(1 / 2) *\left(5-5^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) * 1 i\right) / 4+1 / 4\right) /\left(1 / 2+\left(3^{\wedge}(1 / 2) * 1 i\right) / 2\right)^{\wedge}(2 / 5)$
$-\left(\left(2^{\wedge}(1 / 2) *\left(5-5^{\wedge}(1 / 2)\right)^{\wedge}(1 / 2) * 1 i\right) / 4+5^{\wedge}(1 / 2) / 4+1 / 4\right) /\left(1 / 2+\left(3^{\wedge}(1 / 2) * 1 i\right) / 2\right)^{\wedge}(2 / 5)$

To apply simplification rules when solving equations, specify the IgnoreAnalyticConstraints option as true. The applied simplification rules are not generally correct mathematically but might produce useful solutions, especially in physics and engineering. With this option, the solver does not guarantee the correctness and completeness of the result.

```
solve(x^(5/2) + 1/x^(5/2) == 1, x, 'IgnoreAnalyticConstraints', true)
ans =
    1/(1/2 - (3^(1/2)*1i)/2)^(2/5)
    1/((3^(1/2)*1i)/2 + 1/2)^(2/5)
```

This solution is simpler and more usable.

Use Assumptions to Narrow Results

For solutions to specific cases, set assumptions to return appropriate solutions. Solve the following equation. The solve function returns seven solutions.

```
syms x
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
ans =
    1
    - 5^(1/2) - 1
    17^(1/2)/2 - 1/2
    17^(1/2)/2 - 1/2
        -5*2^(1/2)
        5*2^(1/2)
        5^(1/2) - 1
```

Assume x is a positive number and solve the equation again. The solve function only returns the four positive solutions.

```
assume(x > 0)
solve(x^7 + 2*x^6 - 59* x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
ans =
1
17^(1/2)/2 - 1/2
        5*2^(1/2)
    5^(1/2) - 1
```

Place the additional assumption that x is an integer using in(x, 'integer'). Place additional assumptions on variables using assumeAlso.

```
assumeAlso(in(x,'integer'))
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)
ans =
1
```

solve returns the only positive, integer solution to x.
Clear the assumptions on x for further computations.

```
syms x clear
```

Alternatively, to make several assumptions, use the \& operator. Make the following assumptions, and solve the following equations.

```
syms a b c f g h y
assume(f == c \& a == h \& a~= 0)
S = solve([a*x + b*y == c, h*x - g*y == f], [x, y], 'ReturnConditions', true);
S. \(x\)
S.y
S.conditions
ans =
f/h
ans \(=\)
0
ans \(=\)
\(\mathrm{b}+\mathrm{g} \sim=0\)
```

Under the specified assumptions, the solution is $x=f / h$ and $y=0$ under the condition $\mathrm{b}+\mathrm{g} \sim=0$.

Clear the assumptions on the variables for further computations.

```
syms a c f h clear
```


Simplify Solutions

The solve function does not call simplification functions for the final results. To simplify the solutions, call simplify.

Solve the following equation. Convert the numbers to symbolic numbers using sym to return a symbolic result.

```
syms x
S = solve((sin(x) - 2* cos(x))/(sin(x) + 2* cos(x)) == 1/2,x)
S =
    log(-(- 140/37 + 48i/37)^(1/2)/2)*1i
    -log((- 140/37 + 48i/37)^(1/2)/2)*1i
```

Call simplify to simplify solution S.

```
simplify(S)
ans =
    -log(37^(1/2)*(- 1/37 - 6i/37))*1i
log(2)*1i - (log(- 140/37 + 48i/37)*1i)/2
```

Call simplify with more steps to simplify the result even further.

```
simplify(S, 'Steps', 50)
ans =
    atan(6) - pi
        atan(6)
```


Tips

- To represent a number exactly, use sym to convert the number to a floating-point object. For example, use sym (13)/5 instead of $13 / 5$. This represents $13 / 5$ exactly instead of converting $13 / 5$ to a floating-point number. For a large number, place the number in quotes. Compare sym(13)/5, sym(133333333333333333333)/5, and sym('13333333333333333333')/5.
sym(13)/5
sym(133333333333333333333)/5
sym('133333333333333333333')/5

```
ans =
13/5
ans =
133333333333333327872/5
ans =
133333333333333333333/5
```

Placing the number in quotes and using sym provides the highest accuracy.

- If possible, simplify the system of equations manually before using solve. Try to reduce the number of equations, parameters, and variables.

Solve System of Linear Equations

This section shows you how to solve a system of linear equations using the Symbolic Math Toolbox.

In this section...

"Solve System of Linear Equations Using linsolve" on page 2-173
"Solve System of Linear Equations Using solve" on page 2-174

Solve System of Linear Equations Using linsolve

A system of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

can be represented as the matrix equation $A \cdot \vec{x}=\vec{b}$, where A is the coefficient matrix,

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

and \vec{b} is the vector containing the right sides of equations,

$$
\vec{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

If you do not have the system of linear equations in the form $A X=B$, use equationsToMatrix to convert the equations into this form. Consider the following system.

$$
\begin{aligned}
& 2 x+y+z=2 \\
& -x+y-z=3 \\
& x+2 y+3 z=-10
\end{aligned}
$$

Declare the system of equations.

```
syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;
```

Use equationsToMatrix to convert the equations into the form $A X=B$. The second input to equationsToMatrix specifies the independent variables in the equations.

```
[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [x, y, z])
A =
[ 2, 1, 1]
[ -1, 1, -1]
[ 1, 2, 3]
B =
    2
    3
    -10
```

Use linsolve to solve $A X=B$ for the vector of unknowns X.

```
X = linsolve(A,B)
X =
    3
    1
    -5
```

From $X, x=3, y=1$ and $z=-5$.

Solve System of Linear Equations Using solve

Use solve instead of linsolve if you have the equations in the form of expressions and not a matrix of coefficients. Consider the same system of linear equations.

$$
\begin{aligned}
& 2 x+y+z=2 \\
& -x+y-z=3 \\
& x+2 y+3 z=-10
\end{aligned}
$$

Declare the system of equations.

```
syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;
```

Solve the system of equations using solve. The inputs to solve are a vector of equations, and a vector of variables to solve the equations for.

```
sol = solve([eqn1, eqn2, eqn3], [x, y, z]);
xSol = sol.x
ySol = sol.y
zSol = sol.z
xSol =
3
ySol =
1
zSol =
-5
```

solve returns the solutions in a structure array. To access the solutions, index into the array.

See Also

More About

- "Solve Algebraic Equation" on page 2-146
- "Solve System of Algebraic Equations" on page 2-157

Solve Equations Numerically

The Symbolic Math Toolbox offers both numeric and symbolic equation solvers. For a comparison of numeric and symbolic solvers, please see "Select Numeric or Symbolic Solver" on page 2-155. An equation or a system of equations can have multiple solutions. To find these solutions numerically, use the function vpasolve. For polynomial equations, vpasolve returns all solutions. For nonpolynomial equations, vpasolve returns the first solution it finds. This shows you how to use vpasolve to find solutions to both polynomial and nonpolynomial equations, and how to obtain these solutions to arbitrary precision.

In this section...

"Find All Roots of a Polynomial Function" on page 2-176
"Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points" on page 2-177
"Obtain Solutions to Arbitrary Precision" on page 2-181
"Solve Multivariate Equations Using Search Ranges" on page 2-182

Find All Roots of a Polynomial Function

Use vpasolve to find all the solutions to function $f(x)=6 x^{7}-2 x^{6}+3 x^{3}-8$.

```
syms f(x)
f(x) = 6* x^7-2* (^^6+3* (^^3-8;
sol = vpasolve(f)
sol =
```

1.0240240759053702941448316563337
$-0.88080620051762149639205672298326+0.50434058840127584376331806592405 i$

- $0.88080620051762149639205672298326-0.50434058840127584376331806592405 i$
$-0.22974795226118163963098570610724+0.96774615576744031073999010695171 i$
- $0.22974795226118163963098570610724-0.96774615576744031073999010695171 i$
$0.7652087814927846556172932675903+0.83187331431049713218367239317121 i$
$0.7652087814927846556172932675903-0.83187331431049713218367239317121 i$
vpasolve returns seven roots of the function, as expected, because the function is a polynomial of degree seven.

Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points

Consider the function $f(x)=e^{(x / 7)} \cos (2 x)$. A plot of the function reveals periodic zeros, with increasing slopes at the zero points as x increases.
syms x
h $=$ fplot $\left(\exp (x / 7) * \cos \left(2^{*} x\right),\left[\begin{array}{ll}-2 & 25]) \text {; }\end{array}\right.\right.$
grid on

Use vpasolve to find a zero of the function f. Note that vpasolve returns only one solution of a nonpolynomial equation, even if multiple solutions exist. On repeated calls, vpasolve returns the same result, even if multiple zeros exist.

```
f = exp(-x/20)*\operatorname{cos(2*x);}
for i = 1:3
    vpasolve(f,x)
end
ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
```

To find multiple solutions, set the option random to true. This makes vpasolve choose starting points randomly. For information on the algorithm that chooses random starting points, see "Algorithms" on page 4-1724 on the vpasolve page.

```
for i = 1:3
    vpasolve(f,x,'random',true)
end
ans =
-226.98006922186256147892598444194
ans =
98.174770424681038701957605727484
ans =
58.904862254808623221174563436491
```

To find a zero close to $x=10$ and to $x=1000$, set the starting point to 10 , and then to 1000.

```
vpasolve(f,x,10)
vpasolve(f,x,1000)
ans =
10.210176124166828025003590995658
ans =
999.8118620049516981407362567287
```


vpasolve(f,x,[15 25])

ans =

21.205750411731104359622842837137

To find multiple zeros in the range [15 25], you cannot call vpasolve repeatedly as it returns the same result on each call, as previously shown. Instead, set random to true in conjunction with the search range.

```
for i = 1:3
vpasolve(f,x,[15 25],'random',true)
end
ans =
21.205750411731104359622842837137
ans =
16.493361431346414501928877762217
ans =
16.493361431346414501928877762217
```

If you specify the random option while also specifying a starting point, vpasolve warns you that the two options are incompatible.

```
vpasolve(f,x,15,'random',true)
Warning: 'Random' has no effect because
    all variables have a starting value.
> In sym/vpasolve (line 168)
ans =
14.922565104551517882697556070578
```

Create the function findzeros below to systematically find all zeros for f in a given search range, within the error tolerance. It starts with the input search range and calls vpasolve to find a zero. Then, it splits the search range into two around the zero's value, and recursively calls itself with the new search ranges as inputs to find more zeros. The first input is the function, the second input is the range, and the optional third input allows you to specify the error between a zero and the higher and lower bounds generated from it.

The function is explained section by section here.
Declare the function with the two inputs and one output.

```
function sol = findzeros(f,range,err)
```

If you do not specify the optional argument for error tolerance, findzeros sets err to 0.001.

```
if nargin < 2
    err = 1e-3;
end
```

Find a zero in the search range using vpasolve.

```
sol = vpasolve(f,range);
```

If vpasolve does not find a zero, exit.

```
if(isempty(sol))
    return
```

If vpasolve finds a zero, split the search range into two search ranges above and below the zero.

```
else
    lowLimit = sol-err;
    highLimit = sol+err;
```

Call findzeros with the lower search range. If findzeros returns zeros, copy the values into the solution array and sort them.

```
temp = findzeros(f,[range(1) lowLimit],1);
if ~isempty(temp)
    sol = sort([sol temp]);
end
```

Call findzeros with the higher search range. If findzeros returns zeros, copy the values into the solution array and sort them.

```
    temp = findzeros(f,[highLimit range(2)],1);
    if ~isempty(temp)
    sol = sort([sol temp]);
end
return
end
end
```

The entire function findzeros is as follows.

```
function sol = findzeros(f,range,err)
if nargin < 3
    err = 1e-3;
end
```

```
sol = vpasolve(f,range);
if(isempty(sol))
    return
else
    lowLimit = sol-err;
    highLimit = sol+err;
    temp = findzeros(f,[range(1) lowLimit],1);
    if ~isempty(temp)
        sol = sort([sol temp]);
    end
    temp = findzeros(f,[highLimit range(2)],1);
    if ~isempty(temp)
        sol = sort([sol temp]);
    end
    return
end
end
```

Call findzeros with search range [10 20] to find all zeros in that range for $f(x)=$ $\exp (-x / 20) * \cos (2 * x)$, within the default error tolerance.

```
syms f(x)
f(x) = exp(-x/20)*\operatorname{cos}(2*x);
findzeros(f,[10 20])
ans =
[ 10.210176124166828025003590995658, 11.780972450961724644234912687298,...
    13.351768777756621263466234378938, 14.922565104551517882697556070578,...
    16.493361431346414501928877762217, 18.064157758141311121160199453857,...
    19.634954084936207740391521145497]
```


Obtain Solutions to Arbitrary Precision

Use digits to set the precision of the solutions. By default, vpasolve returns solutions to a precision of 32 significant figures. Use digits to increase the precision to 64 significant figures. When modifying digits, ensure that you save its current value so that you can restore it.

```
f = exp(x/7)*\operatorname{cos(2*x);}
vpasolve(f)
digitsOld = digits;
digits(64)
vpasolve(f)
digits(digitsOld)
```


ans =

- 7.0685834705770347865409476123789
ans =
$-7.068583470577034786540947612378881489443631148593988097193625333$

Solve Multivariate Equations Using Search Ranges

Consider the following system of equations.

$$
\begin{aligned}
& z=10(\cos (x)+\cos (y)) \\
& z=x+y^{2}-0.1 x^{2} y \\
& x+y-2.7=0
\end{aligned}
$$

A plot of the equations for $0 \leq x \leq 2.5$ and $0 \leq x \leq 2.5$ shows that the three surfaces intersect in two points. To better visualize the plot, use view. To scale the colormap values, use caxis. Prior to R2016a, use ezplot instead of fplot.

```
syms x y z
eqn1 = z == 10*(cos(x) + cos(y));
eqn2 = z == x+y^2-0.1*x^2*y;
eqn3 = x+y-2.7 == 0;
equations = [eqn1 eqn2 eqn3];
fimplicit3(equations)
axis([0 2.5 0 2.5 -20 10])
title('System of Multivariate Equations')
view(69, 28)
caxis([-15 10])
```


System of Multivariate Equations

Use vpasolve to find a point where the surfaces intersect. The function vpasolve returns a structure. To access the solution, index into the structure.
sol = vpasolve(equations);
[sol.x sol.y sol.z]
ans =

To search a region of the solution space, specify search ranges for the variables. If you specify the ranges $0 \leq x \leq 1.5$ and $1.5 \leq y \leq 2.5$, then vpasolve function searches the bounded area shown in the picture.

Region specified by search range

Use vpasolve to find a solution for this search range $0 \leq x \leq 1.5$ and $1.5 \leq y \leq 2.5$. To omit a search range for z , set the search range to [$\mathrm{NaN} \mathrm{NaN]}$.

```
vars = [x y z];
range = [0 1.5; 1.5 2.5; NaN NaN];
sol = vpasolve(equations, vars, range);
[sol.x sol.y sol.z]
ans =
```

To find multiple solutions, you can set the random option to true. This makes vpasolve use random starting points on successive runs. The random option can be used in conjunction with search ranges to make vpasolve use random starting points within a search range. Because random selects starting points randomly, the same solution might be found on successive calls. Call vpasolve repeatedly to ensure you find both solutions.

```
clear sol
range = [0 3; 0 3; NaN NaN];
for i = 1:5
    temp = vpasolve(equations, vars, range, 'random', true);
    sol(i,1) = temp.x;
    sol(i,2) = temp.y;
    sol(i,3) = temp.z;
end
sol
sol =
```

$\left(\begin{array}{cccc}0.91062661725633361176950031551069 & 1.7893733827436663882304996844893 & 3.9641015721356254724107884666807 \\ 2.3697477224547979209101337160174 & 0.33025227754520207908986628398261 & 2.2933543768232277431243854708612 \\ 0.91062661725633361176950031551069 & 1.7893733827436663882304996844893 & 3.9641015721356254724107884666807 \\ 0.91062661725633361176950031551069 & 1.7893733827436663882304996844893 & 3.9641015721356254724107884666807 \\ 0.91062661725633361176950031551069 & 1.7893733827436663882304996844893 & 3.9641015721356254724107884666807\end{array}\right)$

Plot the equations. Superimpose the solutions as a scatter plot of points with yellow X markers using scatter3. To better visualize the plot, make two of the surfaces transparent using alpha. Scale the colormap to the plot values using caxis, and change the perspective using view.
vpasolve finds solutions at the intersection of the surfaces formed by the equations as shown.

```
clf
ax = axes;
h = fimplicit3(equations);
h(2).FaceAlpha = 0;
h(3).FaceAlpha = 0;
axis([0 2.5 0 2.5 -20 10])
hold on
scatter3(sol(:,1),sol(:,2),sol(:,3),600,'yellow','X','LineWidth',2)
title('Randomly found solutions in specified search range')
cz = ax.Children;
caxis([0 20])
```

```
view(69,28)
hold off
```

Randomly found solutions in specified search range

Solve Differential Equation

Solve a differential equation analytically by using the dsolve function, with or without initial conditions. To solve a system of differential equations, see "Solve a System of Differential Equations" on page 2-192.

In this section...

"First-Order Linear ODE" on page 2-187
"Solve Differential Equation with Condition" on page 2-188
"Nonlinear Differential Equation with Initial Condition" on page 2-188
"Second-Order ODE with Initial Conditions" on page 2-188
"Third-Order ODE with Initial Conditions" on page 2-189
"More ODE Examples" on page 2-190

First-Order Linear ODE

Solve this differential equation.

$$
\frac{d y}{d t}=t y .
$$

First, represent y by using syms to create the symbolic function $y(t)$.

```
syms y(t)
```

Define the equation using $==$ and represent differentiation using the diff function.

```
ode = diff(y,t) == t*y
ode(t) =
diff(y(t), t) == t*y(t)
```

Solve the equation using dsolve.

```
ySol(t) = dsolve(ode)
ySol(t) =
C1*exp(t^2/2)
```


Solve Differential Equation with Condition

In the previous solution, the constant C1 appears because no condition was specified. Solve the equation with the initial condition $y(0)==2$. The dsolve function finds a value of C1 that satisfies the condition.

```
cond = y(0) == 2;
ySol(t) = dsolve(ode,cond)
ySol(t) =
2*exp(t^2/2)
```

If dsolve cannot solve your equation, then try solving the equation numerically. See "Solve Differential Equation Numerically" on page 2-152.

Nonlinear Differential Equation with Initial Condition

Solve this nonlinear differential equation with an initial condition. The equation has multiple solutions.

$$
\begin{aligned}
& \left(\frac{d y}{d t}+y\right)^{2}=1, \\
& y(0)=0 .
\end{aligned}
$$

```
syms y(t)
ode = (diff(y,t)+y)^2 == 1;
cond = y(0) == 0;
ySol(t) = dsolve(ode,cond)
ySol(t) =
    exp(-t) - 1
    1 - exp(-t)
```


Second-Order ODE with Initial Conditions

Solve this second-order differential equation with two initial conditions.

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\cos (2 x)-y \\
& y(0)=1 \\
& y^{\prime}(0)=0
\end{aligned}
$$

Define the equation and conditions. The second initial condition involves the first derivative of y. Represent the derivative by creating the symbolic function $D y=$ $\operatorname{diff}(y)$ and then define the condition using $\operatorname{Dy}(0)==0$.

```
syms y(x)
Dy = diff(y);
ode = diff(y,x,2) == cos(2*x)-y;
condl = y(0) == 1;
cond2 = Dy(0) == 0;
```

Solve ode for y. Simplify the solution using the simplify function.

```
conds = [cond1 cond2];
ySol(x) = dsolve(ode,conds);
ySol = simplify(ySol)
ySol(x) =
1 - (8*sin(x/2)^4)/3
```


Third-Order ODE with Initial Conditions

Solve this third-order differential equation with three initial conditions.

$$
\begin{aligned}
& \frac{d^{3} u}{d x^{3}}=u, \\
& u(0)=1, \\
& u^{\prime}(0)=-1, \\
& u^{\prime \prime}(0)=\pi .
\end{aligned}
$$

Because the initial conditions contain the first- and second-order derivatives, create two symbolic functions, $\operatorname{Du}=\operatorname{diff}(u, x)$ and $\operatorname{D2u}=\operatorname{diff}(u, x, 2)$, to specify the initial conditions.

```
syms u(x)
Du = diff(u,x);
D2u = diff(u,x,2);
```

Create the equation and initial conditions, and solve it.

```
ode = diff(u,x,3) == u;
cond1 = u(0) == 1;
cond2 = Du(0) == -1;
cond3 = D2u(0) == pi;
conds = [cond1 cond2 cond3];
uSol(x) = dsolve(ode,conds)
uSol(x) =
(pi*exp(x))/3 - exp(-x/2)*\operatorname{cos((3^(1/2)*x)/2)*(pi/3 - 1) -...}
(3^(1/2)*exp(-x/2)*sin((3^(1/2)*x)/2)*(pi + 1))/3
```


More ODE Examples

This table shows examples of differential equations and their Symbolic Math Toolbox syntax. The last example is the Airy differential equation, whose solution is called the Airy function.

| Differential Equation | MATLAB Commands |
| :---: | :---: |
| $\begin{aligned} & \frac{d y}{d t}+4 y(t)=e^{-t} \\ & y(0)=1 . \end{aligned}$ | ```syms y(t) ode = diff(y)+4*y == exp(-t); cond = y(0) == 1; ySol(t) = dsolve(ode,cond) ySol(t) = exp(-t)/3 + (2*exp(-4*t))/3``` |
| $2 x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-y=0$ | ```syms y(x) ode = 2*x^2*diff(y,x,2)+3*x*diff(y,x)-y == 0; ySol(x) = dsolve(ode) ySol(x) = C2/(3*x) + C3*x^(1/2)``` |

| Differential Equation | MATLAB Commands |
| :--- | :--- |
| The Airy equation. | syms $\mathrm{y}(\mathrm{x})$
 ode $=\operatorname{diff}(\mathrm{y}, \mathrm{x}, 2)==\mathrm{x}^{*} \mathrm{y} ;$
 $\mathrm{ySol}(\mathrm{x})=\mathrm{dsolve}(\mathrm{ode})$ |
| $\frac{d^{2} y}{d x^{2}}=x y(x)$. | $\mathrm{ySol}(\mathrm{x})=$
 $\mathrm{Cl} * \operatorname{airy}(0, \mathrm{x})+\mathrm{C} 2 * \operatorname{airy}(2, \mathrm{x})$ |

See Also

"Solve a System of Differential Equations" on page 2-192

Solve a System of Differential Equations

Solve a system of several ordinary differential equations in several variables by using the dsolve function, with or without initial conditions. To solve a single differential equation, see "Solve Differential Equation" on page 2-187.

In this section...

"Solve System of Differential Equations" on page 2-192
"Solve Differential Equations in Matrix Form" on page 2-194

Solve System of Differential Equations

Solve this system of linear first-order differential equations.

$$
\begin{aligned}
& \frac{d u}{d t}=3 u+4 v \\
& \frac{d v}{d t}=-4 u+3 v
\end{aligned}
$$

First, represent u and v by using syms to create the symbolic functions $u(t)$ and $v(t)$.

```
syms u(t) v(t)
```

Define the equations using $==$ and represent differentiation using the diff function.

```
odel = diff(u) == 3*u + 4*v;
ode2 = diff(v) == -4*u + 3*v;
odes = [ode1; ode2]
odes(t) =
    diff(u(t), t) == 3*u(t) + 4*v(t)
    diff(v(t), t) == 3*v(t) - 4*u(t)
```

Solve the system using the dsolve function which returns the solutions as elements of a structure.

```
S = dsolve(odes)
```

$\mathrm{S}=$
struct with fields:

```
v: [1\times1 sym]
u: [1\times1 sym]
```

If dsolve cannot solve your equation, then try solving the equation numerically. See "Solve Differential Equation Numerically" on page 2-152.

To access $u(t)$ and $v(t)$, index into the structure S.

```
uSol(t) = S.u
vSol(t) = S.v
uSol(t) =
C2*}\operatorname{cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
vSol(t) =
C1*\operatorname{cos}(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)
```

Alternatively, store $u(t)$ and $v(t)$ directly by providing multiple output arguments.

```
[uSol(t), vSol(t)] = dsolve(odes)
uSol(t) =
C2*\operatorname{cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)}
vSol(t) =
C1*}\operatorname{cos}(4*\textrm{t})*\operatorname{exp}(3*\textrm{t})-C2*\operatorname{sin}(4*\textrm{t})*\operatorname{exp}(3*\textrm{t}
```

The constants C1 and C2 appear because no conditions are specified. Solve the system with the initial conditions $u(0)==0$ and $v(0)==0$. The dsolve function finds values for the constants that satisfy these conditions.

```
cond1 = u(0) == 0;
cond2 = v(0) == 1;
conds = [cond1; cond2];
[uSol(t), vSol(t)] = dsolve(odes,conds)
uSol(t) =
sin(4*t)*exp(3*t)
vSol(t) =
cos(4*t)*exp(3*t)
```

Visualize the solution using fplot. Before R2016a, use ezplot instead.

```
fplot(uSol)
```

hold on
fplot(vSol)

```
grid on
```

legend('uSol','vSol','Location','best')

Solve Differential Equations in Matrix Form

Solve differential equations in matrix form by using dsolve.
Consider this system of differential equations.

$$
\begin{aligned}
& \frac{d x}{d t}=x+2 y+1 \\
& \frac{d y}{d t}=-x+y+t
\end{aligned}
$$

The matrix form of the system is

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
t
\end{array}\right] .
$$

Let

$$
Y=\left[\begin{array}{l}
x \\
y
\end{array}\right], A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right], B=\left[\begin{array}{l}
1 \\
t
\end{array}\right] .
$$

The system is now $Y^{\prime}=A Y+B$.
Define these matrices and the matrix equation.

```
syms x(t) y(t)
A = [1 2; -1 1];
B = [1; t];
Y = [x; y];
odes = diff(Y) == A*Y + B
odes(t) =
    diff(x(t), t) == x(t) + 2*y(t) + 1
        diff(y(t), t) == t - x(t) + y(t)
```

Solve the matrix equation using dsolve. Simplify the solution by using the simplify function.

```
[xSol(t), ySol(t)] = dsolve(odes);
xSol(t) = simplify(xSol(t))
ySol(t) = simplify(ySol(t))
xSol(t) =
(2*t)/3 + 2^(1/2)*C2*exp(t)*\operatorname{cos(2^(1/2)*t) + 2^(1/2)*C1*exp(t)*sin(2^(1/2)*t) + 1/9}
ySol(t) =
C1*exp(t)*\operatorname{cos(2^(1/2)*t) - t/3 - C2* exp(t)*sin(2^(1/2)*t) - 2/9}
```

The constants C1 and C2 appear because no conditions are specified.

Solve the system with the initial conditions $u(0)=2$ and $v(0)=-1$. When specifying equations in matrix form, you must specify initial conditions in matrix form too. dsolve finds values for the constants that satisfy these conditions.

```
C = Y(0) == [2; -1];
[xSol(t), ySol(t)] = dsolve(odes,C)
xSol(t) =
(2*t)/3 + (17*exp(t)*\operatorname{cos(2^(1/2)*t))/9 - (7*2^(1/2)*exp(t)*sin(2^(1/2)*t))/9 + 1/9}
ySol(t) =
- t/3 - (7*exp(t)*\operatorname{cos(2^(1/2)*t))/9 - (17*2^(1/2)*exp(t)*sin(2^(1/2)*t))/18 - 2/9}
```

Visualize the solution using fplot. Before R2016a, use ezplot instead.

clf

fplot(ySol)
hold on
fplot (xSol)
grid on
legend('ySol','xSol','Location','best')

See Also

"Solve Differential Equation" on page 2-187

Solve Differential Algebraic Equations (DAEs)

You can solve differential algebraic equations (DAEs) by using MATLAB and Symbolic Math Toolbox.

Differential algebraic equations (involving functions, or state variables,
$x(t)=\left[x_{1}(t), \ldots, x_{n}(t)\right]$ have the form

$$
F(t, x(t), \dot{x}(t))=0
$$

where t is the independent variable. The number of equations $F=\left[F_{1}, \ldots, F_{n}\right]$ must match the number of state variables $x(t)=\left[x_{1}(t), \ldots, x_{n}(t)\right]$.

Because most DAE systems are not suitable for direct input to MATLAB solvers, such as ode15i, first convert them to a suitable form by using Symbolic Math Toolbox functionality. This functionality reduces the differential index (number of differentiations needed to reduce the system to ODEs) of the DAEs to 1 or 0 , and then converts the DAE system to numeric function handles suitable for MATLAB solvers. Now, use MATLAB solvers, such as ode15i, ode15s, or ode23t, to solve the DAEs.

Solve your DAE system by completing these steps.

- "Step 1. Specify Equations and Variables" on page 2-198
- "Step 2. Reduce Differential Order" on page 2-200
- "Step 3. Check and Reduce Differential Index" on page 2-202
- "Step 4. Convert DAE Systems to MATLAB Function Handles" on page 2-204
- "Step 5. Find Initial Conditions For Solvers" on page 2-204
- "Step 6. Solve DAEs Using ode15i" on page 2-206

Step 1. Specify Equations and Variables

This shows the DAE workflow by solving the DAEs for a pendulum.

The state variables are:

- Horizontal position of pendulum $x(t)$
- Vertical position of pendulum $y(t)$
- Force preventing pendulum from flying away $T(t)$

The variables are:

- Pendulum mass m
- Pendulum length r
- Gravitational constant g

The DAE system of equations is

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=T(t) \frac{x(t)}{r} \\
& m \frac{d^{2} y}{d t^{2}}=T(t) \frac{y(t)}{r}-m g \\
& x(t)^{2}+y(t)^{2}=r^{2}
\end{aligned}
$$

Specify independent variables and state variables by using syms.

```
syms x(t) y(t) T(t) m r g
```

Specify equations by using the $==$ operator.

```
eqn1 = m*diff(x(t), 2) == T(t)/r*x(t);
eqn2 = m*diff(y(t), 2) == T(t)/r*y(t) - m*g;
eqn3 = x(t)^2 + y(t)^2 == r^2;
eqns = [eqn1 eqn2 eqn3];
```

Place the state variables in a column vector. Store the number of original variables for reference.

```
vars = [x(t); y(t); T(t)];
origVars = length(vars);
```


Step 2. Reduce Differential Order

2.1 (Optional) Check Incidence of Variables

This step is optional. You can check where variables occur in the DAE system by viewing the incidence matrix. This step finds any variables that do not occur in your input and can be removed from the vars vector.

Display the incidence matrix by using incidenceMatrix. The output of incidenceMatrix has a row for each equation and a column for each variable. Because the system has three equations and three state variables, incidenceMatrix returns a 3-by- 3 matrix. The matrix has 1 s and 0 s , where 1 s represent the occurrence of a state variable. For example, the 1 in position $(2,3)$ means the second equation contains the third state variable $\mathrm{T}(\mathrm{t})$.
M = incidenceMatrix(eqns, vars)
$M=$

| 1 | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 1 | 1 |
| 1 | 1 | 0 |

If a column of the incidence matrix is all 0 s, then that state variable does not occur in the DAE system and should be removed.

2.2 Reduce Differential Order

The differential order of a DAE system is the highest differential order of its equations. To solve DAEs using MATLAB, the differential order must be reduced to 1 . Here, the first and second equations have second-order derivatives of $x(t)$ and $y(t)$. Thus, the differential order is 2.

Reduce the system to a first-order system by using reduceDifferential0rder. The reduceDifferentialOrder function substitutes derivatives with new variables, such as $\operatorname{Dxt}(t)$ and $\operatorname{Dyt}(\mathrm{t})$. The right side of the expressions in eqns is 0 .

```
[eqns, vars] = reduceDifferentialOrder(eqns, vars)
```

eqns =
m*diff(Dxt(t), t) - (T(t)*x(t))/r
g*m + m*diff(Dyt(t), t) - (T(t)*y(t))/r
$x(t) \wedge 2+y(t) \wedge 2-r^{\wedge} 2$
Dxt(t) - diff(x(t), t)
Dyt(t) - diff(y(t), t)

```
vars =
    x(t)
    y(t)
    T(t)
    Dxt(t)
    Dyt(t)
```

Optionally, to show how the derivatives correspond to the new variables, call reduceDifferentialOrder with three output arguments. To find the locations of the new variables in the system, use incidenceMatrix.

Step 3. Check and Reduce Differential Index

3.1 Check Differential Index of System

Check the differential index of the DAE system by using isLowIndexDAE. If the index is 0 or 1 , then isLowIndexDAE returns logical 1 (true) and you can skip step 3.2 and go to "Step 4. Convert DAE Systems to MATLAB Function Handles" on page 2-204. Here, isLowIndexDAE returns logical 0 (false), which means the differential index is greater than 1 and must be reduced.

```
isLowIndexDAE(eqns,vars)
```

ans =
logical
0

3.2 Reduce Differential Index with reduceDAEIndex

To reduce the differential index, the reduceDAEIndex function adds new equations that are derived from the input equations, and then replaces higher-order derivatives with new variables. If reduceDAEIndex fails and issues a warning, then use the alternative function reduceDAEToODE as described in the workflow "Solve Semilinear DAE System" on page 2-210.

Reduce the differential index of the DAEs described by eqns and vars.
[DAEs,DAEvars] = reduceDAEIndex(eqns,vars)
DAEs =

DAEvars =
$x(t)$
$y(t)$
T(t)

Dxt(t)
Dyt(t)
Dytt(t)
Dxtt(t)
Dxt1(t)
Dyt1(t)
Dxt1t(t)

Note If reduceDAEIndex fails and issues a warning, use the alternative workflow described in "Solve Semilinear DAE System" on page 2-210.

Often, reduceDAEIndex introduces redundant equations and variables that can be eliminated. Eliminate redundant equations and variables using reduceRedundancies.
[DAEs,DAEvars] = reduceRedundancies(DAEs,DAEvars)
DAEs =
$\left(g^{*} m^{*} r-T(t) * y(t)+m * r * \operatorname{Dytt}(t)\right) / r$
$x(t)^{\wedge} 2+y(t)^{\wedge} 2-r^{\wedge} 2$

2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)
$2 * \operatorname{Dxtt}(\mathrm{t}) * x(\mathrm{t})+2 * \operatorname{Dytt}(\mathrm{t}) * y(\mathrm{t})+2 * \operatorname{Dxt}(\mathrm{t})^{\wedge} 2+2 * \operatorname{Dyt}(\mathrm{t})^{\wedge} 2$
Dytt(t) - diff(Dyt(t), t)
Dyt(t) - diff(y(t), t)
DAEvars =
$x(t)$
$y(t)$
T(t)
Dxt(t)
Dyt(t)
Dytt(t)
Dxtt(t)
Check the differential index of the new system. Now, isLowIndexDAE returns logical 1 (true), which means that the differential index of the system is 0 or 1 .

```
isLowIndexDAE(DAEs,DAEvars)
```

```
ans =
    logical
    1
```


Step 4. Convert DAE Systems to MATLAB Function Handles

This step creates function handles for the MATLAB ODE solver ode15i, which is a general purpose solver. To use specialized mass matrix solvers such as ode15s and ode23t, see "Solve DAEs Using Mass Matrix Solvers" on page 2-218. Also see "Choose an ODE Solver" (MATLAB).
reduceDAEIndex outputs a vector of equations in DAEs and a vector of variables in DAEvars. To use ode15i, you need a function handle that describes the DAE system.

First, the equations in DAEs can contain symbolic parameters that are not specified in the vector of variables DAEvars. Find these parameters by using setdiff on the output of symvar from DAEs and DAEvars.

```
pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs, pDAEvars)
extraParams =
[ g, m, r]
```

The extra parameters that you need to specify are the mass m, radius r, and gravitational constant g.

Create the function handle by using daeFunction. Specify the extra symbolic parameters as additional input arguments of daeFunction.

```
f = daeFunction(DAEs, DAEvars, g, m, r);
```

The rest of the workflow is purely numerical. Set the parameter values and create the function handle for ode15i.

```
g = 9.81;
m = 1;
r = 1;
F = @(t, Y, YP) f(t, Y, YP, g, m, r);
```


Step 5. Find Initial Conditions For Solvers

The ode15i solver requires initial values for all variables in the function handle. Find initial values that satisfy the equations by using the MATLAB decic function. decic accepts guesses (which might not satisfy the equations) for the initial conditions and tries
to find satisfactory initial conditions using those guesses. decic can fail, in which case you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.
DAEvars

```
DAEvars =
    x(t)
    y(t)
    T(t)
    Dxt(t)
    Dyt(t)
    Dytt(t)
    Dxtt(t)
```

Here, $\operatorname{Dxt}(t)$ is the first derivative of $x(t)$, $\operatorname{Dytt}(t)$ is the second derivative of $y(t)$, and so on. There are 7 variables in a 7 -by-1 vector. Therefore, guesses for initial values of variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or $\mathrm{pi} / 6$, and the origin of the coordinates is at the suspension point of the pendulum. Given that we used a radius r of 1 , the initial horizontal position $x(t)$ is $r^{*} \sin (p i / 6)$. The initial vertical position $y(t)$ is $-r^{*} \cos (p i / 6)$. Specify these initial values of the variables in the vector y0est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0 . These are not good guesses. However, they suffice for this problem. In your problem, if decic errors, then provide better guesses and refer to decic.

```
y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
yp0est = zeros(7,1);
```

Create an option set that specifies numerical tolerances for the numerical search.

```
opt = odeset('RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));
```

Find consistent initial values for the variables and their derivatives by using decic.

```
[y0, yp0] = decic(F, 0, y0est, [], yp0est, [], opt)
```

$y 0=$
0.4771
-0.8788
-8.6214

```
                        0
        0.0000
    -2.2333
    4.1135
yp0 =
            0
    0.0000
                            0
    0
    -2.2333
        0
        0
```


Step 6. Solve DAEs Using ode15i

Solve the system integrating over the time span $0 \leq \mathrm{t} \leq 0.5$. Add the grid lines and the legend to the plot.

```
[tSol,ySol] = ode15i(F, [0, 0.5], y0, yp0, opt);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
    S{k} = char(DAEvars(k));
end
legend(S, 'Location', 'Best')
grid on
```


Solve the system for different parameter values by setting the new value and regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.
$r=2 ;$
F = @(t, Y, YP) f(t, Y, YP, g, m, r);
y0est $=\left[r^{*} \cos (p i / 6) ; ~ r * s i n(p i / 6) ; ~ 0 ; ~ 0 ; ~ 0 ; ~ 0 ; ~ 0\right] ; ~$
[y0, yp0] = decic(F, 0, y0est, [], yp0est, [], opt);
Solve the system for the new parameter value.
[tSol,y] = ode15i(F, [0, 0.5], y0, yp0, opt);
plot(tSol,y(:,1:origVars),'-o')

```
        for k = 1:origVars
            S{k} = char(DAEvars(k));
    end
    legend(S, 'Location', 'Best')
    grid on
```


See Also

Related Examples

- "Solve Semilinear DAE System" on page 2-210
- "Solve DAEs Using Mass Matrix Solvers" on page 2-218

Solve Semilinear DAE System

This workflow is an alternative workflow to solving semilinear DAEs, used only if reduceDAEIndex failed in the standard workflow with the warning below. For the standard workflow, see "Solve Differential Algebraic Equations (DAEs)" on page 2-198.

Warning: The index of the reduced DAEs is larger...
than 1. [daetools::reduceDAEIndex]
To solve your DAE system complete these steps.

- "Step 1. Reduce Differential Index with reduceDAEToODE" on page 2-210
- "Step 2. ODEs to Function Handles for ode15s and ode23t" on page 2-211
- "Step 3. Initial Conditions for ode15s and ode23t" on page 2-212
- "Step 4. Solve an ODE System with ode15s or ode23t" on page 2-214

Step 1. Reduce Differential Index with reduceDAEToODE

Complete steps 1 and 2 in "Solve Differential Algebraic Equations (DAEs)" on page 2-198 before beginning this step. Then, in step 3 when reduceDAEIndex fails, reduce the differential index using reduceDAEToODE. The advantage of reduceDAEToODE is that it reliably reduces semilinear DAEs to ODEs (DAEs of index 0). However, this function is slower and works only on semilinear DAE systems. reduceDAEToODE can fail if the system is not semilinear.

To reduce the differential index of the DAEs described by eqns and vars, use reduceDAETOODE. To reduce the index, reduceDAEToODE adds new variables and equations to the system. reduceDAEToODE also returns constraints, which are conditions that help find initial values to ensure that the resulting ODEs are equal to the initial DAEs.
[ODEs, constraints] = reduceDAEToODE(eqns,vars)
ODEs =

```
                    Dxt(t) - diff(x(t), t)
                    Dyt(t) - diff(y(t), t)
            m*diff(Dxt(t), t) - (T(t)*x(t))/r
        m*diff(Dyt(t), t) - (T(t)*y(t) - g*m*r)/r
        -(4*T(t)*y(t) - 2*g*m*r)*diff(y(t), t) -...
        diff(T(t), t)*(2*x(t)^2 + 2*y(t)^2) -...
        4*T(t)*x(t)*diff(x(t), t) -...
```

```
4*m*r*Dxt(t)*diff(Dxt(t), t) -...
4*m*r*Dyt(t)*diff(Dyt(t), t)
    2*g*m*r*y(t) - 2*T(t)*y(t)^2 - 2*m*r*Dxt(t)^2 -...
        2*m*r*Dyt(t)^2 - 2*T(t)*x(t)^2
        r^2 - y(t)^2 - x(t)^2
        2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)
```

constraints =

Step 2. ODEs to Function Handles for ode15s and ode23t

From the output of reduceDAEToODE, you have a vector of equations in ODEs and a vector of variables in vars. To use ode15s or ode23t, you need two function handles: one representing the mass matrix of the ODE system, and the other representing the vector containing the right sides of the mass matrix equations. These function handles are the equivalent mass matrix representation of the ODE system where $M(t, y(t)) y^{\prime}$ $(t)=f(t, y(t))$.

Find these function handles by using massMatrixForm to get the mass matrix massM (M in the equation) and right sides f.

```
[massM,f] = massMatrixForm(ODEs,vars)
```


The equations in ODEs can contain symbolic parameters that are not specified in the vector of variables vars. Find these parameters by using setdiff on the output of symvar from ODEs and vars.

```
pODEs = symvar(ODEs);
pvars = symvar(vars);
extraParams = setdiff(pODEs, pvars)
extraParams =
[ g, m, r]
```

The extra parameters that you need to specify are the mass m, radius r, and gravitational constant g.

Convert massM and f to function handles using odeFunction. Specify the extra symbolic parameters as additional inputs to odeFunction.

```
massM = odeFunction(massM, vars, m, r, g);
f = odeFunction(f, vars, m, r, g);
```

The rest of the workflow is purely numerical. Set the parameter values and substitute the parameter values in DAEs and constraints.

```
m = 1;
r = 1;
g = 9.81;
ODEsNumeric = subs(ODEs);
constraintsNumeric = subs(constraints);
```

Create the function handle suitable for input to ode15s or ode23s.

```
M = @(t, Y) massM(t, Y, m, r, g);
F = @(t, Y) f(t, Y, m, r, g);
```


Step 3. Initial Conditions for ode15s and ode23t

The solvers require initial values for all variables in the function handle. Find initial values that satisfy the equations by using the MATLAB decic function. The decic accepts guesses (which might not satisfy the equations) for the initial conditions and tries to find satisfactory initial conditions using those guesses. decic can fail, in which case you must manually supply consistent initial values for your problem.

First, check the variables in vars.

vars

vars =

$x(t)$
$y(t)$
T(t)
Dxt(t)
Dyt(t)

Here, $\operatorname{Dxt}(t)$ is the first derivative of $x(t)$, and so on. There are 5 variables in a 5 -by- 1 vector. Therefore, guesses for initial values of variables and their derivatives must also be 5-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or $\mathrm{pi} / 6$, and the origin of the coordinates is at the suspension point of the pendulum. Given that we used a radius r of 1 , the initial horizontal position $x(t)$ is $r^{*} \sin (p i / 6)$. The initial vertical position $y(t)$ is $-r^{*} \cos (p i / 6)$. Specify these initial values of the variables in the vector $y 0$ est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0 . These are not good guesses. However, they suffice for this problem. In your problem, if decic errors, then provide better guesses and refer to the decic page.

```
y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0];
yp0est = zeros(5,1);
```

Create an option set that contains the mass matrix M of the system and specifies numerical tolerances for the numerical search.

```
opt = odeset('Mass', M, 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));
```

Find initial values consistent with the system of ODEs and with the algebraic constraints by using decic. The parameter $[1,0,0,0,1]$ in this function call fixes the first and the last element in y0est, so that decic does not change them during the numerical search. Here, this fixing is necessary to ensure decic finds satisfactory initial conditions.

```
[y0, yp0] = decic(ODEsNumeric, vars, constraintsNumeric, 0,...
    y0est, [1,0,0,0,1], yp0est, opt)
y0 =
    0.5000
    -0.8660
    -8.4957
        0
        0
yp0 =
            0
            0
            0
    -4.2479
    -2.4525
```

Now create an option set that contains the mass matrix M of the system and the vector yp0 of consistent initial values for the derivatives. You will use this option set when solving the system.

```
opt = odeset(opt, 'InitialSlope', yp0);
```


Step 4. Solve an ODE System with ode15s or ode23t

Solve the system integrating over the time span $0 \leq t \leq 0.5$. Add the grid lines and the legend to the plot. Use ode23s by replacing ode15s with ode23s.

```
[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
    S{k} = char(vars(k));
end
legend(S, 'Location', 'Best')
grid on
```


Solve the system for different parameter values by setting the new value and regenerating the function handle and initial conditions.

Set r to 2 and repeat the steps.
$r=2 ;$
ODEsNumeric = subs(ODEs);
constraintsNumeric = subs(constraints);
$M=@(t, Y)$ massM(t, Y, m, r, g);
F = @(t, Y) f(t, Y, m, r, g);
y0est $=\left[r^{*} \cos (p i / 6) ;-r^{*} \sin (p i / 6) ; 0 ; 0 ; 0\right] ;$
opt = odeset('Mass', M, 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

```
[y0, yp0] = decic(ODEsNumeric, vars, constraintsNumeric, 0,...
    y0est, [1,0,0,0,1], yp0est, opt);
opt = odeset(opt, 'InitialSlope', yp0);
```

Solve the system for the new parameter value.

```
[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
    S{k} = char(vars(k));
end
legend(S, 'Location', 'Best')
grid on
```


See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE |massMatrixForm|odeFunction|reduceDAEIndex| reduceDAEToODE \| reduceDifferentialOrder|reduceRedundancies

Related Examples

- "Solve Differential Algebraic Equations (DAEs)" on page 2-198
- "Solve DAEs Using Mass Matrix Solvers" on page 2-218

Solve DAEs Using Mass Matrix Solvers

Solve differential algebraic equations by using one of the mass matrix solvers available in MATLAB. To use this workflow, first complete steps 1, 2, and 3 from "Solve Differential Algebraic Equations (DAEs)" on page 2-198. Then, use a mass matrix solver instead of ode15i.

This example demonstrates the use of ode15s or ode23t. For details on the other solvers, see "Choose an ODE Solver" (MATLAB) and adapt the workflow on this page.

In this section...

"Step 1. Convert DAEs to Function Handles" on page 2-218
"Step 2. Find Initial Conditions" on page 2-219
"Step 3. Solve DAE System" on page 2-221

Step 1. Convert DAEs to Function Handles

From the output of reduceDAEIndex, you have a vector of equations DAEs and a vector of variables DAEvars. To use ode15s or ode23t, you need two function handles: one representing the mass matrix of a DAE system, and the other representing the right sides of the mass matrix equations. These function handles form the equivalent mass matrix representation of the ODE system where $M(t, y(t)) y^{\prime}(t)=f(t, y(t))$.

Find these function handles by using massMatrixForm to get the mass matrix M and the right sides F.

```
[M,f] = massMatrixForm(DAEs,DAEvars)
M =
[ 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, -1, 0, 0]
[ 0, -1, 0, 0, 0, 0, 0]
f =
```

$(\mathrm{T}(\mathrm{t}) * x(\mathrm{t})-\mathrm{m} * \mathrm{r} * \operatorname{Dxtt}(\mathrm{t})) / \mathrm{r}$
$-\left(\mathrm{g} * \mathrm{~m} * \mathrm{r}-\mathrm{T}(\mathrm{t}) * \mathrm{y}(\mathrm{t})+\mathrm{m} * r^{*} \mathrm{Dytt}(\mathrm{t})\right) / \mathrm{r}$

```
    r^2 - y(t)^2 - x(t)^2
    - 2*Dxt(t)*x(t) - 2*Dyt(t)*y(t)
- 2*Dxtt(t)*x(t) - 2*Dytt(t)*y(t) - 2*Dxt(t)^2 - 2*Dyt(t)^2
    -Dytt(t)
    -Dyt(t)
```

The equations in DAEs can contain symbolic parameters that are not specified in the vector of variables DAEvars. Find these parameters by using setdiff on the output of symvar from DAEs and DAEvars.

```
pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs, pDAEvars)
extraParams =
[ g, m, r]
```

The mass matrix M does not have these extra parameters. Therefore, convert M directly to a function handle by using odeFunction.

```
M = odeFunction(M, DAEvars);
```

Convert f to a function handle. Specify the extra parameters as additional inputs to odeFunction.
$f=$ odeFunction(f, DAEvars, g, m, r);
The rest of the workflow is purely numerical. Set parameter values and create the function handle.
$\mathrm{g}=9.81 ;$
m = 1;
$r=1 ;$
$F=@(t, Y) f(t, Y, g, m, r) ;$

Step 2. Find Initial Conditions

The solvers require initial values for all variables in the function handle. Find initial values that satisfy the equations by using the MATLAB decic function. The decic accepts guesses (which might not satisfy the equations) for the initial conditions, and tries to find satisfactory initial conditions using those guesses. decic can fail, in which case you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.

DAEvars

```
DAEvars =
    x(t)
    y(t)
    T(t)
    Dxt(t)
    Dyt(t)
    Dytt(t)
    Dxtt(t)
```

Here, $\operatorname{Dxt}(t)$ is the first derivative of $x(t)$, $\operatorname{Dytt}(t)$ is the second derivative of $y(t)$, and so on. There are 7 variables in a 7 -by-1 vector. Thus, guesses for initial values of variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or $\mathrm{pi} / 6$, and the origin of the coordinates is at the suspension point of the pendulum. Given that we used a radius r of 1 , the initial horizontal position $x(t)$ is $r^{*} \sin (\mathrm{pi} / 6)$. The initial vertical position $y(t)$ is $-r^{*} \cos (p i / 6)$. Specify these initial values of the variables in the vector y0est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0 . These are not good guesses. However, they suffice for our problem. In your problem, if decic errors, then provide better guesses and refer to the decic page.

```
y0est = [r*sin(pi/6); - r**cos(pi/6); 0; 0; 0; 0; 0];
yp0est = zeros(7,1);
```

Create an option set that contains the mass matrix M and initial guesses yp0est, and specifies numerical tolerances for the numerical search.

```
opt = odeset('Mass', M, 'InitialSlope', yp0est,...
    'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));
```

Find consistent initial values for the variables and their derivatives by using the MATLAB decic function. The first argument of decic must be a function handle describing the DAE as $f(t, y, y p)=f\left(t, y, y^{\prime}\right)=0$. In terms of M and F, th means $f(t, y, y p)=$ $M(t, y) * y p-F(t, y)$.

```
implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);
[y0, yp0] = decic(implicitDAE, 0, y0est, [], yp0est, [], opt)
y0 =
    0.4771
    -0.8788
```

-8.6214
0
0.0000
-2.2333
-4.1135
yp0 =
0.0000

0
0
-2.2333
0
0
Now create an option set that contains the mass matrix M of the system and the vector yp0 of consistent initial values for the derivatives. You will use this option set when solving the system.

```
opt = odeset(opt, 'InitialSlope', yp0);
```


Step 3. Solve DAE System

Solve the system integrating over the time span $0 \leq t \leq 0.5$. Add the grid lines and the legend to the plot. The code uses ode15s. Instead, you can use ode23s by replacing ode15s with ode23s.

```
[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')
for k = 1:origVars
    S{k} = char(DAEvars(k));
end
legend(S, 'Location', 'Best')
grid on
```


Solve the system for different parameter values by setting the new value and regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.
$r=2 ;$
$F=@(t, Y) f(t, Y, g, m, r) ;$
y0est $=\left[r^{*} \sin (p i / 6) ;-r^{*} \cos (p i / 6) ; 0 ; 0 ; 0 ; 0 ; 0\right] ;$
implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);
[y0, yp0] = decic(implicitDAE, 0, y0est, [], yp0est, [], opt);
opt = odeset(opt, 'InitialSlope', yp0);

Solve the system for the new parameter value.

```
    [tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
    plot(tSol,ySol(:,1:origVars),'-o')
    for k = 1:origVars
        S{k} = char(DAEvars(k));
end
legend(S, 'Location', 'Best')
grid on
```


See Also

Related Examples

- "Solve Differential Algebraic Equations (DAEs)" on page 2-198
- "Solve Semilinear DAE System" on page 2-210

Fourier and Inverse Fourier Transforms

This page shows the workflow for Fourier and inverse Fourier transforms in Symbolic Math Toolbox. For simple examples, see fourier and ifourier. Here, the workflow for Fourier transforms is demonstrated by calculating the deflection of a beam due to a force. The associated differential equation is solved by the Fourier transform.

Fourier Transform Definition

The Fourier transform of $f(x)$ with respect to x at w is

$$
F(w)=\int_{-\infty}^{\infty} f(x) e^{-i w x} d x
$$

The inverse Fourier transform is

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(w) e^{i w x} d w
$$

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric form. This approach helps you understand the properties of your solution and use exact symbolic values. You substitute numbers in place of symbolic variables only when you require a numeric result or you cannot continue symbolically. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

Calculate Beam Deflection Using Fourier Transform

Define Equations

Fourier transform can be used to solve ordinary and partial differential equations. For example, you can model the deflection of an infinitely long beam resting on an elastic foundation under a point force. A corresponding real-world example is railway tracks on a foundation. The railway tracks are the infinitely long beam while the foundation is elastic.

Let

- E be the elasticity of the beam (or railway track).
- I be the second moment of area of the cross-section of the beam.
- k be the spring stiffness of the foundation.

The differential equation is

$$
\frac{d^{4} y}{d x^{4}}+\frac{k}{E I} y=\frac{1}{E I} \delta(x),-\infty<x<\infty
$$

Define the function $y(x)$ and the variables. Assume E, I, and k are positive.

```
syms Y(x) w E I k f
assume([E I k] > 0)
```

Assign units to the variables by using symunit.

```
u = symunit;
Eu = E*u.Pa; % Pascal
Iu = I*u.m^4; % meter^4
ku = k*u.N/u.m^2; % Newton/meter^2
X = x*u.m;
F = f*u.N/u.m;
```

Define the differential equation.

```
eqn = diff(Y,X,4) + ku/(Eu*Iu)*Y == F/(Eu*Iu)
eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) == ...
    (f/(E*I))*([N]/([Pa]*[m]^5))
```

Represent the force f by the Dirac delta function $\delta(x)$.

```
eqn = subs(eqn,f,dirac(x))
eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) == ...
    (dirac(x)/(E*I))*([N]/([Pa]*[m]^5))
```


Solve Equations

Calculate the Fourier transform of eqn by using fourier on both sides of eqn. The Fourier transform converts differentiation into exponents of w.

```
eqnFT = fourier(lhs(eqn)) == fourier(rhs(eqn))
eqnFT =
w^4*fourier(Y(x), x, w)*(1/[m]^4) + ((k*fourier(Y(x), x, w))/(E*I))*([N]/([Pa]*[m]^6))
Isolate fourier(Y(x),x,w) in the equation.
eqnFT = isolate(eqnFT, fourier(Y(x),x,w))
eqnFT =
fourier(Y(x), x, w) == (l/(E*I*w^4*[Pa]*[m]^2 + k*[N]))*[N]*[m]
```

Calculate $Y(x)$ by calculating the inverse Fourier transform of the right side. Simplify the result.

```
YSol = ifourier(rhs(eqnFT));
YSol = simplify(YSol)
YSol =
((exp(-(2^(1/2)*k^(1/4)*abs(x))/(2*E^(1/4)*I^(1/4)))*sin((2*2^(1/2)*k^(1/4)*abs(x) +..
    pi*E^(1/4)*I^(1/4))/(4*E^(1/4)*I^(1/4))))/(2*E^(1/4)*I^(1/4)*k^(3/4)))*[m]
```

Check that YSol has the correct dimensions by substituting YSol into eqn and using the checkUnits function. checkUnits returns logical 1 (true), meaning eqn now has compatible units of the same physical dimensions.

```
checkUnits(subs(eqn,Y,YSol))
ans =
    struct with fields:
```

 Consistent: 1
 Compatible: 1
 Separate the expression from the units by using separateUnits.

```
YSol = separateUnits(YSol)
YSol =
```


Substitute Values

Use the values $E=10^{6} \mathrm{~Pa}, I=10^{-3} \mathrm{~m}^{4}$, and $\mathrm{k}=10^{6} \mathrm{~N} / \mathrm{m}^{2}$. Substitute these values into YSol and convert to floating point by using vpa with 16 digits of accuracy.

```
values = [1e6 le-3 1e5];
YSol = subs(YSol,[E I k],values);
YSol = vpa(YSol,16)
```

YSol =
$0.0000158113883008419 * \exp (-2.23606797749979 * a b s(x)) * \sin (2.23606797749979 * a b s(x)+0.78$

Plot Results

Plot the result by using fplot.

```
fplot(YSol)
xlabel('x')
ylabel('Deflection y(x)')
```


Analyze Results

The plot shows that the deflection of a beam due to a point force is highly localized. The deflection is greatest at the point of impact and then decreases quickly. The symbolic result enables you to analyze the properties of the result, which is not possible with numeric results.

Notice that YSol is a product of terms. The term with sin shows that the response is vibrating oscillatory behavior. The term with exp shows that the oscillatory behavior is quickly damped by the exponential decay as the distance from the point of impact increases.

Solve Differential Equations Using Laplace Transform

Solve differential equations by using Laplace transforms in Symbolic Math Toolbox with this workflow. For simple examples on the Laplace transform, see laplace and ilaplace.

Definition: Laplace Transform

The Laplace transform of a function $f(t)$ is

$$
F(s)=\int_{0}^{\infty} f(t) e^{-t s} d t
$$

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric form. This approach helps you understand the properties of your solution and use exact symbolic values. You substitute numbers in place of symbolic variables only when you require a numeric result or you cannot continue symbolically. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

Workflow: Solve RLC Circuit Using Laplace Transform

Declare Equations

You can use the Laplace transform to solve differential equations with initial conditions. For example, you can solve resistance-inductor-capacitor (RLC) circuits, such as this circuit.

- Resistances in ohm: R_{1}, R_{2}, R_{3}
- Currents in ampere: I_{1}, I_{2}, I_{3}
- Inductance in henry: L
- Capacitance in farad: C
- Electromotive force in volts: $E(t)$
- Charge in coulomb: $Q(t)$

Apply Kirchhoff's voltage and current laws to get the differential equations for the RLC circuit.

$$
\begin{aligned}
& \frac{d I_{1}}{d t}+\frac{R_{2}}{L} \frac{d Q}{d t}=\frac{R_{2}-R_{1}}{L} I_{1} . \\
& \frac{d Q}{d t}=\frac{1}{R_{3}+R_{2}}\left(E(t)-\frac{1}{C} Q(t)\right)+\frac{R_{2}}{R_{3}+R_{2}} I_{1} .
\end{aligned}
$$

Declare the variables. Because the physical quantities have positive values, set the corresponding assumptions on the variables. Let $E(t)$ be an alternating voltage of 1 V .

```
syms L C Il(t) Q(t) s
R = sym('R%d',[1 3]);
assume([t L C R] > 0)
E(t) = 1*sin(t); % Voltage = 1 V
```

Declare the differential equations.

```
dI1 = diff(I1,t);
dQ = diff(Q,t);
eqn1 = dI1 + (R(2)/L)*dQ == (R(2)-R(1))/L*I1
eqn2 = dQ == (1/(R(2)+R(3))*(E-Q/C)) + R(2)/(R(2)+R(3))*I1
eqn1(t) =
diff(I1(t), t) + (R2*diff(Q(t), t))/L == -(I1(t)*(R1 - R2))/L
eqn2(t) =
diff(Q(t), t) == (sin(t) - Q(t)/C)/(R2 + R3) + (R2*I1(t))/(R2 + R3)
```

Assume that the initial current and charge, I_{0} and Q_{0}, are both 0 . Declare these initial conditions.

```
cond1 = Il(0) == 0
cond2 = Q(0) == 0
cond1 =
I1(0) == 0
cond2 =
Q(0) == 0
```


Solve Equations

Compute the Laplace transform of eqn1 and eqn2.

```
eqn1LT = laplace(eqn1,t,s)
eqn2LT = laplace(eqn2,t,s)
eqn1LT =
s*laplace(I1(t), t, s) - I1(0) - (R2*(Q(0) - s*laplace(Q(t), t, s)))/L == ...
-((R1 - R2)*laplace(I1(t), t, s))/L
eqn2LT =
s*laplace(Q(t), t, s) - Q(0) == (R2*laplace(I1(t), t, s))/(R2 + R3) + ...
(C/(s^2 + 1) - laplace(Q(t), t, s))/(C*(R2 + R3))
```

The function solve solves only for symbolic variables. Therefore, to use solve, first substitute laplace($\mathrm{I}(\mathrm{t}), \mathrm{t}, \mathrm{s})$ and laplace $(\mathrm{Q}(\mathrm{t}), \mathrm{t}, \mathrm{s})$ with the variables I1_LT and Q_LT.

```
syms I1_LT Q LT
eqn1LT = subs(eqn1LT,[laplace(I1,t,s) laplace(Q,t,s)],[I1_LT Q_LT])
eqn1LT =
I1_LT*s - I1(0) - (R2*(Q(0) - Q_LT*s))/L == - (I1_LT*(R1 - R2))/L
eqn2LT = subs(eqn2LT,[laplace(I1,t,s) laplace(Q,t,s)],[I1_LT Q_LT])
eqn2LT =
Q_LT*S - Q(0) == (I1_LT*R2)/(R2 + R3) - (Q_LT - C/(S^2 + 1))/(C*(R2 + R3))
```

Solve the equations for I1_LT and Q_LT.

```
eqns = [eqn1LT eqn2LT];
vars = [I1_LT Q_LT];
[I1_LT, Q_LT] = solve(eqns,vars)
```

I1 LT =
$\left(R 2 * Q(0)+L * I 1(0)-C * R 2 * s+L * s^{\wedge} 2 * I 1(0)+R 2 * s^{\wedge} 2 * Q(0)+C * L * R 2 * S^{\wedge} 3 * I 1(0)+\ldots\right.$
C*L*R3*s^3*I1(0) + C*L*R2*s*I1(0) + C*L*R3*s*I1(0))/((s^2 + 1)*(R1 - R2 + L*s + ...
C*L*R2*s^2 + C*L*R3*S^2 + C*R1*R2*s + C*R1*R3*s - C*R2*R3*S))
Q_LT =
$(\bar{C} *(R 1-R 2+L * S+L * R 2 * I 1(0)+R 1 * R 2 * Q(0)+R 1 * R 3 * Q(0)-R 2 * R 3 * Q(0)+$
$L^{*} R 2 * s^{\wedge} 2 * I 1(0)+L * R 2 * s^{\wedge} 3 * Q(0)+L * R 3 * s^{\wedge} 3 * Q(0)+R 1 * R 2 * s^{\wedge} 2 * Q(0)+R 1 * R 3 * s^{\wedge} 2 * Q(0)-\ldots$
$R 2 * R 3 * s^{\wedge} 2 * Q(0)+L * R 2 * s * Q(0)+\ldots$
$\left.\left.L^{*} \mathrm{R}^{*} \mathrm{~s}^{*} \mathrm{Q}(0)\right)\right) /\left(\left(\mathrm{s}^{\wedge} 2+1\right) *\left(\mathrm{R} 1-\mathrm{R} 2+\mathrm{L}^{*} \mathrm{~s}+\mathrm{C} * \mathrm{~L}^{*} \mathrm{R} 2 * \mathrm{~s}^{\wedge} 2+\mathrm{C} * \mathrm{~L}^{*} \mathrm{R} 3 * \mathrm{~s}^{\wedge} 2+\ldots\right.\right.$
C*R1*R2*s + C*R1*R3*s - C*R2*R3*s))

Calculate I_{1} and Q by computing the inverse Laplace transform of I1_LT and Q_LT. Simplify the result. Suppress the output because it is long.

```
Ilsol = ilaplace(I1_LT,s,t);
Qsol = ilaplace(Q L\overline{T},\textrm{s},\textrm{t});
I1sol = simplify(\overline{I1sol);}
Qsol = simplify(Qsol);
```


Substitute Values

Before plotting the result, substitute symbolic variables by the numeric values of the circuit elements. Let $R 1=4 \Omega, R 2=2 \Omega, R 3=3 \Omega, C=1 / 4 \mathrm{~F}, L=1.6 \mathrm{H}, I_{1}(0)=15 \mathrm{~A}$, and $Q(0)=2 \mathrm{C}$.

```
vars = [R L C Il(0) Q(0)];
values = [4 2 3 1.6 1/4 15 2];
```

```
Ilsol = subs(Ilsol,vars,values)
Qsol = subs(Qsol,vars,values)
I1sol =
15*exp(-(51*t)/40)*(\operatorname{cosh}((1001^(1/2)*t)/40)-(293*1001^(1/2)*\operatorname{sinh}((1001^(1/2)*t)/40)))
Qsol =
(4* sin(t))/51 - (5* cos(t))/51 + (107*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) + (2039*.
```


Plot Results

Plot the current I1sol and charge Qsol. Show both the transient and steady state behavior by using two different time intervals: $0 \leq t \leq 10$ and $5 \leq t \leq 25$. Before R2016a, use ezplot instead of fplot.

```
subplot(2,2,1)
```

fplot(I1sol,[0 10])
title('Current')
ylabel('I1(t)')
xlabel('t')
subplot $(2,2,2)$
fplot(Qsol,[0 10])
title('Charge')
ylabel('Q(t)')
xlabel('t')
subplot $(2,2,3)$
fplot(I1sol,[5 25])
title('Current')
ylabel('I1(t)')
xlabel('t')
text(7,0.25,'Transient')
text(16,0.125,'Steady State')
subplot $(2,2,4)$
fplot(Qsol,[5 25])
title('Charge')
ylabel('Q(t)')
xlabel('t')
text(7,0.25,'Transient')
text(15,0.16,'Steady State')

Analyze Results

Initially, the current and charge decrease exponentially. However, over the long term, they are oscillatory. These behaviors are called "transient" and "steady state", respectively. With the symbolic result, you can analyze the result's properties, which is not possible with numeric results.

Visually inspect I1sol and Qsol. They are a sum of terms. Find the terms by using children. Then, find the contributions of the terms by plotting them over [0 15]. The plots show the transient and steady state terms.

```
Ilterms = children(Ilsol);
Qterms = children(Qsol);
```

```
subplot(1,2,1)
fplot(I1terms,[0 15])
ylim([-2 2])
title('Current terms')
subplot(1,2,2)
fplot(Qterms,[0 15])
ylim([-2 2])
title('Charge terms')
```


The plots show that I1sol has a transient and steady state term, while Qsol has a transient and two steady state terms. From visual inspection, notice I1sol and Qsol have a term containing the exp function. Assume that this term causes the transient
exponential decay. Separate the transient and steady state terms in Ilsol and Qsol by checking terms for exp using has.

```
Iltransient = I1terms(has(I1terms,'exp'))
I1steadystate = I1terms(~has(I1terms,'exp'))
Iltransient =
15*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) - (293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879)
I1steadystate =
-(5*sin(t))/51
```

Similarly, separate Qsol into transient and steady state terms. This result demonstrates how symbolic calculations help you analyze your problem.

```
Qtransient = Qterms(has(Qterms,'exp'))
Qsteadystate = Qterms(~has(Qterms,'exp'))
```


Qtransient =

$\left(107 * \exp \left(-\left(51^{*} \mathrm{t}\right) / 40\right) *\left(\cosh \left(\left(1001^{\wedge}(1 / 2) * \mathrm{t}\right) / 40\right)+\left(2039 * 1001^{\wedge}(1 / 2) * \sinh \left(\left(1001^{\wedge}(1 / 2) * \mathrm{t}\right) / 40\right)\right) / 15301\right)\right) / 51$ Qsteadystate =
[- (5* $\cos (\mathrm{t})) / 51,(4 * \sin (\mathrm{t})) / 51]$

Solve Difference Equations Using Z-Transform

Solve difference equations by using Z-transforms in Symbolic Math Toolbox with this workflow. For simple examples on the Z-transform, see ztrans and iztrans.

Definition: Z-transform

The Z-transform of a function $f(n)$ is defined as

$$
F(z)=\sum_{n=0}^{\infty} \frac{f(n)}{z^{n}}
$$

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric form. This approach helps you understand the properties of your solution and use exact symbolic values. You substitute numbers in place of symbolic variables only when you require a numeric result or you cannot continue symbolically. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

Workflow: Solve "Rabbit Growth" Problem Using Z-Transform

Declare Equations

You can use the Z-transform to solve difference equations, such as the well-known "Rabbit Growth" problem. If a pair of rabbits matures in one year, and then produces another pair of rabbits every year, the rabbit population $p(n)$ at year n is described by this difference equation.
$p(n+2)=p(n+1)+p(n)$.

Declare the equation as an expression assuming the right side is 0 . Because n represents years, assume that n is a positive integer. This assumption simplifies the results.

```
syms p(n) z
assume(n>=0 & in(n,'integer'))
f=p(n+2) - p(n+1) - p(n)
f =
p(n + 2) - p(n + 1) - p(n)
```


Solve Equations

Find the Z-transform of the equation.

```
fZT = ztrans(f,n,z)
fZT =
z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z) - z^2*p(0) - ztrans(p(r
```

The function solve solves only for symbolic variables. Therefore, to use solve, first substitute $z \operatorname{trans}(p(n), n, z)$ with the variables $p Z T$.

```
syms pZT
fZT = subs(fZT,ztrans(p(n),n,z),pZT)
fZT =
z*p(0) - pZT - z*p(1) - pZT*z - z^2*p(0) + pZT**^2
```

Solve for pZT .

```
pZT = solve(fZT,pZT)
pZT =
-(z*p(1) - z*p(0) + z^2*p(0))/(- z^2 + z + 1)
```

Calculate $p(n)$ by computing the inverse Z-transform of pZT. Simplify the result.

```
pSol = iztrans(pZT,z,n);
pSol = simplify(pSol)
pSol =
2*(-1)^(n/2)*\operatorname{cos(n*(pi/2 + asinh(1/2)*li))*p(1) + ...}
    (2^(2 - n)*5^(1/2)*(5^(1/2) + 1)^(n - 1)*(p(0)/2 - p(1)))/...
    5 - (2*2^(1 - n)*5^(1/2)*(1 - 5^(1/2))^(n - 1)*(p(0)/2 - p(1)))/5
```


Substitute Values

To plot the result, first substitute the values of the initial conditions. Let p(0) and p(1) be 1 and 2 , respectively.

```
pSol = subs(pSol,[p(0) p(1)],[1 2])
pSol =
4*(-1)^(n/2)*\operatorname{cos}(n*(pi/2 + asinh(1/2)*1i)) - (3*2^(2 - n)*5^(1/2)*(5^(1/2) + 1)^(n - 1
```


Plot Results

Show the growth in rabbit population over time by plotting pSol.

```
nValues = 1:10;
pSolValues = subs(pSol,n,nValues);
pSolValues = double(pSolValues);
pSolValues = real(pSolValues);
stem(nValues,pSolValues)
title('Rabbit Population')
xlabel('Years (n)')
ylabel('Population p(n)')
grid on
```


Analyze Results

The plot shows that the solution appears to increase exponentially. However, because the solution pSol contains many terms, finding the terms that produce this behavior requires analysis.

Because all the functions in pSol can be expressed in terms of exp, rewrite pSol to exp. Simplify the result by using simplify with 80 additional simplification steps. Now, you can analyze pSol.

```
pSol = rewrite(pSol,'exp');
pSol = simplify(pSol,'Steps',80)
```

```
pSol =
(2*2^n)/(- 5^(1/2)-1)^n - (3*5^(1/2)*(1/2 - 5^(1/2)/2)^n)/10 + (3*5^(1/2)* (5^}(1/2)/
```

Visually inspect pSol . Notice that pSol is a sum of terms. Each term is a ratio that can increase or decrease as n increases. For each term, you can confirm this hypothesis in several ways:

- Check if the limit at $\mathrm{n}=$ Inf goes to 0 or Inf by using limit.
- Plot the term for increasing n and check behavior.
- Calculate the value at a large value of n.

For simplicity, use the third approach. Calculate the terms at $\mathrm{n}=100$, and then verify the approach. First, find the individual terms by using children, substitute for n, and convert to double.

```
pSolTerms = children(pSol);
pSolTermsDbl = subs(pSolTerms,n,100);
pSolTermsDbl = double(pSolTermsDbl)
pSolTermsDbl =
    1.0e+20
        0.0000 -0.0000 5.3134 -0.0000 3.9604
```

The result shows that some terms are 0 while other terms have a large magnitude. Hypothesize that the large-magnitude terms produce the exponential behavior. Approximate pSol with these terms.

```
idx = abs(pSolTermsDbl)>1; % use arbitrary cutoff
pApprox = pSolTerms(idx);
pApprox = sum(pApprox)
pApprox =
(3*5^(1/2)*(5^(1/2)/2 + 1/2)^n)/10 + (5^(1/2)/2 + 1/2)^n/2
```

Verify the hypothesis by plotting the approximation error between pSol and pApprox . As expected, the error goes to 0 as n increases. This result demonstrates how symbolic calculations help you analyze your problem.

```
Perror = pSol - pApprox;
nValues = 1:30;
Perror = subs(Perror,n,nValues);
stem(nValues,Perror)
xlabel('Years (n)')
```

```
ylabel('Error (pSol - pApprox)')
title('Error in Approximation')
```

Error in Approximation

References

[1] Andrews, L.C., Shivamoggi, B.K., Integral Transforms for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, 1986
[2] Crandall, R.E., Projects in Scientific Computation, Springer-Verlag Publishers, New York, 1994
[3] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, 1986

Create Plots

In this section...

"Plot with Symbolic Plotting Functions" on page 2-245
"Plot Functions Numerically" on page 2-247
"Plot Multiple Symbolic Functions in One Graph" on page 2-248
"Plot Multiple Symbolic Functions in One Figure" on page 2-250
"Combine Symbolic Function Plots and Numeric Data Plots" on page 2-252
"Combine Numeric and Symbolic Plots in 3-D" on page 2-254

Plot with Symbolic Plotting Functions

MATLAB provides many techniques for plotting numerical data. Graphical capabilities of MATLAB include plotting tools, standard plotting functions, graphic manipulation and data exploration tools, and tools for printing and exporting graphics to standard formats. Symbolic Math Toolbox expands these graphical capabilities and lets you plot symbolic functions using:

- fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian coordinates.
- fplot3 to create 3-D parametric plots.
- ezpolar to create plots in polar coordinates.
- fsurf to create surface plots.
- fcontour to create contour plots.
- fmesh to create mesh plots.

Plot the symbolic expression $\sin (6 x)$ by using fplot. By default, fplot uses the range $-5<x<5$. Prior to R2016a, use ezplot instead of fplot.

Plot a symbolic expression or function in polar coordinates ${ }^{r}$ (radius) and ${ }^{\theta}$ (polar angle) by using ezpolar. By default, ezpolar plots a symbolic expression or function over the interval $0<\theta<2 \pi$.

Plot the symbolic expression $\sin (6 t)$ in polar coordinates.
syms t
ezpolar(sin(6*t))

Plot Functions Numerically

As an alternative to plotting expressions symbolically, you can substitute symbolic variables with numeric values by using subs. Then, you can use these numeric values with plotting functions in MATLAB ${ }^{\mathrm{TM}}$.

In the following expressions u and v, substitute the symbolic variables x and y with the numeric values defined by meshgrid.

```
syms x y
u = sin( (x^2 + y^2);
v = cos(x*y);
[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
```

```
U = subs(u, [x y], {X,Y});
V = subs(v, [X y], {X,Y});
```

Now, you can plot U and V by using standard MATLAB plotting functions.
Create a plot of the vector field defined by the functions $U(X, Y)$ and $V(X, Y)$ by using the MATLAB quiver function.

```
quiver(X, Y, U, V)
```


Plot Multiple Symbolic Functions in One Graph

Plot several functions on one graph by adding the functions sequentially. After plotting the first function, add successive functions by using the hold on command. The hold
on command keeps the existing plots. Without the hold on command, each new plot replaces any existing plot. After the hold on command, each new plot appears on top of existing plots. Switch back to the default behavior of replacing plots by using the hold off command.

Plot $f=e^{x} \sin (20 x)$ using fplot. Show the bounds of f by superimposing plots of e^{x} and e^{-x} as dashed red lines. Set the title by using the DisplayName property of the object returned by fplot.
syms x y
$\mathrm{f}=\exp (\mathrm{x}) * \sin (20 * x)$
$f=$
$\sin (20 x) \mathrm{e}^{x}$
obj = fplot(f,[0 3]);
hold on
fplot(exp(x), [0 3], '--r')
fplot(-exp(x), [0 3], '--r')
title(obj.DisplayName)
hold off

Plot Multiple Symbolic Functions in One Figure

Display several functions side-by-side in one figure by dividing the figure window into several subplots using subplot. The command subplot (m, n, p) divides the figure into a m by n matrix of subplots and selects the subplot p. Display multiple plots in separate subplots by selecting the subplot and using plotting commands. Plotting into multiple subplots is useful for side-by-side comparisons of plots.

Compare plots of $\sin \left(\left(x^{2}+y^{2}\right) / a\right)$ for $a=10,20,50,100$ by using subplot to create side-by-side subplots.

```
syms x y a
f = sin((x^2 + y^2)/a);
subplot(2, 2, 1)
fsurf(subs(f, a, 10))
title('a = 10')
subplot(2, 2, 2)
fsurf(subs(f, a, 20))
title('a = 20')
subplot(2, 2, 3)
fsurf(subs(f, a, 50))
title('a = 50')
subplot(2, 2, 4)
fsurf(subs(f, a, 100))
title('a = 100')
```


Combine Symbolic Function Plots and Numeric Data Plots

Plot numeric and symbolic data on the same graph by using MATLAB and Symbolic Math Toolbox functions together.

For numeric values of x between $[-5,5]$, return a noisy sine curve by finding $y=\sin (x)$ and adding random values to y. View the noisy sine curve by using scatter to plot the points $(x 1, y 1),(x 2, y 2), \cdots$.

```
x = linspace(-5,5);
y = sin(x) + (-1).^randi(10, 1, 100).*rand(1, 100)./2;
scatter(x, y)
```


Show the underlying structure in the points by superimposing a plot of the sine function. First, use hold on to retain the scatter plot. Then, use fplot to plot the sine function.

```
hold on
syms t
fplot(sin(t))
hold off
```


Combine Numeric and Symbolic Plots in 3-D

Combine symbolic and numeric plots in 3-D by using MATLAB and Symbolic Math Toolbox plotting functions. Symbolic Math Toolbox provides these 3-D plotting functions:

- fplot3 creates 3-D parameterized line plots.
- fsurf creates 3-D surface plots.
- fmesh creates 3-D mesh plots.

Create a spiral plot by using fplot3 to plot the parametric line

$$
\begin{gathered}
x=(1-t) \sin (100 t) \\
y=(1-t) \cos (100 t) \\
z=\sqrt{1-x^{2}-y^{2}} .
\end{gathered}
$$

syms t
$\mathrm{x}=(1-\mathrm{t}) * \sin (100 * \mathrm{t})$;
$\mathrm{y}=(1-\mathrm{t}) * \cos (100 * \mathrm{t})$;
z = sqrt(1 - x^2 - y^2);
fplot3(x, y, z, [0 1])
title('Symbolic 3-D Parametric Line')

Symbolic 3-D Parametric Line

Superimpose a plot of a sphere with radius 1 and center at ($0,0,0$). Find points on the sphere numerically by using sphere. Plot the sphere by using mesh. The resulting plot shows the symbolic parametric line wrapped around the top hemisphere.

```
hold on
[X,Y,Z] = sphere;
mesh(X, Y, Z)
colormap(gray)
title('Symbolic Parametric Plot and a Sphere')
hold off
```

Symbolic Parametric Plot and a Sphere

Generate C or Fortran Code from Symbolic Expressions

You can generate C or Fortran code fragments from a symbolic expression, or generate files containing code fragments, using the ccode and fortran functions. These code fragments calculate numerical values as if substituting numbers for variables in the symbolic expression.

For example:

```
syms x y
```

$z=30^{*} x^{\wedge} 4 /\left(x^{*} y^{\wedge} 2+10\right)-x^{\wedge} 3^{*}\left(y^{\wedge} 2+1\right)^{\wedge} 2$;
fortran(z)

```
ans =
```

 \(t 0=\left(x^{* *} 4 * 3.0 \mathrm{D} 1\right) /\left(x^{*} y^{* *} 2+1.0 \mathrm{D} 1\right)-x^{* *} 3^{*}\left(y^{* *} 2+1.0 \mathrm{D} 0\right){ }^{* *} 2^{\prime}\)
 ccode(z)
ans $=$
t0 $=\left(\left(x^{*} x^{*} x^{*} x\right) * 3.0 E 1\right) /\left(x^{*}\left(y^{*} y\right)+1.0 E 1\right)-\left(x^{*} x^{*} x\right) * \operatorname{pow}\left(y^{*} y+1.0,2.0\right) ; '$

To generate a file containing code, either enter ccode(g,'file','filename') or fortran(g,'file','filename'). For the example above,
fortran(z, 'file', 'fortrantest')
generates a file named fort rantest in the current folder. fortrantest consists of the following:

```
t12 = x**2
t13 = y**2
t14 = t13+1
t0 = (t12**2*30)/(t13*x+10)-t12*t14**2*x
```

Similarly, the command

```
ccode(z,'file','ccodetest')
```

generates a file named ccodetest that consists of the lines

```
t16 = x*x;
t17 = y*y;
```

```
t18 = t17+1.0;
t0 = ((t16*t16)*3.0E1)/(t17*x+1.0E1)-t16*(t18*t18)*x;
```

ccode and fortran generate many intermediate variables. This is called optimized code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32. Intermediate variables can make the resulting code more efficient by reusing intermediate expressions (such as t12 in fortrantest, and t16 in ccodetest). They can also make the code easier to read by keeping expressions short.

Generate MATLAB Functions from Symbolic Expressions

> You can use matlabFunction to generate a MATLAB function handle that calculates numerical values as if you were substituting numbers for variables in a symbolic expression. Also, matlabFunction can create a file that accepts numeric arguments and evaluates the symbolic expression applied to the arguments. The generated file is available for use in any MATLAB calculation, whether or not the computer running the file has a license for Symbolic Math Toolbox functions.

If you work in the MuPAD® Notebook, see "Create MATLAB Functions from MuPAD Expressions" on page 3-72.

Generating a Function Handle

matlabFunction can generate a function handle from any symbolic expression. For example:

```
syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))
ht =
    function handle with value:
        @(x,y)tanh(sqrt(x.^2+y.^2))
```

You can use this function handle to calculate numerically:

```
ht(.5,.5)
```

ans $=$
0.6089

You can pass the usual MATLAB double-precision numbers or matrices to the function handle. For example:

```
cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)
ans =
    0.6089 0.9954
```

Tip Some symbolic expressions cannot be represented using MATLAB functions. matlabFunction cannot convert these symbolic expressions, but issues a warning. Since these expressions might result in undefined function calls, always check conversion results and verify the results by executing the resulting function.

Control the Order of Variables

mat labFunction generates input variables in alphabetical order from a symbolic expression. That is why the function handle in "Generating a Function Handle" on page 2259 has x before y :

```
ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))
```

You can specify the order of input variables in the function handle using the vars option. You specify the order by passing a cell array of character vectors or symbolic arrays, or a vector of symbolic variables. For example:

```
syms x y z
r = sqrt( (x^2 + 3* y^2 + 5* (z^2);
ht1 = matlabFunction(tanh(r), 'vars', [y x z])
ht1 =
    function_handle with value:
        @(y,x,\overline{z})\operatorname{tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))}
ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})
ht2 =
    function_handle with value:
        @(x,y,\overline{z})\operatorname{tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))}
ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})
ht3 =
    function_handle with value:
        @(x,in\overline{2})\operatorname{tanh}(\operatorname{sqrt(x.^2+in2(:,1).^2.*3.0+in2(:, 2).^2.*5.0))}
```


Generate a File

You can generate a file from a symbolic expression, in addition to a function handle. Specify the file name using the file option. Pass a character vector containing the file name or the path to the file. If you do not specify the path to the file, matlabFunction creates this file in the current folder.

This example generates a file that calculates the value of the symbolic matrix F for double-precision inputs t, x, and y :

```
syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2 2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m')
```

The file testMatrix.m contains the following code:

```
function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)
t2 = x.^2;
t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;
t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];
```

matlabFunction generates many intermediate variables. This is called optimized code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32. Intermediate variables can make the resulting code more efficient by reusing intermediate expressions (such as t4, t6, t8, t9, and t 10 in the calculation of F). Using intermediate variables can make the code easier to read by keeping expressions short.

If you don't want the default alphabetical order of input variables, use the vars option to control the order. Continuing the example,

```
matlabFunction(F,'file','testMatrix.m','vars',[x y t])
```

generates a file equivalent to the previous one, with a different order of inputs:

```
function F = testMatrix(x,y,t)
```


Name Output Variables

By default, the names of the output variables coincide with the names you use calling matlabFunction. For example, if you call matlabFunction with the variable F

```
syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t`^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m','vars',[x y t])
```

the generated name of an output variable is also F :

```
function F = testMatrix(x,y,t)
```

If you call matlabFunction using an expression instead of individual variables

```
syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(w + z + F,'file','testMatrix.m',...
'vars',[x y t])
```

the default names of output variables consist of the word out followed by the number, for example:

```
function out1 = testMatrix(x,y,t)
```

To customize the names of output variables, use the output option:

```
syms x y z
r= x^2 + y^2 + z^^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'})
```

The generated function returns name1 and name2 as results:

```
function [name1,name2] = new function(x,y,z)
```


Generate MATLAB Function Blocks from Symbolic Expressions

Using matlabFunctionBlock, you can generate a MATLAB Function block. The generated block is available for use in Simulink models, whether or not the computer running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD Notebook, see "Create MATLAB Function Blocks from MuPAD Expressions" on page 3-76.

Generate and Edit a Block

Suppose, you want to create a model involving the symbolic expression $r=\operatorname{sqrt}\left(x^{\wedge} 2+\right.$ $y^{\wedge} 2$). Before you can convert a symbolic expression to a MATLAB Function block, create an empty model or open an existing one:

```
new_system('my_system')
open__system('my_system')
```

Create a symbolic expression and pass it to the matlabFunctionBlock command. Also specify the block name:

```
syms x y
r = sqrt(x^2 + y^2);
matlabFunctionBlock('my_system/my_block', r)
```

If you use the name of an existing block, the matlabFunctionBlock command replaces the definition of an existing block with the converted symbolic expression.

You can open and edit the generated block. To open a block, double-click it.
function $r=m y _b l o c k(x, y)$
\%\#codegen
$r=\operatorname{sqrt}(x . \wedge 2+y . \wedge 2) ;$

Tip Some symbolic expressions cannot be represented using MATLAB functions. matlabFunctionBlock cannot convert these symbolic expressions, but issues a warning. Since these expressions might result in undefined function calls, always check conversion results and verify results by running the simulation containing the resulting block.

Control the Order of Input Ports

matlabFunctionBlock generates input variables and the corresponding input ports in alphabetical order from a symbolic expression. To change the order of input variables, use the vars option:

```
syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,'vars', [y mu x])
```


Name the Output Ports

By default, matlabFunctionBlock generates the names of the output ports as the word out followed by the output port number, for example, out3. The output option allows you to use the custom names of the output ports:

```
syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,'outputs',{'name1'})
```


Generate Simscape Equations from Symbolic Expressions

Simscape software extends the Simulink product line with tools for modeling and simulating multidomain physical systems, such as those with mechanical, hydraulic, pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which represent mathematical operations or operate on signals, Simscape blocks represent physical components or relationships directly. With Simscape blocks, you build a model of a system just as you would assemble a physical system. For more information about Simscape software see "Simscape".

You can extend the Simscape modeling environment by creating custom components. When you define a component, use the equation section of the component file to establish the mathematical relationships among a component's variables, parameters, inputs, outputs, time, and the time derivatives of each of these entities. The Symbolic Math Toolbox and Simscape software let you perform symbolic computations and use the results of these computations in the equation section. The simscapeEquation function translates the results of symbolic computations to Simscape language equations.

If you work in the MuPAD Notebook, see "Create Simscape Equations from MuPAD Expressions" on page 3-78.

Convert Algebraic and Differential Equations

Suppose, you want to generate a Simscape equation from the solution of the following ordinary differential equation. As a first step, use the dsolve function to solve the equation:

```
syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)
```

The solution is:

```
s =
cos(a*t)
```

Then, use the simscapeEquation function to rewrite the solution in the Simscape language:

```
simscapeEquation(s)
simscapeEquation generates the following code:
ans =
    's === cos(a*time);'
```

The variable time replaces all instances of the variable t except for derivatives with respect to t. To use the generated equation, copy the equation and paste it to the equation section of the Simscape component file. Do not copy the automatically generated variable ans and the equal sign that follows it.
simscapeEquation converts any derivative with respect to the variable t to the Simscape notation, X . der, where X is the time-dependent variable. For example, convert the following differential equation to a Simscape equation. Also, here you explicitly specify the left and the right sides of the equation by using the syntax simscapeEquation(LHS, RHS):

```
syms a x(t)
simscapeEquation(diff(x), -a^2*x)
ans =
    x.der == -a^2*x;'
```

simscapeEquation also translates piecewise expressions to the Simscape language. For example, the result of the following Fourier transform is a piecewise function:

```
syms v u x
assume(x, 'real')
f = exp(-x^2*abs(v))*sin(v)/v;
s = fourier(f, v, u)
S =
piecewise(x ~= 0, atan((u + 1)/x^2) - atan((u - 1)/x^2))
```

From this symbolic piecewise equation, simscapeEquation generates valid code for the equation section of a Simscape component file:

```
simscapeEquation(s)
ans =
```

```
if (x ~= 0.0)
```

if (x ~= 0.0)
s == - $\operatorname{atan}\left(1.0 / x^{\wedge} 2^{*}(u-1.0)\right)+\operatorname{atan}\left(1.0 / x^{\wedge} 2^{*}(u+1.0)\right) ;$
s == - $\operatorname{atan}\left(1.0 / x^{\wedge} 2^{*}(u-1.0)\right)+\operatorname{atan}\left(1.0 / x^{\wedge} 2^{*}(u+1.0)\right) ;$
else

```
        else
```

```
    s == NaN;
end '
```

Clear the assumption that x is real:
syms x clear

Limitations

The equation section of a Simscape component file supports a limited number of functions. For details and the list of supported functions, see Simscape equations. If a symbolic expression contains functions that are not supported by Simscape, then simscapeEquation cannot represent the symbolic expression as a Simscape equation, but instead issues a warning. Always verify the conversion result. The following types of expressions are prone to invalid conversion:

- Expressions with infinities
- Expressions returned by evalin and feval

MuPAD in Symbolic Math Toolbox

- "MuPAD Engines and MATLAB Workspace" on page 3-2
- "Create MuPAD Notebooks" on page 3-3
- "Open MuPAD Notebooks" on page 3-6
- "Save MuPAD Notebooks" on page 3-12
- "Evaluate MuPAD Notebooks from MATLAB" on page 3-13
- "Close MuPAD Notebooks from MATLAB" on page 3-17
- "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19
- "Troubleshoot MuPAD to MATLAB Translation Errors" on page 3-25
- "Troubleshoot MuPAD to MATLAB Translation Warnings" on page 3-35
- "Edit MuPAD Code in MATLAB Editor" on page 3-44
- "Notebook Files and Program Files" on page 3-47
- "Source Code of the MuPAD Library Functions" on page 3-49
- "Differences Between MATLAB and MuPAD Syntax" on page 3-50
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
- "Reserved Variable and Function Names" on page 3-57
- "Call Built-In MuPAD Functions from MATLAB" on page 3-59
- "Use Your Own MuPAD Procedures" on page 3-63
- "Clear Assumptions and Reset the Symbolic Engine" on page 3-68
- "Create MATLAB Functions from MuPAD Expressions" on page 3-72
- "Create MATLAB Function Blocks from MuPAD Expressions" on page 3-76
- "Create Simscape Equations from MuPAD Expressions" on page 3-78

MuPAD Engines and MATLAB Workspace

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

A MuPAD engine is a separate process that runs on your computer in addition to a MATLAB process. A MuPAD engine starts when you first call a function that needs a symbolic engine, such as syms. Symbolic Math Toolbox functions that use the symbolic engine use standard MATLAB syntax, such as $y=i n t\left(x^{\wedge} 2\right)$.

Conceptually, each MuPAD notebook has its own symbolic engine, with an associated workspace. You can have any number of MuPAD notebooks open simultaneously.

One engine exists for use by Symbolic Math Toolbox.

The engine workspace associated with the MATLAB workspace is generally empty, except for assumptions you make about variables. For details, see "Clear Assumptions and Reset the Symbolic Engine" on page 3-68.

Create MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Before creating a MuPAD notebook, it is best to decide which interface you intend to use primarily for your task. The two approaches are:

- Perform your computations in the MATLAB Live Editor while using MuPAD notebooks as an auxiliary tool. This approach is recommended and implies that you create a MuPAD notebook, and then execute it, transfer data and results, or close it from the MATLAB Live Editor.
- Perform your computations and obtain the results in the MuPAD Notebook. This approach is not recommended and implies that you use the MATLAB Live Editor only to access MuPAD, but do not intend to copy data and results between MATLAB and MuPAD.

If you created a MuPAD notebook without creating a handle, and then realized that you need to transfer data and results between MATLAB and MuPAD, use allMuPADNotebooks to create a handle to this notebook:

```
mupad
```

nb = allMuPADNotebooks
nb =
Notebook1
This approach does not require saving the notebook. Alternatively, you can save the notebook and then open it again, creating a handle.

If You Need Communication Between Interfaces

If you perform computations in both interfaces, use handles to notebooks. The toolbox uses this handle for communication between the MATLAB workspace and the MuPAD notebook.

To create a blank MuPAD notebook from the MATLAB Command Window, type nb $=$ mupad

The variable nb is a handle to the notebook. You can use any variable name instead of nb .
To create several notebooks, use this syntax repeatedly, assigning a notebook handle to different variables. For example, use the variables nb1, nb2, and so on.

If You Use MATLAB to Access MuPAD

Use the mupad Command

To create a new blank notebook, type mupad in the MATLAB Command Window.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwel come in the MATLAB Command Window.

Create New Notebooks from MuPAD

If you already opened a notebook, you can create new notebooks and program files without switching to the MATLAB Live Editor:

- To create a new notebook, select File > New Notebook from the main menu or use the toolbar.
- To open a new Editor window, where you can create a program file, select File > New Editor from the main menu or use the toolbar.

Open MuPAD Notebooks

> Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.
> MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Before opening a MuPAD notebook, it is best to decide which interface you intend to use primarily for your task. The two approaches are:

- Perform your computations in the MATLAB Live Editor using MuPAD notebooks as an auxiliary tool. This approach is recommended and implies that you open a MuPAD notebook, and then execute it, transfer data and results, or close it from the MATLAB Live Editor. If you perform computations in both interfaces, use handles to notebooks. The toolbox uses these handles for communication between the MATLAB workspace and the MuPAD notebook.
- Perform your computations and obtain the results in MuPAD. This approach is not recommended. It implies that you use the MATLAB Live Editor only to access the MuPAD Notebook app, but do not intend to copy data and results between MATLAB and MuPAD. If you use the MATLAB Live Editor only to open a notebook, and then perform all your computations in that notebook, you can skip using a handle.

Tip MuPAD notebook files open in an unevaluated state. In other words, the notebook is not synchronized with its engine when it opens. To synchronize a notebook with its engine, select Notebook > Evaluate All or use evaluateMuPADNotebook. For details, see "Evaluate MuPAD Notebooks from MATLAB" on page 3-13.

If you opened a MuPAD notebook without creating a handle, and then realized that you need to transfer data and results between MATLAB and MuPAD, use allMuPADNotebooks to create a handle to this notebook:

```
mupad
nb = allMuPADNotebooks
nb =
Notebook1
```

This approach does not require saving changes in the notebook. Alternatively, you can save the notebook and open it again, this time creating a handle.

If You Need Communication Between Interfaces

The following commands are also useful if you lose the handle to a notebook, in which case, you can save the notebook file and then reopen it with a new handle.

Use the mupad or openmn Command

Open an existing MuPAD notebook file and create a handle to it by using mupad or openmn in the MATLAB Command Window:

```
nb = mupad('file_name')
nb1 = openmn('file_name')
```

Here, file_name must be a full path, such as $\mathrm{H}: \backslash$ Documents \backslash Notes $\backslash m y$ Notebook.mn, unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at that location inside a notebook, and refer to it when opening a notebook. For information about creating link targets, see "Work with Links". To refer to a link target when opening a notebook, enter:

```
nb = mupad('file_name#linktarget_name')
nb = openmn('file_name#linktarget_name')
```


Use the open Command

Open an existing MuPAD notebook file and create a handle to it by using the open function in the MATLAB Command Window:

```
nb1 = open('file name')
```

Here, file_name must be a full path, such as $\mathrm{H}: \backslash$ Documents \backslash Notes $\backslash m y$ Notebook.mn, unless the notebook is in the current folder.

If You Use MATLAB to Access MuPAD

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file (.xvc or .xvz) by double-clicking the file name. The system opens the file in the appropriate interface.

Use the mupad or openmn Command

Open an existing MuPAD notebook file by using the mupad or openmn function in the MATLAB Command Window:

```
mupad('file_name')
openmn('file_name')
```

Here, file_name must be a full path, such as $\mathrm{H}: \backslash$ Documents \backslash Notes $\backslash m y$ Notebook.mn, unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at that location inside a notebook, and refer to it when opening a notebook. For information about creating link targets, see "Work with Links". To refer to a link target when opening a notebook, enter:

```
mupad('file_name#linktarget_name')
openmn('file_name#linktarget_name')
```


Use the open Command

Open an existing MuPAD notebook file by using open in the MATLAB Command Window:

```
open('file_name')
```

Here, file_name must be a full path, such as $\mathrm{H}: \backslash$ Documents \backslash Notes $\backslash m y$ Notebook.mn, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwel come in the MATLAB Command Window.

Open Notebooks in MuPAD

If you already opened a notebook, you can start new notebooks and open existing ones without switching to the MATLAB Live Editor. To open an existing notebook, select File > Open from the main menu or use the toolbar. Also, you can open the list of notebooks you recently worked with.

Open MuPAD Program Files and Graphics

Besides notebooks, MuPAD lets you create and use program files (.mu) and graphic files (. xvc or . xvz). Also, you can use the MuPAD Debugger to diagnose problems in your MuPAD code.

Do not use a handle when opening program files and graphic files because there is no communication between these files and the MATLAB Live Editor.

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file by double-clicking the file name. The system opens the file in the appropriate interface.

Use the openmn Command

Symbolic Math Toolbox provides these functions for opening MuPAD files in the interfaces with which these files are associated:

- openmu opens a program file with the extension .mu in the MATLAB Editor.
- openxvc opens an XVC graphic file in the MuPAD Graphics window.
- openxvz opens an XVZ graphic file in the MuPAD Graphics window.

For example, open an existing MuPAD program file by using the openmu function in the MATLAB Command Window:

```
openmu('H:\Documents\Notes\myProcedure.mu')
```

You must specify a full path unless the file is in the current folder.

Use the open Command

Open an existing MuPAD file by using open in the MATLAB Command Window:

```
open('file_name')
```

Here, file_name must be a full path, such as $\mathrm{H}: \backslash$ Documents \backslash Notes
\myProcedure.mu, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open an existing notebook or program file, and access documentation. To open this dialog box, type mupadwel come in the MATLAB Command Window.

Open Program Files and Graphics from MuPAD

If you already opened a notebook, you can create new notebooks and program files and open existing ones without switching to the MATLAB Command Window. To open an existing file, select File > Open from the main menu or use the toolbar.

You also can open the Debugger window from within a MuPAD notebook. For details, see "Open the Debugger".

Note You cannot access the MuPAD Debugger from the MATLAB Command Window.

Save MuPAD Notebooks

> | Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts |
| :--- |
| instead. |
| MATLAB live scripts support most MuPAD functionality, though there are some |
| differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live |
| Scripts" on page 3-19. |

To save changes in a notebook:
1 Switch to the notebook. (You cannot save changes in a MuPAD notebook from the MATLAB Command Window.)
2 Select File $>$ Save or File $>$ Save As from the main menu or use the toolbar.
If you want to save and close a notebook, you can use the close function in the MATLAB Command Window. If the notebook has been modified, then MuPAD brings up the dialog box asking if you want to save changes. Click Yes to save the modified notebook.

Note You can lose data when saving a MuPAD notebook. A notebook saves its inputs and outputs, but not the state of its engine. In particular, MuPAD does not save variables copied into a notebook using setVar(nb, ...).

Evaluate MuPAD Notebooks from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

When you open a saved MuPAD notebook file, the notebook displays the results (outputs), but the engine does not "remember" them. For example, suppose that you saved the notebook myFile1.mn in your current folder and then opened it:

```
nb = mupad('myFile1.mn');
```

Suppose that myFile1.mn performs these computations.

```
\([z:=\sin (x)\)
\(\sin (x)\)
\(y:=z /\left(1+z^{\wedge} 2\right)\)
\(\frac{\sin (x)}{\sin (x)^{2}+1}\)
[w := simplify \((\mathrm{y} /(1-\mathrm{y}))\)
\(\frac{\sin (x)}{\sin (x)^{2}-\sin (x)+1}\)
```

Open that file and try to use the value w without synchronizing the notebook with its engine. The variable w currently has no assigned value.

```
\(\left[\begin{array}{l}z:=\sin (x) \\ \sin (x)\end{array}\right.\)
\(\left[y:=z /\left(1+z^{\wedge} 2\right)\right.\)
    \(\frac{\sin (x)}{\sin (x)^{2}+1}\)
\(\left[\begin{array}{l}\mathrm{w}:=\operatorname{simplify}(\mathrm{y} /(1-\mathrm{y})) \\ \frac{\sin (x)}{\sin (x)^{2}-\sin (x)+1}\end{array}\right.\)
\(\left[\begin{array}{c}w+1 \\ w+1\end{array}\right.\)
```

To synchronize a MuPAD notebook with its engine, you must evaluate the notebook as follows:

1 Open the notebooks that you want to evaluate. Symbolic Math Toolbox cannot evaluate MuPAD notebooks without opening them.
2 Use evaluateMuPADNotebook. Alternatively, you can evaluate the notebook by selecting Notebook > Evaluate All from the main menu of the MuPAD notebook.
3 Perform your computations using data and results obtained from MuPAD notebooks.
4 Close the notebooks. This step is optional.
For example, evaluate the notebook myFile1.mn located in your current folder:
evaluateMuPADNotebook(nb)

```
\(\left[\begin{array}{l}z:=\sin (x) \\ \sin (x)\end{array}\right.\)
\(\left[y:=z /\left(1+z^{\wedge} 2\right)\right.\)
    \(\frac{\sin (x)}{\sin (x)^{2}+1}\)
[ w := simplify \((\mathrm{y} /(1-\mathrm{y}))\)
    \(\frac{\sin (x)}{\sin (x)^{2}-\sin (x)+1}\)
\(\left[\begin{array}{l}w+1 \\ \frac{\sin (x)}{\sin (x)^{2}-\sin (x)+1}+1\end{array}\right.\)
```

Now, you can use the data and results from that notebook in your computations. For example, copy the variables y and w to the MATLAB workspace:

```
y = getVar(nb,'y')
w = getVar(nb,'w')
y =
sin(x)/(sin(x)^2 + 1)
w =
sin(x)/(sin(x)^2 - sin(x) + 1)
```

You can evaluate several notebooks in a single call by passing a vector of notebook handles to evaluateMuPADNotebook:

```
nb1 = mupad('myFile1.mn');
nb2 = mupad('myFile2.mn');
evaluateMuPADNotebook([nb1,nb2])
```

Also, you can use allMuPADNotebooks that returns handles to all currently open notebooks. For example, if you want to evaluate the notebooks with the handles nb1 and nb2, and no other notebooks are currently open, then enter:
evaluateMuPADNotebook(allMuPADNotebooks)

If any calculation in a notebook throws an error, then evaluateMuPADNotebook stops. The error messages appear in the MATLAB Command Window and in the MuPAD notebook. When you evaluate several notebooks and one of them throws an error, evaluateMuPADNotebook does not proceed to the next notebook. It stops and displays an error message immediately. If you want to skip calculations that cause errors and evaluate all input regions that run without errors, use 'IgnoreErrors', true:
evaluateMuPADNotebook(allMuPADNotebooks,'IgnoreErrors',true)

Close MuPAD Notebooks from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

To close notebooks from the MATLAB Command Window, use the close function and specify the handle to that notebook. For example, create the notebook with the handle nb: $\mathrm{nb}=$ mupad;

Now, close the notebook:
close(nb)
If you do not have a handle to the notebook (for example, if you created it without specifying a handle or accidentally deleted the handle later), use allMuPADNotebooks to return handles to all currently open notebooks. This function returns a vector of handles. For example, create three notebooks without handles:

```
mupad
mupad
mupad
```

Use allMuPADNotebooks to get a vector of handles to these notebooks:

```
nbhandles = allMuPADNotebooks
```


nbhandles =

Notebook1
Notebook2
Notebook3
Close the first notebook (Notebook1):
close(nbhandles(1))
Close all notebooks:

close(allMuPADNotebooks)

If you modify a notebook and then try to close it, MuPAD brings up the dialog box asking if you want to save changes. To suppress this dialog box, call close with the ' force' flag. You might want to use this flag if your task requires opening many notebooks, evaluating them, and then closing them. For example, suppose that you want to evaluate the notebooks myFile1.mn, myFile2.mn, ..., myFile10.mn located in your current folder. First, open the notebooks. If you do not have any other notebooks open, you can skip specifying the handles and later use allMuPADNotebooks. Otherwise, do not forget to specify the handles.

```
mupad('myFile1.mn')
mupad('myFile2.mn')
mupad('myFile10.mn')
```

Evaluate all notebooks:
evaluateMuPADNotebook(allMuPADNotebooks)
When you evaluate MuPAD notebooks, you also modify them. Therefore, when you try to close them, the dialog box asking you to save changes will appear for each notebook. To suppress the dialog box and discard changes, use the 'force' flag:

```
close(allMuPADNotebooks,'force')
```


Convert MuPAD Notebooks to MATLAB Live Scripts

Migrate MuPAD notebooks to MATLAB live scripts that use MATLAB code. Live scripts are an interactive way to run MATLAB code. For details, see "What Is a Live Script or Function?" (MATLAB) MuPAD notebooks are converted to live scripts by using Symbolic Math Toolbox. For more information, see "Getting Started with Symbolic Math Toolbox".

Convert a MuPAD Notebook .mn to a MATLAB Live Script .mlx

1 Prepare the notebook: This step is optional, but helps avoid conversion errors and warnings. Check if your notebook contains untranslatable objects from "MuPAD Objects That Are Not Converted" on page 3-21. These objects cause translation errors or warnings.
2 Convert the notebook: Use convertMuPADNotebook. For example, convert myNotebook.mn in the current folder to myScript. mlx in the same folder.
convertMuPADNotebook('myNotebook.mn','myScript.mlx')
Alternatively, right-click the notebook in the Current Folder browser and select Open as Live Script.
3 Check for errors or warnings: Check the output of convertMuPADNotebook for errors or warnings. If there are none, go to step 7. For example, this output means that the converted live script myScript.mlx has 4 errors and 1 warning.

```
Created ''myScript.mlx': 4 translation errors, 1 warnings. For verifying...
```

 the document, see help.
 A translation error means that the translated code will not run correctly while a translation warning indicates that the code requires inspection. If the code only contains warnings, it will likely run without issues.
4 Fix translation errors: Open the converted live script by clicking the link in the output. Find errors by searching for ERROR. The error explains which MuPAD command did not translate correctly. For details and fixes, click ERROR. After fixing the error, delete the error message. For the list of translation errors, see "Troubleshoot MuPAD to MATLAB Translation Errors" on page 3-25. If you cannot fix your error, and the "Known Issues" on page 3-20 do not help, please contact technical support.

5 Fix translation warnings: Find warnings by searching for WARNING. The warning text explains the issue. For details and fixes, click WARNING. Decide to either adapt
the code or ignore the warning. Then delete the warning message. For the list of translation warnings, see "Troubleshoot MuPAD to MATLAB Translation Warnings" on page 3-35.
6 Verify the live script: Open the live script and check for unexpected commands, comments, formatting, and so on. For readability, the converted code may require manual cleanup, such as eliminating auxiliary variables.
7 Execute the live script: Ensure that the code runs properly and returns expected results. If the results are not expected, check your MuPAD code for the "Known Issues" on page 3-20 listed below.

Convert MuPAD Graphics to MATLAB Graphics

To convert MuPAD graphics, first try to convert the MuPAD plot commands that generated the graphics. This approach ensures you can control the graphical output in MATLAB similar to MuPAD. If you cannot convert the MuPAD commands, then export the graphic. See "Save and Export Graphics".

Known Issues

These are the known issues when converting MuPAD notebooks to MATLAB live scripts with the convertMuPADNotebook function. If your issue is not described, please contact technical support.

- "MuPAD Objects That Are Not Converted" on page 3-21
- "No Automatic Substitution in MATLAB" on page 3-21
- "last(1) in MuPAD Is Not ans in MATLAB" on page 3-22
- "Some solve Results Are Wrongly Accessed" on page 3-22
- "break Inside case Is Wrongly Translated" on page 3-22
- "Some MuPAD Graphics Options Are Not Translated" on page 3-23
- "Some Operations on Matrices Are Wrongly Translated" on page 3-23
- "indets Behavior in MATLAB Differs" on page 3-24
- "Return Type of factor Differs in MATLAB" on page 3-24
- "Layout Issues" on page 3-24
- "Syntax Differences Between MATLAB and MuPAD" on page 3-24

MuPAD Objects That Are Not Converted

Expand the list to view MuPAD objects that are not converted. To avoid conversion errors and warnings, remove these objects or commands from your notebook before conversion.

Objects Not Converted

- Reading code from files. Replace commands such as read("filename.mu") by the content of filename.mu.
- Function calls with expression sequences as input arguments.
- Function calls where the function is generated by the preceding code instead of being specified explicitly.
- Domains, and commands that create domains and their elements.
- Assignments to slots of domains and function environments.
- Commands using the history mechanism, such as last(2) or HISTORY := 30.
- MuPAD environment variables, such as ORDER, HISTORY, and LEVEL.

No Automatic Substitution in MATLAB

In MATLAB, when symbolic variables are assigned values, then expressions containing those values are not automatically updated.

Fixing This Issue

When values are assigned to variables, update any expressions that contain those variables by calling subs on those expressions.

```
syms a b
f = a + b;
a = 1;
b = 2;
f % f is still a + b
subs(f) % f is updated
f =
a + b
ans =
3
```


last(1) in MuPAD Is Not ans in MATLAB

In MuPAD, last (1) always returns the last result. In MATLAB, ans returns the result of the last unassigned command. For example, in MATLAB if you run $x=1$, then calling ans does not return 1.

Fixing This Issue

Instead of using ans, assign the result to a variable and use that variable.

Some solve Results Are Wrongly Accessed

When results of MuPAD solve are accessed, convertMuPADNotebook assumes that the result is a finite set. However, if the result is a non-finite set then the code is wrongly translated.

Fixing This Issue

There is no general solution. Further, non-finite solution sets are not translatable.
If you are accessing parameters or conditions, use the parameters or conditions output arguments of MATLAB solve.

```
syms x
S = solve(sin(x) == 1, x, 'ReturnConditions', true);
S.x % solution
S.parameters % parameters in solution
S.conditions % conditions on solution
ans =
pi/2 + 2*pi*k
ans =
k
ans =
in(k, 'integer')
```

break Inside case Is Wrongly Translated
In MuPAD, a break ends a case in a switch case. However, MATLAB does not require a break to end a case. Thus, a MuPAD break introduces an unnecessary break in MATLAB. Also, if a MuPAD case omits a break, then the MATLAB case will not fallthrough.

Fixing This Issue

In the live script, delete break statements that end cases in a switch-case statement.
For fall-through in MATLAB, specify all values with their conditions in one case.

Some MuPAD Graphics Options Are Not Translated

While the most commonly used MuPAD graphics options are translated, there are some options that are not translated.

Fixing This Issue

Find the corresponding option in MATLAB by using the properties of the figure handle gcf or axis handle gca. For example, the MuPAD command plot($\sin (x)$, Width $=$ 80*unit::mm, Height = 4*unit::cm) sets height and width. Translate it to MATLAB code.

```
syms x
fplot(sin(x));
g = gcf;
g.Units = 'centimeters';
g.Position(3:4) = [8 4];
```


Some Operations on Matrices Are Wrongly Translated

Operations on matrices are not always translated correctly. For example, if M is a matrix, then $\exp (M)$ in MuPAD is wrongly translated to $\exp (M)$ instead of the matrix exponential expm(M).

Fixing This Issue

When performing operations on matrices, search for the matrix operation and use it instead. For example, in MATLAB:

- Use expm instead of exp.
- Use funm(M,'sin') instead of $\sin (M)$.
- $A==[12 ; 34]$ displays differently from $A=\operatorname{matrix}([[1,2],[3,4]])$ in MuPAD but is programmatically equivalent.

indets Behavior in MATLAB Differs

indets is translated to MATLAB symvar. However, symvar does not find bound variables or constant identifiers like PI.

Return Type of factor Differs in MATLAB

The return type of MuPAD factor has no equivalent in MATLAB. Subsequent operations on the results of factor in MATLAB might return incorrect results.

Fixing This Issue

Check and modify the output of factor in MATLAB as required such that subsequent commands run correctly.

Layout Issues

- MuPAD notebook frames are not converted.
- MuPAD notebook tables are not converted.
- MuPAD plots are not interactive in live scripts.
- Titles or headings in MuPAD notebooks are not always detected.
- MuPAD text attribute underline is not converted
- Text formatting: Font, font size, and color are not converted. All text in live scripts looks the same.

Syntax Differences Between MATLAB and MuPAD

For the syntax differences between MATLAB and MuPAD, see "Differences Between MATLAB and MuPAD Syntax" on page 3-50.

Troubleshoot MuPAD to MATLAB Translation Errors

This page helps troubleshoot all errors generated by the convertMuPADNotebook function when converting MuPAD notebooks to MATLAB live scripts. For the conversion steps, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19. To troubleshoot warnings, see "Troubleshoot MuPAD to MATLAB Translation Warnings" on page 3-35.

| Error Message | Details | Recommendations |
| :---: | :---: | :---: |
| No equivalent code in MATLAB. | convertMuPADNotebook cannot find the corresponding functionality in MATLAB. | Adjust the code so that it uses only the functionality that can be expressed in the MATLAB language. Alternatively, in the target .mlx file, some functionality can be replaced with MATLAB functionality, such as in statistics or file inputoutput. |
| Unable to translate the second and higher derivatives of Airy functions. Express these derivatives in terms of Airy functions and their first derivatives. | The MATLAB airy function represents Airy functions of the first and second kind and their first derivatives. In MuPAD, airyAi (z,n) and airyBi(z,n) can represent second and higher derivatives of Airy functions, that is, n can be greater than 1. | Rewrite second and higher derivatives of Airy functions in terms of Airy functions and their first derivatives. Then convert the result to MATLAB code.
 The MuPAD airyAi and airyBi functions return results in terms of Airy functions and their first derivatives. You can replace second and higher derivatives by their outputs in MuPAD, before converting the code to MATLAB. |

| Error Message | Details | Recommendations | | |
|---|---|---|---|---|
| Unable to translate
 assignment to MuPAD
 environment variable. | Environment variables are
 global variables, such as
 HISTORY, LEVEL, ORDER,
 and so on, that affect the
 behavior of MuPAD
 algorithms. | In some cases, you can use
 name-value pair arguments
 in each function call, such
 as setting the value Order
 in the taylor function call. |
| Unable to translate
 assignments to the
 remember table of a
 procedure. | In other cases, there is no
 appropriate replacement.
 Adjust the code so that it
 does not require a global
 setting. | |
| tables to speed up | | |
| computations, especially | | |
| when you use recursive | | |
| procedure calls. The system | | |
| stores the arguments of a | | |
| procedure call as indices of | | |
| the remember table entries, | | |
| and the corresponding | | |
| results as values of these | | |
| entries. When you call a | | |
| procedure using the same | | |
| arguments as in previous | | |
| calls, MuPAD accesses | | |
| the remember table of that | | |
| procedure. If | | |
| the remember table contain | | |
| s the entry with the required | | |
| arguments, MuPAD returns | | |
| the value of that entry. For | | |
| details, see "Remember | | |
| Mechanism". | | |\quad| Adjust the code so that it |
| :--- |
| does not use remember |
| tables. |\quad| The remember tables are |
| :--- |
| not available in MATLAB. |\quad| |
| :--- |

| Error Message | Details | Recommendations |
| :--- | :--- | :--- |
| Unable to translate
 assignments to slots of
 domains and function
 environments. | In MuPAD, the slot
 function defines methods
 and entries of data types
 (domains) or for defining
 attributes of function
 envi ronments. These
 methods and entries (slots)
 let you overload system
 functions by your own
 domains and function
 environments. | Adjust the code so that it
 does not use assignments to
 slots of domains and
 function environments. |
| Domains, function
 environments, and their
 slots are not available in
 MATLAB. | | |
| Unable to translate explicitly
 given coefficient ring. | MuPAD lets you use special
 coefficient rings that cannot
 be represented by
 arithmetical expressions.
 Specifying coefficient rings
 of polynomials is not
 available in MATLAB. | Adjust the code so that it
 does not use polynomials
 over special rings. |
| Unable to translate
 complexInfinity. | MuPAD uses the value
 complexInfinity. This
 value is not available in
 MATLAB. | Adjust the code so that it
 does not use
 complexInfinity. |
| Unable to translate MuPAD
 code because it uses an
 obsolete calling syntax. | MuPAD syntax has changed
 and the code uses obsolete
 syntax that is no longer
 supported. | Update code to use current
 MuPAD syntax by checking
 MuPAD documentation and
 then run
 the function 'D' with more
 than one argument. |
| The indices in the first
 argument of D cannot be
 translated to variable names
 in MATLAB. | Use the MuPAD diff
 function instead of D. | |

| Error Message | Details | Recommendations |
| :---: | :---: | :---: |
| Unable to translate MuPAD domains, or commands to create domains or their elements. | Domains represent data types in MuPAD. They are not available in MATLAB. | Adjust the code so that it does not create or explicitly use domains and their elements. |
| Unable to translate the MuPAD environment variable " $\{0\}$ ". | Environment variables are global variables, such as HISTORY, LEVEL, ORDER, and so on, that affect the behavior of MuPAD algorithms.
 convertMuPADNotebook cannot translate MuPAD environment variables because they are not available in MATLAB. | Adjust the code so that it does not require accessing MuPAD environment variables. |
| Unable to translate function calls with expression sequences as input arguments. | In MuPAD, a function call $f(x)$, where x is a sequence of n operands, resolves to a call with n arguments.
 MATLAB cannot resolve function calls with expression sequences to calls with multiple arguments. | Adjust the code so that it does not contain function calls with expression sequences as input arguments. |

| Error Message | Details | Recommendations |
| :---: | :---: | :---: |
| Unable to translate infinite sets. | MuPAD recognizes infinite sets. For example, solve can return a solution as an infinite set: solve(sin(x*PI/2) = $0, \mathrm{x})$ returns $\{2 k \mid k \in \mathbb{Z}\}$. You can create such sets by using Dom: : ImageSet.
 MATLAB does not support infinite sets. | Adjust the code so that it does not use infinite sets as inputs. |
| Unable to translate a call accessing previously computed results. The MATLAB ans function lets you access only the most recent result. | The MuPAD last function and its shortcut \% typically let you access the last 20 commands stored in an internal history table.
 In MATLAB, ans lets you access only one most recent command. | Adjust the code so that it uses assignments instead of relying on last or \%. |
| Unable to translate the variable "\{0\}" representing a MuPAD library. | Libraries contain most of the MuPAD functionality. Each library includes a collection of functions for solving particular types of mathematical problems. While MuPAD library functions are translated to MATLAB code, the libraries themselves are not. | Adjust the code so that it does not use MuPAD library names as identifiers. |
| Unable to map a function to objects of this class. | Objects of this class do not have an equivalent representation in MATLAB. The mapping cannot be translated. | In the target .mlx file, implement the mapping by writing a loop. |

| Error Message | Details | Recommendations |
| :--- | :--- | :--- |
| Unable to translate this form
 of matrix definition. | MuPAD provides a few
 different approaches for
 creating a matrix. You can
 create a matrix from an
 array, list of elements, a
 nested list of rows, or a
 table. Also, you can create a
 matrix by specifying only
 the nonzero entries, such as
 A[i1, j1] = value1,
 A[i2, j2] = value2, and
 so on.
 Some of these approaches | Adjust the code so that it
 defines matrices by using an
 array, list of elements, or a
 nested list of rows. |
| | cannot be translated to
 MATLAB code. | |
| Cannot translate division
 with respect to several
 variables. | Polynomial division with
 respect to several variables
 is not available in MATLAB. | Adjust the code so that it
 does not use polynomial
 division with respect to
 several variables. |
| Unable to translate nested
 indexed assignment. | Nested indexed assignment
 is not available in MATLAB. | Replace the nested indexed
 assignment with multiple
 assignments. |
| Unable to create a
 polynomial from a coefficient
 list. | Cannot translate polynomial
 creation from the given
 coefficient list. | Make the first argument to
 poly an arithmetical
 expression instead of a list. |

| Error Message | Details | Recommendations |
| :--- | :--- | :--- |
| Unable to translate nontrivial
 procedures. | For code that you want to
 execute repeatedly, MuPAD
 lets you create procedures
 by using the proc
 command.
 convertMuPADNotebook
 can translate simple
 procedures to anonymous
 functions. Simple
 procedures do not contain
 loops, assignments, multiple
 statements, or nested
 functions where the inner
 function accesses variables
 of the outer function. | Adjust the code so that it
 does not use complicated
 procedures. |
| More complicated
 procedures cannot be
 translated to MATLAB code. | | |
| Unable to translate the
 global table of properties. | convertMuPADNotebook
 cannot translate the MuPAD
 global table of properties,
 PROPERTIES, because this
 functionality is not available
 in MATLAB. | Set properties and
 assumptions as described in
 "Properties and
 Assumptions". |
| Unable to create random
 generators with individual
 seed values. | MuPAD lets you set a
 separate seed value for each
 random number generator.
 MATLAB has one seed value
 for all random number
 generators. See rng for
 details. | Adjust the code so that it
 does not rely on individual
 seed values for different
 random number generators. |

| Error Message | Details | Recommendations |
| :---: | :---: | :---: |
| Unable to translate target " $\{0\}$ " for MATLAB function "rewrite". | The MuPAD rewrite function can rewrite an expression in terms of the following targets: andor, arccos, arccosh, arccot, arccoth, arcsin, arcsinh, arctan, arctanh, arg, bernoulli, cos, cosh, cot, coth, diff, D, erf, erfc, erfi, exp, fact, gamma, harmonic, heaviside, inverf, inverfc, lambertW, ln, max, min, piecewise, psi, sign, sin, sincos, sinh, sinhcosh, tan, tanh.
 The MATLAB rewrite function supports fewer targets:
 exp, log, sincos, sin, cos , tan, cot, sqrt, heaviside, asin, acos, atan, acot, sinh, cosh, tanh, coth, sinhcosh, asinh, acosh, atanh, acoth, piecewise. | Adjust the code so that it uses the target options available in MATLAB. If needed, use a sequence of function calls to rewrite with different target options. |
| Unable to translate slots of domains and function environments. | Slots and domains are not available in MATLAB. | Adjust the code so that it does not use slots or domains. |

| Error Message | Details | Recommendations |
| :--- | :--- | :--- |
| Unable to substitute only one
 occurrence of a
 subexpression. | Substituting only one
 occurrence of a
 subexpression is not
 available in MATLAB. | In the target . mlx file,
 break up the expression
 using the function
 children to get the
 subexpression, and then
 substitute for it using the
 function subs. |
| Syntax error in MuPAD code. | MuPAD code contains a
 syntax error, for example, a
 missing bracket. | Check and correct the
 MuPAD code that you are
 translating. |
| Test environment of MuPAD
 not available in MATLAB. | The MuPAD test
 environment is not available
 in MATLAB. | Adjust the code so that it
 does not use the MuPAD test
 environment. |
| Unknown domain or library
 " $\{0\} "$. | Most likely, a custom
 domain or library is used
 and cannot be translated. | Check and correct the
 MuPAD code that you are
 translating. |
| Unknown MuPAD function
 " $\{0\} " . ~$The function is not available
 in MuPAD. | Check and correct the
 MuPAD code that you are
 translating. | |
| Unable to translate calls to
 the function "\{0\}". | The function is a valid
 MuPAD function, but the
 function call is invalid. For
 example, the number of
 input arguments or types of
 arguments can be incorrect. | Check and correct the
 MuPAD code that you are
 translating. |
| Unable to translate calls to
 functions of the library
 "\{0\}". | The functions of this library
 are available in MuPAD, but
 there are no corresponding
 functions in MATLAB. | Adjust the code so that it
 does not use the functions of
 this library. |
| MuPAD function " $\{0\} "$
 cannot be converted to
 function handle. | The MuPAD function does
 not have an equivalent
 function handle in MATLAB. | Adjust the code to use a
 function that has an
 equivalent in MATLAB. |

| Error Message | Details | Recommendations |
| :--- | :--- | :--- |
| Unable to translate option
 " $\{0\}$ ". | Most likely, this option is
 available in MuPAD, but
 there are no corresponding
 options in MATLAB. | Adjust the code so that it
 does not use this option. |
| Unable to translate MuPAD
 code because it uses invalid
 calling syntax. | Most likely, the function call
 in the MuPAD code has an
 error. | Check and correct the
 MuPAD code that you are
 translating. |

Troubleshoot MuPAD to MATLAB Translation Warnings

This page helps troubleshoot all warnings generated by the convertMuPADNotebook function when converting MuPAD notebooks to MATLAB live scripts. For the conversion steps, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19. To troubleshoot errors, see "Troubleshoot MuPAD to MATLAB Translation Errors" on page 325.

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| Translating the alias
 function as an assignment,
 and the unalias function as
 deletion of an assignment. | The MuPAD alias and
 unalias function let you
 create and delete an alias
 (abbreviation) for any
 MuPAD object. For example,
 you can create an alias d for
 the diff function: alias (d
 = diff). | Verify the resulting code. If
 you do not want a MuPAD
 alias to be converted to an
 assignment in MATLAB,
 adjust the code so that it
 does not use aliases. |
| Creating aliases is not
 available in MATLAB. When
 translating a notebook file,
 convertMuPADNotebook
 replaces aliases with
 assignments. | Replacing animation by its | MuPAD animations cannot
 be correctly reproduced in
 MATLAB. When translating
 a notebook file,
 convertMuPADNotebook
 replaces an animation with
 a static image showing the
 last frame of the animation. |
| Verify the resulting code.
 The last frame might not be
 ideal for some animations. If
 you want the static image to
 show any other frame of the
 animation, rewrite the
 MuPAD code so that it
 creates a static plot showing
 that image. | | |

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| Potentially incorrect MuPAD
 code " $\{0\}$ ". Replacing it by
 " $\{1\}$ ". | When translating a
 notebook file,
 convertMuPADNotebook
 detected that the part of the
 code in the MuPAD
 notebook might be
 incorrect. For example, the
 code appears to have a typo,
 or a commonly used
 argument is missing. | Verify the corrected code.
 Then delete this warning. |
| convertMuPADNotebook
 corrected it. | | |
| Invalid assignment to
 remember table. Replacing
 it by procedure definition. | When translating a
 notebook file,
 convertMuPADNotebook
 considered an assignment to
 a remember table in a
 MuPAD notebook as
 unintentional, and replaced
 it by a procedure definition. | |
| For example, an assignment
 such as f(x) : =x^2 gets
 replaced by f:= x->x^2. | Then delete this warning. | |

| Warning Message | Meaning | Recommendations |
| :---: | :---: | :---: |
| Replacing MuPAD domain by an anonymous function that creates objects similar to the elements of this domain. | Domains represent data types in MuPAD. They are not available in MATLAB.
 convertMuPADNotebook translated a MuPAD domain to a MATLAB anonymous function that creates objects similar to the elements of the domain. For example, the code line f:=Dom: :IntegerMod(7) gets translated to a MATLAB anonymous function $\mathrm{f}=$ @(X) mod (X, sym(7)). | Verify the resulting code. Check if an anonymous MATLAB function is the correct translation of the domain in this case, and that the code still has the desired functionality. |
| Ignoring addpattern command. Configurable pattern matcher not available in MATLAB. | addpattern functionality is not available in MATLAB. | Adjust the code to avoid using addpattern. |
| Ignoring assertions. | Assertions are not available in MATLAB. When translating a notebook file, convertMuPADNotebook ignores assertions. | Verify the resulting code. If assertions are not essential part of your code, you can ignore this warning. However, if your code relies on assertions, you can implement them using conditional statements, such as if-then. |

$\left.\begin{array}{|l|l|l|}\hline \text { Warning Message } & \text { Meaning } & \text { Recommendations } \\ \hline \begin{array}{l}\text { Ignoring assignment to a } \\ \text { MuPAD environment } \\ \text { variable. }\end{array} & \begin{array}{l}\text { Environment variables are } \\ \text { global variables, such as } \\ \text { HISTORY, LEVEL, ORDER, } \\ \text { and so on, that affect the } \\ \text { behavior of MuPAD } \\ \text { algorithms. }\end{array} & \begin{array}{l}\text { Verify the resulting code. If } \\ \text { an assignment to an } \\ \text { environment variable is not } \\ \text { essential for your code, } \\ \text { simply delete the warning. }\end{array} \\ \hline \begin{array}{l}\text { In some cases, you can use }\end{array} \\ \text { name-value pair arguments } \\ \text { in each function call, such } \\ \text { as setting the value Order } \\ \text { in the taylor function call. }\end{array}\right\}$

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| Ignoring options "\{0\}". | These options are available
 in MuPAD, but are not
 available in MATLAB.
 Because they do not appear
 to be essential for this code,
 convertMuPADNotebook
 ignores them. | Verify the resulting code.
 Check if the ignored options
 are essential for the
 correctness of the code and
 results. If they are, adjust
 the code so that it does not
 use these options, but still
 has the desired functionality.
 If they are not essential,
 simply delete this warning. |
| Ignoring MuPAD path | | |
| variables. | The MuPAD environment
 variables FILEPATH, | Verify the resulting code.
 NOTEBOOKPATH, |
| WRITEPATH, and READPATH | | |
| leck if the ignored path | | |
| variables are essential for | | |
| the correctness of the code | | |
| let you specify the working | | |
| folders for writing new files, | | |
| adjust the code so that it | | |
| searching for files, loading | | |
| does not use these | | |
| files, and so on if you do not | | |
| preferences, but still has the | | |
| desired functionality. If they | | |
| are not essential, simply | | |
| specify the full path to the | | |
| file. | | |

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| Ignoring MuPAD preference
 because there is no
 equivalent setting in
 MATLAB. | The MuPAD Pref library
 provides a collection of
 functions which can be used
 to set and restore
 preferences, such as use of
 abbreviations in outputs,
 representation of floating-
 point numbers, memory
 limit on a MuPAD session,
 and so on. | Verify the resulting code.
 Check if the ignored
 preferences are essential for
 the correctness of the code
 and results. If they are not
 essential, simply delete this
 warning. |
| MATLAB uses sympref for
 a few preferences, such as
 specifying parameters of
 Fourier transforms,
 specifying the value of the
 Heaviside function at 0, or
 enabling and disabling
 abbreviations in outputs.
 Most preferences cannot be
 translated to MATLAB code. | | |

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| Ignoring call to variable
 protection mechanism. | The names of the built-in
 MuPAD functions, options,
 and constants are protected.
 If you try to assign a value
 to a MuPAD function, option,
 or constant, the system
 throws an error. This
 approach ensures that you
 will not overwrite a built-in
 functionality accidentally.
 See "Protect Function and
 Option Names". | Verify the resulting code.
 Check if the ignored call to
 variable protection
 mechanism is essential for
 the correctness of the code
 and results. If it is, adjust
 the code so that it does not
 use this call, but still has the
 desired functionality. If it is
 not essential, simply delete
 this warning. |
| Protecting procedures and
 functions from overwriting
 is not available in MATLAB.
 When translating a
 notebook file,
 convertMuPADNotebook
 ignores the corresponding
 MuPAD code. | | |

| Warning Message | Meaning | Recommendations |
| :---: | :---: | :---: |
| Ignoring default value when translating a table. | MuPAD tables let you set the default value. This value is returned when you index into a table using the index for which the entry does not exist. For example, if you create the table using T := table(a $=13, \mathrm{c}=$ $42,10)$, and then index into it using T [b], the result is 10.
 Default values for tables cannot be translated to MATLAB. When translating a notebook file, convertMuPADNotebook ignores the corresponding value. | Verify the resulting code. Check if the ignored value is essential for the correctness of the code and results. If default values for the tables are not essential, simply delete this warning. Otherwise, you can create a MATLAB function that checks if the containers.Map object corresponding to the MuPAD table has a certain key, and if it does not, returns the default value. |
| Unable to decide which object the indexing refers to, instead using generic translation. | When the class of the object being indexed into is ambiguous, then convertMuPADNotebook defaults to a generic translation for the indexing. | Verify that the generic translation returns the correct result. If not, adjust the code. |
| Possibly missing a multiplication sign. | Do not skip multiplication signs in MuPAD and MATLAB code. Both languages require you to type multiplication signs explicitly. For example, the expression $x(x+1)$ must be typed as $x^{*}(x+1)$. | Verify the converted code. Check if you missed a multiplication sign. Correct the code if needed. |
| Expression used as operator. Possibly "subs" was intended. | An arithmetical expression is used as a function. convertMuPADNotebook attempted to fix the error. | Verify that the translation returns the correct result. If not, adjust the code. |

| Warning Message | Meaning | Recommendations |
| :--- | :--- | :--- |
| MuPAD package mechanism
 not available in MATLAB. | The MuPAD package
 mechanism is not available
 in MATLAB. | Adjust the code to avoid
 using the MuPAD package
 mechanism. |

Edit MuPAD Code in MATLAB Editor

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

The default interface for editing MuPAD code is the MATLAB Editor. Alternatively, you can create and edit your code in any text editor. The MATLAB Editor automatically formats the code and, therefore, helps you avoid errors, or at least reduce their number.

Note The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension .mu in the MATLAB Editor, double-click the file name or select Open and navigate to the file.

After editing the code, save the file. Note that the extension .mu allows the Editor to recognize and open MuPAD program files. Thus, if you intend to open the files in the MATLAB Editor, save them with the extension .mu. Otherwise, you can specify other extensions suitable for text files, for example, .txt or .tst.

Comments in MuPAD Procedures

Enter a comment in a .mu file by entering the // characters. All text following the // on the same line is ignored. The // characters do not affect text on succeeding lines. To create a multi-line comment, start with the /* characters and end the comment with the */ characters. All text between these characters is ignored. You can nest comments using /* and */.

```
myProgramFile.mu < +
    if abs(a) > sqrt(2) //single line comment
        and is(x, Type::Real) = TRUE then /*another single line comment*/
        error("invalid parameter a")
        /*start multi-line comment
            ...
            /* nested comment
            */
            end multi-line comment
        */
    else
```


Notebook Files and Program Files

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

The two main types of files in MuPAD are:

- Notebook files, or notebooks
- Program files

A notebook file has the extension .mn and lets you store the result of the work performed in the MuPAD Notebook. A notebook file can contain text, graphics, and any MuPAD commands and their outputs. A notebook file can also contain procedures and functions.

By default, a notebook file opens in the MuPAD Notebook. Creating a new notebook or opening an existing one does not automatically start the MuPAD engine. This means that although you can see the results of computations as they were saved, MuPAD does not remember evaluating them. (The "MuPAD Workspace" is empty.) You can evaluate any or all commands after opening a notebook.

A program file is a text file that contains any code snippet that you want to store separately from other computations. Saving a code snippet as a program file can be very helpful when you want to use the code in several notebooks. Typically, a program file contains a single procedure, but it also can contain one or more procedures or functions, assignments, statements, tests, or any other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require the name of that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program file with the extension .mu. This extension allows the MATLAB Editor to recognize and open the file later. Nevertheless, a program file is just a text file. You can save a program file with any extension that you use for regular text files.

To evaluate the commands from a program file, you must execute a program file in a notebook. For details about executing program files, see "Read MuPAD Procedures" on page 3-64.

Source Code of the MuPAD Library Functions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

You can display the source code of the MuPAD built-in library functions. If you work in the MuPAD Notebook app, enter expose(name), where name is the library function name. The MuPAD Notebook displays the code as plain text with the original line breaks and indentations.

You can also display the code of a MuPAD library function in the MATLAB Command Window. To do this, use the evalin or feval function to call the MuPAD expose function:

```
sprintf(char(feval(symengine, 'expose', 'numlib::tau')))
ans =
    'proc(a)
        name numlib::tau;
    begin
        if args(0) <> 1 then
            error(message("symbolic:numlib:IncorrectNumberOfArguments"))
        else
            if ~testtype(a, Type::Numeric) then
            return(procname(args()))
            else
                if domtype(a) <> DOM_INT then
                error(message("symbolic:numlib:ArgumentInteger"))
            end if
            end if
        end if;
        num\ib::numdivisors(a)
    end proc'
```

MuPAD also includes kernel functions written in $\mathrm{C}++$. You cannot access the source code of these functions.

Differences Between MATLAB and MuPAD Syntax

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

There are several differences between MATLAB and MuPAD syntax. Be aware of which interface you are using in order to use the correct syntax:

- Use MATLAB syntax in the MATLAB workspace, except for the functions evalin(symengine, ...) and feval (symengine, . . .) , which use MuPAD syntax.
- Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression entered in a MuPAD notebook is assumed to be a combination of symbolic variables unless otherwise defined. This means that you must be especially careful when working in MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in MATLAB and MuPAD syntax.

Common Tasks in MATLAB and MuPAD Syntax

| Task | MuPAD Syntax | MATLAB Syntax |
| :---: | :---: | :---: |
| Assignment | := | $=$ |
| List variables | anames(All, User) | whos |
| Numerical value of expression | float (expression) | double(expression) |
| Suppress output | : | ; |
| Enter matrix | $\begin{aligned} & \operatorname{matrix}([[\times 11, \times 12, x 13], \\ & [\times 21, \times 22, x 23]]) \end{aligned}$ | $\begin{aligned} & {[\times 11, \times 12, \times 13 ;} \\ & \times 21, x 22, x 23] \end{aligned}$ |
| Translate MuPAD set | \{a, b, c \} | unique([1 213$])$ |
| Auto-completion | Ctrl+space bar | Tab |
| Equality, inequality comparison | =, <> | ==, ~= |

The next table lists differences between MATLAB expressions and MuPAD expressions.

MATLAB vs. MuPAD Expressions

| MuPAD Expression | MATLAB Expression |
| :--- | :--- |
| infinity | Inf |
| PI | pi |
| I | i |
| undefined | NaN |
| trunc | fix |
| arcsin, arccos etc. | asin, acos etc. |
| numeric: :int | vpaintegral |
| normal | simplifyFraction |
| besselJ, besselY, besselI, besselK | besselj, bessely, besseli, besselk |
| lambertW | lambertw |
| Si, Ci | sinint, cosint |
| EULER | eulergamma |
| conjugate | conj |
| CATALAN | catalan |

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox counterpart.
$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { Symbolic Math Toolbox } \\ \text { Definition }\end{array} & \text { MuPAD Definition } \\ \begin{array}{l}\text { Exponential } \\ \text { integral }\end{array} & \begin{array}{l}\operatorname{expint}(x)=-\operatorname{Ei}(-x)= \\ x \\ \operatorname{Ei}(1, x) . \\ \operatorname{Exp}(-t) \\ t\end{array} t \text { for } x>0= & \operatorname{Ei}(n, x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t \text { for } x<0 . \\ t_{1}^{n} d t . \\ \text { The definitions of Ei extend to the } \\ \text { complex plane, with a branch cut } \\ \text { along the negative real axis. }\end{array}\right\}$

Copy Variables and Expressions Between MATLAB and MuPAD

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

You can copy a variable from a MuPAD notebook to a variable in the MATLAB workspace using a MATLAB command. Similarly, you can copy a variable or symbolic expression in the MATLAB workspace to a variable in a MuPAD notebook using a MATLAB command. To do either assignment, you need to know the handle to the MuPAD notebook you want to address.

The only way to assign variables between a MuPAD notebook and the MATLAB workspace is to open the notebook using the following syntax:
$\mathrm{nb}=$ mupad;
You can use any variable name for the handle $n b$. To open an existing notebook file, use the following syntax:

```
nb = mupad('file_name');
```

Here file_name must be a full path unless the notebook is in the current folder. The handle nb is used only for communication between the MATLAB workspace and the MuPAD notebook.

- To copy a symbolic variable in the MATLAB workspace to a variable in the MuPAD notebook engine with the same name, enter this command in the MATLAB Command Window:

```
setVar(notebook_handle,'MuPADvar',MATLABvar)
```

For example, if nb is the handle to the notebook and z is the variable, enter:

```
setVar(nb,'z',z)
```

There is no indication in the MuPAD notebook that variable z exists. To check that it exists, enter the command anames (All, User) in the notebook.

- To assign a symbolic expression to a variable in a MuPAD notebook, enter:

```
setVar(notebook_handle,'variable',expression)
```

at the MATLAB command line. For example, if $n b$ is the handle to the notebook, $\exp (x)-\sin (x)$ is the expression, and z is the variable, enter:

```
syms x
```

setVar(nb,'z',exp(x) - $\sin (x))$

For this type of assignment, x must be a symbolic variable in the MATLAB workspace.
Again, there is no indication in the MuPAD notebook that variable z exists. Check that it exists by entering this command in the notebook:
anames(All, User)

- To copy a symbolic variable in a MuPAD notebook to a variable in the MATLAB workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook_handle,'variable');
For example, if nb is the handle to the notebook, z is the variable in the MuPAD notebook, and u is the variable in the MATLAB workspace, enter:
$u=\operatorname{get} \operatorname{Var}\left(n b, z^{\prime}\right)$
Communication between the MATLAB workspace and the MuPAD notebook occurs in the notebook's engine. Therefore, variable z must be synchronized into the notebook's MuPAD engine before using getVar, and not merely displayed in the notebook. If you try to use getVar to copy an undefined variable z in the MuPAD engine, the resulting MATLAB variable u is empty. For details, see "Evaluate MuPAD Notebooks from MATLAB" on page 3-13.

Tip Do all copying and assignments from the MATLAB workspace, not from a MuPAD notebook.

Copy and Paste Using the System Clipboard

You can also copy and paste between notebooks and the MATLAB workspace using standard editing commands. If you copy a result in a MuPAD notebook to the system clipboard, you might get the text associated with the expression, or a picture, depending on your operating system and application support.

For example, consider this MuPAD expression:

$$
\left[\begin{array}{l}
y:=\exp (x) /\left(1+x^{\wedge} 2\right) \\
\frac{e^{x}}{x^{2}+1}
\end{array}\right.
$$

Select the output with the mouse and copy it to the clipboard:

Paste this into the MATLAB workspace. The result is text:

```
exp(x)/(x^2 + 1)
```

If you paste it into Microsoft® WordPad on a Windows® system, the result is a picture.

Reserved Variable and Function Names

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Both MATLAB and MuPAD have their own reserved keywords, such as function names, special values, and names of mathematical constants. Using reserved keywords as variable or function names can result in errors. If a variable name or a function name is a reserved keyword in one or both interfaces, you can get errors or incorrect results. If you work in one interface and a name is a reserved keyword in another interface, the error and warning messages are produced by the interface you work in. These messages can specify the cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or function names, especially if you use both interfaces.

In MuPAD, function names are protected. Normally, the system does not let you redefine a standard function or use its name as a variable. (To be able to modify a standard MuPAD function you must first remove its protection.) Even when you work in the MATLAB Command Window, the MuPAD engine handles symbolic computations. Therefore, MuPAD function names are reserved keywords in this case. Using a MuPAD function name while performing symbolic computations in the MATLAB Command Window can lead to an error:
solve('D - 10')
The message does not indicate the real cause of the problem:
Error using solve (line 263)
Specify a variable for which you solve.
To fix this issue, use the syms function to declare D as a symbolic variable. Then call the symbolic solver without using quotes:

```
syms D
solve(D - 10)
```

In this case, the toolbox replaces D with some other variable name before passing the expression to the MuPAD engine:
ans =
10
To list all MuPAD function names, enter this command in the MATLAB Command Window: evalin(symengine, 'anames()')

If you work in a MuPAD notebook, enter:
anames()

Call Built-In MuPAD Functions from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

To access built-in MuPAD functions at the MATLAB command line, use evalin(symengine, . . .) or feval (symengine, . . .). These functions are designed to work like the existing MATLAB evalin and feval functions.
evalin and feval do not open a MuPAD notebook, and therefore, you cannot use these functions to access MuPAD graphics capabilities.

evalin

For evalin, the syntax is

```
y = evalin(symengine,'MuPAD Expression');
```

Use evalin when you want to perform computations in the MuPAD language, while working in the MATLAB workspace. For example, to make a three-element symbolic vector of the $\sin (k x)$ function, $k=1$ to 3 , enter:

```
y = evalin(symengine,'[sin(k*x) $ k = 1..3]')
y =
[ sin(x), sin(2*x), sin(3*x)]
```


feval

For evaluating a MuPAD function, you can also use the feval function. feval has a different syntax than evalin, so it can be simpler to use. The syntax is:

```
y = feval(symengine,'MuPAD_Function',x1,...,xn);
```

MuPAD_Function represents the name of a MuPAD function. The arguments $\mathrm{x} 1, \ldots, \mathrm{xn}$ must be symbolic variables, numbers, or character vectors. For example, to find the tenth element in the Fibonacci sequence, enter:

```
z = feval(symengine,'numlib::fibonacci',10)
z =
5 5
```

The next example compares the use of a symbolic solution of an equation to the solution returned by the MuPAD numeric fsolve function near the point $x=3$. The symbolic solver returns these results:

```
syms x
f = sin(x^2);
solve(f)
ans =
0
```

The numeric solver fsolve returns this result:

```
feval(symengine, 'numeric::fsolve',f,'x=3')
```

ans $=$
$x=3.0699801238394654654386548746678$

As you might expect, the answer is the numerical value of $\sqrt{3 \pi}$. The setting of MATLAB format does not affect the display; it is the full returned value from the MuPAD 'numeric::fsolve' function.

evalin vs. feval

The evalin (symengine, . . .) function causes the MuPAD engine to evaluate a character vector. Since the MuPAD engine workspace is generally empty, expressions returned by evalin(symengine, . . .) are not simplified or evaluated according to their definitions in the MATLAB workspace. For example:

```
syms x
y = x^2;
evalin(symengine, 'cos(y)')
ans =
cos(y)
```

Variable y is not expressed in terms of x because y is unknown to the MuPAD engine.
In contrast, feval (symengine, . . .) can pass symbolic variables that exist in the MATLAB workspace, and these variables are evaluated before being processed in the MuPAD engine. For example:

```
syms x
y = x^2;
feval(symengine,'cos',y)
ans =
cos(x^2)
```


Floating-Point Arguments of evalin and feval

By default, MuPAD performs all computations in an exact form. When you call the evalin or feval function with floating-point numbers as arguments, the toolbox converts these arguments to rational numbers before passing them to MuPAD. For example, when you calculate the incomplete gamma function, the result is the following symbolic expression:

```
y = feval(symengine,'igamma', 0.1, 2.5)
y =
igamma(1/10, 5/2)
```

To approximate the result numerically with double precision, use the double function:
format long
double(y)
ans $=$
0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point arguments to rational numbers. (The toolbox treats arguments enclosed in quotes as character vectors.) When MuPAD performs arithmetic operations on numbers involving at least one floating-point number, it automatically switches to numeric computations and returns a floating-point result:

```
feval(symengine,'igamma', '0.1', 2.5)
```

For further computations, set the format for displaying outputs back to short: format short

Use Your Own MuPAD Procedures

> Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Write MuPAD Procedures

A MuPAD procedure is a text file that you can write in any text editor. The recommended practice is to use the MATLAB Editor on page 3-44.

To define a procedure, use the proc function. Enclose the code in the begin and end_proc functions:

```
myProc:= proc(n)
begin
    if n = 1 or n = 0 then
        1
    else
        n* myProc(n - 1)
    end_if;
end_proc:
```

By default, a MuPAD procedure returns the result of the last executed command. You can force a procedure to return another result by using return. In both cases, a procedure returns only one result. To get multiple results from a procedure, combine them into a list or other data structure, or use the print function.

- If you just want to display the results, and do not need to use them in further computations, use the print function. With print, your procedure still returns one result, but prints intermediate results on screen. For example, this procedure prints the value of its argument in each call:

```
myProcPrint:= proc(n)
begin
    print(n);
    if n = 0 or n = 1 then
        return(1);
```

```
    end if;
    n * myProcPrint(n - 1);
end_proc:
```

- If you want to use multiple results of a procedure, use ordered data structures, such as lists or matrices as return values. In this case, the result of the last executed command is technically one object, but it can contain more than one value. For example, this procedure returns the list of two entries:

```
myProcSort:= proc(a, b)
begin
    if a < b then
        [a, b]
    else
        [b, a]
    end if;
end_proc:
```

Avoid using unordered data structures, such as sequences and sets, to return multiple results of a procedure. The order of the entries in these structures can change unpredictably.

When you save the procedure, it is recommended to use the extension .mu. For details, see "Notebook Files and Program Files" on page 3-47. The name of the file can differ from the name of the procedure. Also, you can save multiple procedures in one file.

Steps to Take Before Calling a Procedure

To be able to call a procedure, you must first execute the code defining that procedure, in a notebook. If you write a procedure in the same notebook, simply evaluate the input region that contains the procedure. If you write a procedure in a separate file, you must read the file into a notebook. Reading a file means finding it and executing the commands inside it.

Read MuPAD Procedures

If you work in the MuPAD Notebook and create a separate program file that contains a procedure, use one of the following methods to execute the procedure in a notebook. The first approach is to select Notebook > Read Commands from the main menu.

Alternatively, you can use the read function. The function call read(filename) searches for the program file in this order:

1 Folders specified by the environment variable READPATH
2 filename regarded as an absolute path
3 Current folder (depends on the operating system)
If you want to call the procedure from the MATLAB Live Editor, you still need to execute that procedure before calling it. See "Call Your Own MuPAD Procedures" on page 3-65.

Use Startup Commands and Scripts

Alternatively, you can add a MuPAD procedure to startup commands of a particular notebook. This method lets you execute the procedure every time you start a notebook engine. Startup commands are executed silently, without any visible outputs in the notebook. You can copy the procedure to the dialog box that specifies startup commands or attach the procedure as a startup script. For information, see "Hide Code Lines".

Call Your Own MuPAD Procedures

You can extend the functionality available in the toolbox by writing your own procedures in the MuPAD language. This section explains how to call such procedures at the MATLAB Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a nonnegative integer.

Save the procedure as a file with the extension .mu. For example, save the procedure as myProcedure.mu in the folder C: /MuPAD.

Return to the MATLAB Command Window. Before calling the procedure at the MATLAB command line, enter:

```
read(symengine, 'C:/MuPAD/myProcedure.mu')
```

The read command reads and executes the myProcedure.mu file in MuPAD. After that, you can call the myProc procedure with any valid parameter. For example, compute the factorial of 15 :
feval(symengine, 'myProc', 15)
ans =
1307674368000
If your MuPAD procedure accepts character vector arguments, enclose these arguments in two sets of quotes: double quotes inside single quotes. Single quotes suppress evaluation of the argument before passing it to the MuPAD procedure, and double quotes
let MuPAD recognize that the argument is a character vector. For example, this MuPAD procedure converts a character vector to lowercase and checks if reverting that character vector changes it.

In the MATLAB Command Window, use the read command to read and execute reverted.mu.

```
read(symengine, 'C:/MuPAD/reverted.mu')
```

Now, use feval to call the procedure reverted. To pass a character vector argument to the procedure, use double quotes inside single quotes.

```
feval(symengine, 'reverted', '"Abccba"')
ans =
1
```


Clear Assumptions and Reset the Symbolic Engine

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

The symbolic engine workspace associated with the MATLAB workspace is usually empty. The MATLAB workspace tracks the values of symbolic variables, and passes them to the symbolic engine for evaluation as necessary. However, the symbolic engine workspace contains all assumptions you make about symbolic variables, such as whether a variable is real, positive, integer, greater or less than some value, and so on. These assumptions can affect solutions to equations, simplifications, and transformations, as explained in "Effects of Assumptions on Computations" on page 3-70.

Note These commands
syms x
x = sym('x');
clear x
clear any existing value of x in the MATLAB workspace, but do not clear assumptions about x in the symbolic engine workspace.

If you make an assumption about the nature of a variable, for example, using the commands

```
syms x
```

assume(x,'real')
or
syms x
assume $(x>0)$
then clearing the variable x from the MATLAB workspace does not clear the assumption from the symbolic engine workspace. To clear the assumption, enter the command

```
assume(x,'clear')
```

For details, see "Check Assumptions Set On Variables" on page 3-69 and "Effects of Assumptions on Computations" on page 3-70.

If you reset the symbolic engine by entering the command

```
reset(symengine)
```

MATLAB no longer recognizes any symbolic variables that exist in the MATLAB workspace. Clear the variables with the clear command, or renew them with the syms or sym command.

This example shows how the MATLAB workspace and the symbolic engine workspace respond to a sequence of commands.

| Step | Command | MATLAB Workspace | MuPAD Engine Workspace |
| :--- | :--- | :--- | :--- |
| 1 | syms x positive
 or
 syms x;
 assume $\mathrm{x}>0)$ | x | $\mathrm{x}>0$ |
| 2 | clear x | empty | $\mathrm{x}>0$ |
| 3 | syms x | x | $\mathrm{x}>0$ |
| 4 | assume $\left(\mathrm{x}, \mathrm{'}^{\prime}\right.$ clear' $)$ | x | empty |

Check Assumptions Set On Variables

To check whether a variable, say x, has any assumptions in the symbolic engine workspace associated with the MATLAB workspace, use the assumptions function in the MATLAB Live Editor:

```
assumptions(x)
```

If the function returns an empty symbolic object, there are no additional assumptions on the variable. (The default assumption is that x can be any complex number.) Otherwise, there are additional assumptions on the value of that variable.

For example, while declaring the symbolic variable x make an assumption that the value of this variable is a real number:

```
syms x real
assumptions(x)
ans =
in(x, 'real')
```

Another way to set an assumption is to use the assume function:

```
syms z
assume(z ~= 0);
assumptions(z)
ans =
z ~= 0
```

To see assumptions set on all variables in the MATLAB workspace, use assumptions without input arguments:

```
assumptions
```

```
ans =
[ in(x, 'real'), z ~= 0]
```

Clear assumptions set on x and z :

```
assume([x z],'clear')
```

assumptions
ans $=$
Empty sym: 1-by-0

Effects of Assumptions on Computations

Assumptions can affect many computations, including results returned by the solve function. They also can affect the results of simplifications. For example, solve this equation without any additional assumptions on its variable:

```
syms x
solve(x^4 == 1, x)
ans =
    -1
    1
```

-1i
$1 i$
Now solve the same equation assuming that x is real:

```
syms x real
solve(x^4 == 1, x)
ans =
    -1
    1
```

Use the assumeAl so function to add the assumption that x is also positive:

```
assumeAlso(x > 0)
solve(x^4 == 1, x)
ans =
    1
```

Clearing x does not change the underlying assumptions that x is real and positive:

```
clear x
```

syms x
assumptions(x)
solve($\left.x^{\wedge} 4==1, x\right)$
ans $=$
[in(x, 'real'), $0<x$]
ans $=$
1

Clearing x with assume (x, 'clear') clears the assumption:

```
assume(x,'clear')
```

assumptions(x)
ans $=$
Empty sym: 1-by-0

Create MATLAB Functions from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Symbolic Math Toolbox lets you create a MATLAB function from a symbolic expression. A MATLAB function created from a symbolic expression accepts numeric arguments and evaluates the expression applied to the arguments. You can generate a function handle or a file that contains a MATLAB function. The generated file is available for use in any MATLAB calculation, independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Live Editor, see "Generate MATLAB Functions from Symbolic Expressions" on page 2-259.

When you use the MuPAD Notebook app, all your symbolic expressions are written in the MuPAD language. To be able to create a MATLAB function from such expressions, you must convert it to the MATLAB language. There are two approaches for converting a MuPAD expression to the MATLAB language:

- Assign the MuPAD expression to a variable, and copy that variable from a notebook to the MATLAB workspace. This approach lets you create a function handle or a file that contains a MATLAB function. It also requires using a handle to the notebook.
- Generate MATLAB code from the MuPAD expression in a notebook. This approach limits your options to creating a file. You can skip creating a handle to the notebook.

The generated MATLAB function can depend on the approach that you chose. For example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that converts spherical coordinates of any point to its Cartesian coordinates. First, open a MuPAD notebook with the handle notebook_handle:
notebook_handle = mupad;
In this notebook, create the symbolic matrix S that converts spherical coordinates to Cartesian coordinates:

```
x := r*sin(a)*\operatorname{cos(b):}
y := r*sin(a)*sin(b):
z := r*
S := matrix([x, y, z]):
```

Now convert matrix S to the MATLAB language. Choose the best approach for your task.

Copy MuPAD Variables to the MATLAB Workspace

If your notebook has a handle, like notebook_handle in this example, you can copy variables from that notebook to the MATLAB workspace with the getVar function, and then create a MATLAB function. For example, to convert the symbolic matrix S to a MATLAB function:

1 Copy variable S to the MATLAB workspace:
S = getVar(notebook_handle,'S')
Variable S and its value (the symbolic matrix) appear in the MATLAB workspace and in the MATLAB Live Editor:

```
S =
    r*\operatorname{cos(b)*sin(a)}
    r*sin(a)*sin(b)
    r*}\operatorname{cos(b)
```

2 Use matlabFunction to create a MATLAB function from the symbolic matrix. To generate a MATLAB function handle, use mat labFunction without additional parameters:

```
h = matlabFunction(S)
h =
```


To generate a file containing the MATLAB function, use the parameter file and specify the path to the file and its name. For example, save the MATLAB function to the file cartesian. m in the current folder:

S = matlabFunction(S,'file', 'cartesian.m');
You can open and edit cartesian.m in the MATLAB Editor.

```
function S = cartesian(a,b,r)
%CARTESIAN
% S = CARTESIAN (A,B,R)
t2 = sin(a);
t3 = cos (b);
-S = [r.*t2.*t3;r.*t2.*sin(b);r.*t3];
```


Generate MATLAB Code in a MuPAD Notebook

To generate the MATLAB code from a MuPAD expression within the MuPAD notebook, use the generate: :MATLAB function. Then, you can create a new file that contains an empty MATLAB function, copy the code, and paste it there. Alternatively, you can create a file with a MATLAB formatted character vector representing a MuPAD expression, and then add appropriate syntax to create a valid MATLAB function.

1 In the MuPAD Notebook app, use the generate: : MATLAB function to generate MATLAB code from the MuPAD expression. Instead of printing the result on screen, use the fprint function to create a file and write the generated code to that file:
fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note If the file with this name already exists, fprint replaces the contents of this file with the converted expression.
2 Open cartesian.m. It contains a MATLAB formatted character vector representing matrix S:

```
S = zeros(3,1);
S(1,1) = r*}\operatorname{cos}(b)*\operatorname{sin}(a)
S(2,1) = r*sin(a)*sin(b);
S(3,1) = r*}\operatorname{cos(b);
```

3 To convert this file to a valid MATLAB function, add the keywords function and end, the function name (must match the file name), input and output arguments, and comments:

| 1 | \square function $S=$ cartesian(r , a, b) |
| :---: | :---: |
| 2 | \square \%CARTESIAN Converts spherical coordinates |
| 3 | \% to Cartesian coordinates. |
| 4 | \% Angles are measured in radians. |
| 5 | |
| 6 - | $\mathrm{S}=\mathrm{zeros}(3,1)$; |
| 7 - | $S(1,1)=r * \cos (\mathrm{~b}) * \sin (\mathrm{a})$; |
| 8 - | $S(2,1)=r * \sin (\mathrm{a}) * \sin (\mathrm{~b})$; |
| 9 - | $\mathrm{S}(3,1)=r^{*} \cos (\mathrm{~b})$; |
| $10-$ | - end |

Create MATLAB Function Blocks from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Symbolic Math Toolbox lets you create a MATLAB function block from a symbolic expression. The generated block is available for use in Simulink models, whether or not the computer that runs the simulations has a license for Symbolic Math Toolbox.

If you work in the MATLAB Live Editor, see "Generate MATLAB Function Blocks from Symbolic Expressions" on page 2-263. Working in the MATLAB Live Editor is recommended.

The MuPAD Notebook does not provide a function for generating a block. Therefore, to be able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.
2 Use the getVar function to copy that variable from a notebook to the MATLAB workspace.

For details about these steps, see "Copy MuPAD Variables to the MATLAB Workspace" on page 3-73.

When the expression that you want to use for creating a MATLAB function block appears in the MATLAB workspace, use the matlabFunctionBlock function to create a block from that expression.

For example, open a MuPAD notebook with the handle notebook_handle:
notebook_handle = mupad;
In this notebook, create the following symbolic expression:

```
r := sqrt(x^2 + y^2)
```

Use getVar to copy variable r to the MATLAB workspace:

```
r = getVar(notebook_handle,'r')
```

Variable r and its value appear in the MATLAB workspace and in the MATLAB Live Editor:

```
r=
( (x^2 + y^2)^^(1/2)
```

Before generating a MATLAB Function block from the expression, create an empty model or open an existing one. For example, create and open the new model my_system:

```
new_system('my_system')
open_system('my_system')
```

Since the variable and its value are in the MATLAB workspace, you can use matlabFunctionBlock to generate the block my_block:
matlabFunctionBlock('my_system/my_block', r)
You can open and edit the block in the MATLAB Editor. To open the block, double-click it:

```
function r = my_block(x,y)
%#codegen
r = sqrt(x.^2+y.^2);
```


Create Simscape Equations from MuPAD Expressions

> Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts instead.
> MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19.

Symbolic Math Toolbox lets you integrate symbolic computations into the Simscape modeling workflow by using the results of these computations in the Simscape equation section.

If you work in the MATLAB Live Editor, see "Generate Simscape Equations from Symbolic Expressions" on page 2-265. Working in the MATLAB Live Editor is recommended.

If you work in the MuPAD Notebook app, you can:

- Assign the MuPAD expression to a variable, copy that variable from a notebook to the MATLAB workspace, and use simscapeEquation to generate the Simscape equation in the MATLAB Command Window.
- Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the equation and paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the solution of the ordinary differential equation computed in the MuPAD Notebook app:

1 Open a MuPAD notebook with the handle notebook_handle:
notebook_handle = mupad;
2 In this notebook, define the following equation:
$s:=\operatorname{ode}\left(y^{\prime}(t)=y(t)^{\wedge} 2, y(t)\right):$
3 Decide whether you want to generate the Simscape equation in the MuPAD Notebook or in the MATLAB Command Window.

GenerateSimscape Equations in the MuPAD Notebook App

To generate the Simscape equation in the same notebook, use generate: :Simscape. To display generated Simscape code on screen, use the print function. To remove quotes and expand special characters like line breaks and tabs, use the printing option Unquoted:

```
print(Unquoted, generate::Simscape(s))
```

This command returns the Simscape equation that you can copy and paste to the Simscape equation section:

$$
-y^{\wedge} 2+y . d e r==0.0 ;
$$

Generate Simscape Equations in the MATLAB Command Window

To generate the Simscape equation in the MATLAB Command Window, follow these steps:
1 Use getVar to copy variable s to the MATLAB workspace:
s = getVar(notebook_handle, 's')
Variable s and its value appear in the MATLAB workspace and in the MATLAB Command Window:
$\mathrm{S}=$
ode(diff(y(t), t) - y(t)^2, y(t))
2 Use simscapeEquation to generate the Simscape equation from s:
simscapeEquation(s)
You can copy and paste the generated equation to the Simscape equation section. Do not copy the automatically generated variable ans and the equal sign that follows it.

```
ans =
s == (-y^2+y.der == 0.0);
```

Functions - Alphabetical List

abs

Symbolic absolute value (complex modulus or magnitude)

Syntax

abs(z)

Description

abs (z) returns the absolute value (or complex modulus) of z. Because symbolic variables are assumed to be complex by default, abs returns the complex modulus (magnitude) by default. If z is an array, abs acts element-wise on each element of z.

Examples

Compute Absolute Values of Symbolic Numbers

```
[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]
ans =
[ 1/2, 0, 4 - pi]
```


Compute Absolute Value of Complex Numbers

Compute abs $(x)^{\wedge} 2$ and simplify the result. Because symbolic variables are assumed to be complex by default, the result does not simplify to $x^{\wedge} 2$.

```
syms x
simplify(abs(x)^2)
ans =
abs(x)^2
```

Assume x is real, and repeat the calculation. Now, the result is simplified to $\mathrm{x}^{\wedge} 2$.

```
assume(x,'real')
simplify(abs(x)^2)
ans =
x^2
```

Remove assumptions on x for further calculations. For details, see "Use Assumptions on Symbolic Variables" on page 1-28.

```
assume(x,'clear')
```


Absolute Values of Elements of Array

Compute the absolute values of each element of matrix A.

```
A = sym([1/2+i -25;
    i pi/2]);
abs(A)
ans =
[ 5^(1/2)/2, 25]
[ 1, pi/2]
```


Effect of Assumptions on Absolute Value

Compute the absolute value of this expression assuming that the value of x is negative.

```
syms x
assume(x < 0)
abs(5*x^3)
ans =
-5*x^3
```

For further computations, clear the assumption:

syms x clear

Input Arguments

z - Input
 number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, vector, matrix, or array, variable, function, or expression.

Definitions

Complex Modulus

The absolute value of a complex number $z=x+y^{*} i$ is the value $|z|=\sqrt{x^{2}+y^{2}}$. Here, x and y are real numbers. The absolute value of a complex number is also called a complex modulus.

Tips

- Calling abs for a number that is not a symbolic object invokes the MATLAB abs function.

See Also
angle |imag|real|sign|signIm
Introduced before R2006a

acos

Symbolic inverse cosine function

Syntax

$\operatorname{acos}(X)$

Description

$\operatorname{acos}(X)$ returns the inverse cosine function (arccosine function) of X.

Examples

Inverse Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, acos returns floating-point or exact symbolic results.
Compute the inverse cosine function for these numbers. Because these numbers are not symbolic objects, acos returns floating-point results.

```
A = acos([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])
```

$A=$
$\begin{array}{lllllll}3.1416 & 1.9106 & 2.0944 & 1.3181 & 1.0472 & 0.5236 & 0\end{array}$
Compute the inverse cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acos returns unresolved symbolic calls.

```
symA = acos(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))
symA =
[ pi, pi - acos(1/3), (2*pi)/3, acos(1/4), pi/3, pi/6, 0]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

```
ans =
[ 3.1415926535897932384626433832795,...
1.9106332362490185563277142050315,...
2.0943951023931954923084289221863,...
1.318116071652817965745664254646
1.0471975511965977461542144610932,...
0.52359877559829887307710723054658,...
0]
```


Plot Inverse Cosine Function

Plot the inverse cosine function on the interval from -1 to 1. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(acos(x), [-1, 1])
grid on
```


Handle Expressions Containing Inverse Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acos.

Find the first and second derivatives of the inverse cosine function:

```
syms x
diff(acos(x), x)
diff(acos(x), x, x)
ans =
-1/(1 - x^2)^(1/2)
```

```
ans =
-x/(1 - x^2)^(3/2)
```

Find the indefinite integral of the inverse cosine function:

```
int(acos(x), x)
ans =
x*acos(x) - (1 - x^2)^(1/2)
```

Find the Taylor series expansion of $\operatorname{acos}(x)$:

```
taylor(acos(x), x)
```

ans $=$

- $\left(3^{*} x^{\wedge} 5\right) / 40-x^{\wedge} 3 / 6-x+p i / 2$

Rewrite the inverse cosine function in terms of the natural logarithm:

```
rewrite(acos(x), 'log')
ans =
-log(x + (1 - x^2)^(1/2)*1i)*1i
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

```
See Also
acot|acsc|asec|asin| atan|cos|cot|csc|sec|sin|tan
Introduced before R2006a
```


acosh

Symbolic inverse hyperbolic cosine function

Syntax

```
acosh(X)
```


Description

$\operatorname{acosh}(X)$ returns the inverse hyperbolic cosine function of X.

Examples

Inverse Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, acosh returns floating-point or exact symbolic results.
Compute the inverse hyperbolic cosine function for these numbers. Because these numbers are not symbolic objects, acosh returns floating-point results.

```
A = acosh([-1, 0, 1/6, 1/2, 1, 2])
A =
\begin{tabular}{lll}
\(0.0000+3.1416 i\) & \(0.0000+1.5708 i\) & \(0.0000+1.4033 i .\). \\
\(0.0000+1.0472 i\) & \(0.0000+0.0000 i\) & \(1.3170+0.0000 i\)
\end{tabular}
```

Compute the inverse hyperbolic cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acosh returns unresolved symbolic calls.

```
symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))
symA =
[ pi*1i, (pi*li)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 3.1415926535897932384626433832795i,...
    1.5707963267948966192313216916398i,...
    1.4033482475752072886780470855961i,...
    1.0471975511965977461542144610932i,...
    0,...
    1.316957896924816708625046347308]
```


Plot Inverse Hyperbolic Cosine Function

Plot the inverse hyperbolic cosine function on the interval from 1 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(acosh(x), [1, 10])
grid on
```


Handle Expressions Containing Inverse Hyperbolic Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acosh.

Find the first and second derivatives of the inverse hyperbolic cosine function. Simplify the second derivative by using simplify.

```
syms x
diff(acosh(x), x)
simplify(diff(acosh(x), x, x))
```

```
ans =
1/((x - 1)^(1/2)*(x + 1)^(1/2))
ans =
-x/((x - 1)^(3/2)*(x + 1)^(3/2))
```

Find the indefinite integral of the inverse hyperbolic cosine function. Simplify the result by using simplify.

```
int(acosh(x), x)
ans =
x*acosh(x) - (x - 1)^(1/2)*(x + 1)^(1/2)
```

Find the Taylor series expansion of $\operatorname{acosh}(x)$ for $x>1$:

```
assume(x > 1)
taylor(acosh(x), x)
ans =
(x^5*3i)/40 + (x^3*1i)/6 + x*1i - (pi*1i)/2
```

For further computations, clear the assumption:
syms x clear
Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:

```
rewrite(acosh(x), 'log')
ans =
log(x + (x - 1)^(1/2)*(x + 1)^(1/2))
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh Introduced before R2006a

acot

Symbolic inverse cotangent function

Syntax

$\operatorname{acot}(X)$

Description

$\operatorname{acot}(X)$ returns the inverse cotangent function (arccotangent function) of X.

Examples

Inverse Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, acot returns floating-point or exact symbolic results.
Compute the inverse cotangent function for these numbers. Because these numbers are not symbolic objects, acot returns floating-point results.

```
A = acot([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])
A =
    -0.7854 -1.2490 -1.0472 1.1071 0.7854 0.5236
```

Compute the inverse cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acot returns unresolved symbolic calls.

```
symA = acot(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))
symA =
[ -pi/4, -acot(1/3), -pi/3, acot(1/2), pi/4, pi/6]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.78539816339744830961566084581988,...
-1.2490457723982544258299170772811,
-1.0471975511965977461542144610932,...
1.1071487177940905030170654601785
0.78539816339744830961566084581988,...
0.52359877559829887307710723054658]
```


Plot Inverse Cotangent Function

Plot the inverse cotangent function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot (acot (x) , [-10, 10])
grid on

Handle Expressions Containing Inverse Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acot.

Find the first and second derivatives of the inverse cotangent function:

```
syms x
diff(acot(x), x)
diff(acot(x), x, x)
ans =
-1/(x^2 + 1)
```

```
ans =
(2*x)/(x^2 + 1)^2
```

Find the indefinite integral of the inverse cotangent function:

```
int(acot(x), x)
ans =
log(x^2 + 1)/2 + x*acot(x)
```

Find the Taylor series expansion of $\operatorname{acot}(x)$ for $x>0$:

```
assume(x > 0)
taylor(acot(x), x)
ans =
- x^5/5 + x^3/3 - x + pi/2
```

For further computations, clear the assumption:
syms x clear
Rewrite the inverse cotangent function in terms of the natural logarithm:

```
rewrite(acot(x), 'log')
ans =
(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

```
acos|acsc| asec|asin| atan| cos| cot| csc|sec|sin|tan
```


Introduced before R2006a

acoth

Symbolic inverse hyperbolic cotangent function

Syntax

$\operatorname{acoth}(X)$

Description

acoth (X) returns the inverse hyperbolic cotangent function of X.

Examples

Inverse Hyperbolic Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, acoth returns floating-point or exact symbolic results.
Compute the inverse hyperbolic cotangent function for these numbers. Because these numbers are not symbolic objects, acoth returns floating-point results.

```
A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])
A =
    -0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i...
    0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i
```

Compute the inverse hyperbolic cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acoth returns unresolved symbolic calls.

```
symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))
symA =
[ -acoth(pi/2), Inf, -(pi*1i)/2, acoth(1/2), Inf, acoth(pi/2)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.75246926714192715916204347800251,...
Inf,...
-1.5707963267948966192313216916398i,...
0.54930614433405484569762261846126...
    1.5707963267948966192313216916398i,....
Inf,
0.75246926714192715916204347800251]
```


Plot Inverse Hyperbolic Cotangent Function

Plot the inverse hyperbolic cotangent function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(acoth(x), [-10, 10])
grid on
```


Handle Expressions Containing Inverse Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acoth.

Find the first and second derivatives of the inverse hyperbolic cotangent function:

```
syms x
diff(acoth(x), x)
diff(acoth(x), x, x)
```

```
ans =
-1/(x^2 - 1)
ans =
(2*x)/(x^2 - 1)^2
```

Find the indefinite integral of the inverse hyperbolic cotangent function:

```
int(acoth(x), x)
ans =
log(x^2 - 1)/2 + x*acoth(x)
```

Find the Taylor series expansion of acoth (x) for $x>0$:

```
assume(x > 0)
taylor(acoth(x), x)
ans =
x^5/5 + x^3/3 + x - (pi*1i)/2
```

For further computations, clear the assumption:
syms x clear
Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:

```
rewrite(acoth(x), 'log')
ans =
log(1/x + 1)/2 - log(1 - 1/x)/2
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh Introduced before R2006a

acsc

Symbolic inverse cosecant function

Syntax

```
acsc(X)
```


Description

$\operatorname{acsc}(X)$ returns the inverse cosecant function (arccosecant function) of X.

Examples

Inverse Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, acsc returns floating-point or exact symbolic results.
Compute the inverse cosecant function for these numbers. Because these numbers are not symbolic objects, acsc returns floating-point results.

```
A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A =
    -0.5236 + 0.0000i 1.5708 - Infi 1.0472 + 0.0000i 1.5708.
    -1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i
```

Compute the inverse cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acsc returns unresolved symbolic calls.

```
symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))
symA =
[ -pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.52359877559829887307710723054658,...
Inf,...
1.0471975511965977461542144610932,...
1.5707963267948966192313216916398...
    1.3169578969248165734029498707969i,....
1.5707963267948966192313216916398,...
0.20135792079033079660099758712022]
```


Plot Inverse Cosecant Function

Plot the inverse cosecant function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(acsc(x), [-10, 10])
grid on
```


Handle Expressions Containing Inverse Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acsc.

Find the first and second derivatives of the inverse cosecant function:

```
syms x
diff(acsc(x), x)
diff(acsc(x), x, x)
ans =
-1/(x^2*(1 - 1/x^2)^(1/2))
```

```
ans =
2/(\mp@subsup{x}{}{\wedge}\mp@subsup{3}{}{*}(1-1/\mp@subsup{x}{}{\wedge}2)^(1/2)) + 1/((x^5*(1 - 1/\mp@subsup{x}{}{\wedge}2)^(3/2))
```

Find the indefinite integral of the inverse cosecant function:

```
int(acsc(x), x)
```

ans =
$x^{*} \operatorname{asin}(1 / x)+\log \left(x+\left(x^{\wedge} 2-1\right)^{\wedge}(1 / 2)\right)^{*} \operatorname{sign}(x)$

Find the Taylor series expansion of $\operatorname{acsc}(x)$ around $x=$ Inf:

```
taylor(acsc(x), x, Inf)
```

ans $=$
$1 / x+1 /\left(6 * x^{\wedge} 3\right)+3 /\left(40^{*} x^{\wedge} 5\right)$

Rewrite the inverse cosecant function in terms of the natural logarithm:

```
rewrite(acsc(x), 'log')
ans =
-log(1i/x + (1 - 1/x^2)^(1/2))*1i
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos |acot|asec|asin|atan|cos|cot|csc|sec|sin|tan
\section*{Introduced before R2006a}

acsch

Symbolic inverse hyperbolic cosecant function

Syntax

```
acsch(X)
```


Description

$\operatorname{acsch}(X)$ returns the inverse hyperbolic cosecant function of X.

Examples

Inverse Hyperbolic Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, acsch returns floating-point or exact symbolic results.
Compute the inverse hyperbolic cosecant function for these numbers. Because these numbers are not symbolic objects, acsch returns floating-point results.

```
A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])
A =
\begin{tabular}{lrr}
\(0.0000+0.5236 i\) & Inf \(+0.0000 i\) & \(0.0000-1.0472 i \ldots\) \\
\(1.4436+0.0000 i\) & \(0.0000-1.5708 i\) & \(0.3275+0.0000 i\)
\end{tabular}
```

Compute the inverse hyperbolic cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, acsch returns unresolved symbolic calls.

```
symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))
symA =
[ (pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 0.52359877559829887307710723054658i,...
Inf,...
-1.0471975511965977461542144610932i,...
1.4436354751788103424932767402731,...
-1.5707963267948966192313216916398i,...
0.32745015023725844332253525998826]
```


Plot Inverse Hyperbolic Cosecant Function

Plot the inverse hyperbolic cosecant function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(acsch(x), [-10, 10])
grid on
```


Handle Expressions Containing Inverse Hyperbolic Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing acsch.

Find the first and second derivatives of the inverse hyperbolic cosecant function:

```
syms x
diff(acsch(x), x)
diff(acsch(x), x, x)
```

```
ans =
-1/(x^2*(1/x^2 + 1)^(1/2))
ans =
2/(\mp@subsup{x}{}{\wedge}\mp@subsup{3}{}{*}(1/\mp@subsup{x}{}{\wedge}2+1)^(1/2)) - 1/((\mp@subsup{x}{}{\wedge}5*(1/\mp@subsup{x}{}{\wedge}2 + 1)^(3/2))
```

Find the indefinite integral of the inverse hyperbolic cosecant function:

```
int(acsch(x), x)
ans =
x*asinh(1/x) + asinh(x)*sign(x)
```

Find the Taylor series expansion of $\operatorname{acsch}(x)$ around $x=\operatorname{Inf}:$

```
taylor(acsch(x), x, Inf)
```

ans =
$1 / x-1 /\left(6 * x^{\wedge} 3\right)+3 /\left(40^{*} x^{\wedge} 5\right)$

Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:

```
rewrite(acsch(x), 'log')
ans =
log((1/\mp@subsup{x}{}{\wedge}2 + 1)^(1/2) + 1/x)
```


Input Arguments

X - Input

symbolic number \mid symbolic variable \mid symbolic expression \mid symbolic function \mid symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth \| asech \| asinh \| atanh | cosh \| coth \| csch \| sech \| sinh \| tanh

Introduced before R2006a

adjoint

Adjoint of symbolic square matrix

Syntax

X = adjoint(A)

Description

$X=\operatorname{adjoint}(A)$ returns the adjoint matrix X of A, such that $A * X=\operatorname{det}(A) * e y e(n)=$ $X * A$, where n is the number of rows in A.

Examples

Adjoint of Symbolic Matrix

```
syms x y z
A = sym([x y z; 2 1 0; 1 0 2]);
X = adjoint(A)
X =
```


Verify that $A * X=\operatorname{det}(A) *$ eye (3), where eye (3) is the 3 -by-3 identity matrix.

```
cond = A*X == det(A)*eye(3);
isAlways(cond)
ans =
    3\times3 logical array
        1 1 1
        1 1 1
        1 1 1
```

```
Verify that det(A)*eye(3) = X*A:
cond = det(A)*eye(3) == X*A;
isAlways(cond)
ans =
    3\times3 logical array
        1 1 1
        1 1 1
        1 1 1
```


Compute Adjoint Using Inverse and Determinant

Compute the inverse of this matrix by computing its adjoint and determinant.

```
syms a b c d
A = [a b; c d];
invA = adjoint(A)/det(A)
invA =
[ d/(a*d - b*c), -b/(a*d - b*c)]
[ -c/(a*d - b*c), a/(a*d - b*c)]
```

Verify that invA is the inverse of A .

```
isAlways(invA == inv(A))
ans =
    2\times2 logical array
        1 1
        1 1
```


Input Arguments

A - Square matrix

symbolic matrix
Square matrix, specified as a symbolic matrix.

Definitions

Adjoint of Square Matrix

The adjoint of a square matrix A is the square matrix X, such that the (i, j)-th entry of X is the (j, i)-th cofactor of A.

Cofactor of Matrix

The (j, i)-th cofactor of A is defined as follows.

$$
a_{j i}^{\prime}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

$A_{i j}$ is the submatrix of A obtained from A by removing the i-th row and j-th column.

See Also
det |inv|rank
Introduced in R2013a

airy

Airy function

Syntax

airy (x)
$\operatorname{airy}(0, x)$
airy(1,x)
airy (2,x)
airy $(3, x)$
$\operatorname{airy}(n, x)$
airy(,1)

Description

airy (x) returns the Airy function on page 4-42 of the first kind, $\operatorname{Ai}(x)$, for each element of x.
$\operatorname{airy}(0, x)$ is the same as airy (x).
airy $(1, x)$ returns the derivative of $\operatorname{Ai}(x)$.
airy $(2, x)$ returns the Airy function on page $4-42$ of the second $\operatorname{kind}, \operatorname{Bi}(x)$.
airy $(3, x)$ returns the derivative of $\operatorname{Bi}(x)$.
airy (n, x) uses the values in vector n to return the corresponding Airy functions of elements of vector x . Both n and x must have the same size.
airy (__ , 1) returns the "Scaled Airy Functions" on page 4-43 following the syntax for the MATLAB airy function.

Examples

Find the Airy Function of the First Kind

Find the Airy function of the first kind, $\operatorname{Ai}(x)$, for numeric or symbolic inputs using airy. Approximate exact symbolic outputs using vpa.

Find the Airy function of the first kind, $\operatorname{Ai}(x)$, at 1.5. Because the input is double and not symbolic, you get a double result.

```
airy(1.5)
ans =
    0.0717
```

Find the Airy function of the values of vector v symbolically, by converting v to symbolic form using sym. Because the input is symbolic, airy returns exact symbolic results. The exact symbolic results for most symbolic inputs are unresolved function calls.

```
v = sym([-1 0 25.1 1+1i]);
vAiry = airy(v)
vAiry =
[ airy(0, -1), 3^(1/3)/(3*gamma(2/3)), airy(0, 251/10), airy(0, 1 + 1i)]
```

Numerically approximate the exact symbolic result using vpa.

```
vpa(vAiry)
ans =
[ 0.53556088329235211879951656563887, 0.35502805388781723926006318600418,\ldots.
    4.9152763177499054787371976959487e-38,...
    0.060458308371838149196532978116646 - 0.15188956587718140235494791259223i]
```

Find the Airy function, $\mathrm{Ai}(x)$, of the symbolic input $x^{\wedge} 2$. For symbolic expressions, airy returns an unresolved call.

```
syms x
```

airy ($x^{\wedge} 2$)
ans $=$
$\operatorname{airy}\left(0, x^{\wedge} 2\right)$

Find the Airy Function of the Second Kind

Find the Airy function of the second kind, $\operatorname{Bi}(x)$, of the symbolic input $\left[\begin{array}{llll}-3 & 4 & 1+1 i & x^{\wedge} 2\end{array}\right]$ by specifying the first argument as 2 . Because the input is symbolic, airy returns exact symbolic results. The exact symbolic results for most symbolic inputs are unresolved function calls.

```
v = sym([-3 4 1+1i x^2]);
vAiry = airy(2, v)
vAiry =
[ airy(2, -3), airy(2, 4), airy(2, 1 + 1i), airy(2, x^2)]
```

Use the syntax airy $(2, x)$ like airy (x), as described in the example "Find the Airy Function of the First Kind" on page 4-36.

Plot Airy Functions

Plot the Airy Functions, $A i(x)$ and $B i(x)$, over the interval [-10 2] using fplot. Before R2016a, use ezplot instead of fplot.

```
syms x
fplot(airy(x), [-10 2])
hold on
fplot(airy(2,x), [-10 2])
legend('Ai(x)','Bi(x)','Location','Best')
title('Airy functions Ai(x) and Bi(x)')
grid on
```

Airy functions $\mathrm{Ai}(\mathrm{x})$ and $\mathrm{Bi}(\mathrm{x})$

Plot the absolute value of $A i(z)$ over the complex plane.

```
syms y
z = x + li*y;
figure(2)
fsurf(abs(airy(z)))
title('|Ai(z)|')
a = gca;
a.ZLim = [0 10];
caxis([0 10])
```


Find Derivatives of Airy Functions

Find the derivative of the Airy function of the first kind, $\operatorname{Ai}^{\prime}(x)$, at 0 by specifying the first argument of airy as 1 . Then, numerically approximate the derivative using vpa.

```
dAi = airy(1, sym(0))
dAi_vpa = vpa(dAi)
dAi =
-(3^(1/6)*gamma(2/3))/(2*pi)
dAi_vpa =
-0.2588194037928067984051835601892
```

Find the derivative of the Airy function of the second kind, $\operatorname{Bi}^{\prime}(x)$, at x by specifying the first argument as 3 . Then, find the derivative at $x=5$ by substituting for x using subs and calling vpa.

```
syms x
dBi = airy(3, x)
dBi_vpa = vpa(subs(dBi, x, 5))
dBi =
airy(3, x)
dBi_vpa =
143\overline{5}.8190802179825186717212380046
```


Solve Airy Differential Equation for Airy Functions

Show that the Airy functions $\operatorname{Ai}(x)$ and $\operatorname{Bi}(x)$ are the solutions of the differential equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-x y=0
$$

```
syms y(x)
dsolve(diff(y, 2) - x*y == 0)
ans =
C1*airy(0, x) + C2*airy(2, x)
```


Differentiate Airy Functions

Differentiate expressions containing airy.

```
syms x y
diff(airy(x^2))
diff(diff(airy(3, x^2 + x*y - y^2), x), y)
ans =
2*x*airy(1, x^2)
ans =
airy(2, x^2 + x*y - y^2)*(x^2 + x*y - y^2) +...
airy(2, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y) +...
airy(3, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y)*(x^2 + x*y - y^2)
```


Expand Airy Function using Taylor Series

Find the Taylor series expansion of the Airy functions, $\mathrm{Ai}(x)$ and $\operatorname{Bi}(x)$, using taylor.

```
aiTaylor = taylor(airy(x))
biTaylor = taylor(airy(2, x))
aiTaylor =
- (3^(1/6)*gamma(2/3)*x^4)/(24*pi) + (3^(1/3)*x^3)/(18*gamma(2/3))...
- (3^(1/6)*gamma(2/3)*x)/(2*pi) + 3^(1/3)/(3*gamma(2/3))
biTaylor =
(3^(2/3)*gamma(2/3)*x^4)/(24*pi) + (3^(5/6)*x^3)/(18*gamma (2/3))...
+ (3^(2/3)*gamma(2/3)*x)/(2*pi) + 3^(5/6)/(3*gamma(2/3))
```


Fourier Transform of Airy Function

Find the Fourier transform of the Airy function $\operatorname{Ai}(x)$ using fourier.

```
syms x
aiFourier = fourier(airy(x))
aiFourier =
exp((w^3*1i)/3)
```


Numeric Roots of Airy Function

Find a root of the Airy function $\operatorname{Ai}(x)$ numerically using vpasolve.

```
syms x
vpasolve(airy(x) == 0, x)
ans =
    -226.99630507523600716771890962744
```

Find a root in the interval $\left[\begin{array}{ll}-5 & -3\end{array}\right]$.
vpasolve(airy $(x)=0, x,\left[\begin{array}{ll}-5 & -3])\end{array}\right.$
ans =
-4.0879494441309706166369887014574

Input Arguments

x - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

n - Type of Airy function

0 (default) | number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Type of Airy function, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, or multidimensional array. The values of the input must be $0,1,2$, or 3 , which specify the Airy function as follows.

| \mathbf{n} | Returns |
| :--- | :--- |
| 0 (default) | Airy function, $\operatorname{Ai}(x)$, which is the same as airy (x). |
| 1 | Derivative of Airy function, $\operatorname{Ai}^{\prime}(x)$. |
| 2 | Airy function of the second kind, $\operatorname{Bi}(x)$. |
| 3 | Derivative of Airy function of the second kind, $\operatorname{Bi}^{\prime}(x)$. |

Definitions

Airy Functions

The Airy functions $\operatorname{Ai}(x)$ and $\operatorname{Bi}(x)$ are the two linearly independent solutions of the differential equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-x y=0
$$

$\operatorname{Ai}(x)$ is called the Airy function of the first kind. $\operatorname{Bi}(x)$ is called the Airy function of the second kind.

Scaled Airy Functions

The Airy function of the first kind, $\operatorname{Ai}(x)$, is scaled as

$$
\left.e^{\left(\frac{2}{3} x^{(3 / 2)}\right.}\right) \operatorname{Ai}(x)
$$

The derivative, $\mathrm{Ai}^{\prime}(x)$, is scaled by the same factor.
The Airy function of the second kind, $\operatorname{Bi}(x)$, is scaled as

$$
\left.e^{-\left\lvert\, \frac{2}{3} \operatorname{Re}\left(x^{(3 / 2)}\right)\right.} \right\rvert\, \operatorname{Bi}(x)
$$

The derivative, $\operatorname{Bi}^{\prime}(x)$, is scaled by the same factor.

Tips

- When you call airy for inputs that are not symbolic objects, you call the MATLAB airy function.
- When you call airy (n, x), at least one argument must be a scalar or both arguments must be vectors or matrices of the same size. If one argument is a scalar and the other is a vector or matrix, airy (n, x) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to the scalar.
- airy returns special exact values at 0 .

See Also

besseli|besselj|besselk|bessely

Introduced in R2012a

all

Test whether all equations and inequalities represented as elements of symbolic array are valid

Syntax

all(A)
all(A, dim)

Description

all (A) tests whether all elements of A return logical 1 (true). If A is a matrix, all tests all elements of each column. If A is a multidimensional array, all tests all elements along one dimension.
all (A, dim) tests along the dimension of A specified by dim.

Examples

Test All Elements of Symbolic Vector

Create vector V that contains the symbolic equation and inequalities as its elements:

```
syms x
V = [x ~= x + 1, abs(x) >= 0, x == x];
```

Use all to test whether all of them are valid for all values of x :

```
all(V)
```

ans $=$
logical
1

Test All Elements of Symbolic Matrix

Create this matrix of symbolic equations and inequalities:

```
syms x
M = [x == x, \(x\) == abs(x); abs(x) >= 0, \(x\) ~= 2*x]
M =
[ \(\quad x==x, x==a b s(x)]\)
[ \(0<=\) abs \((x), \quad x\) ~= 2* \(x\) ]
```

Use all to test equations and inequalities of this matrix. By default, all tests whether all elements of each column are valid for all possible values of variables. If all equations and inequalities in the column are valid (return logical 1), then all returns logical 1 for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first column and 0 for the second column:

```
all(M)
ans =
    1\times2 logical array
    1 0
```


Specify Dimension to Test Along

Create this matrix of symbolic equations and inequalities:

```
syms x
M = [x == x, \(x\) == abs(x); abs(x) >= 0, \(x\) ~= 2*x]
M =
[ \(x==x, x==a b s(x)]\)
[ \(0<=\operatorname{abs}(x), \quad x \sim=2^{*} x\) ]
```

For matrices and multidimensional arrays, all can test all elements along the specified dimension. To specify the dimension, use the second argument of all. For example, to test all elements of each column of a matrix, use the value 1 as the second argument:

```
all(M, 1)
ans =
    1\times2 logical array
        1 0
```

To test all elements of each row, use the value 2 as the second argument:

```
all(M, 2)
ans =
    2x1 logical array
        0
        1
```


Test Arrays with Numeric Values

Test whether all elements of this vector return logical 1s. Note that all also converts all numeric values outside equations and inequalities to logical 1 s and 0 s . The numeric value 0 becomes logical 0 :

```
syms x
all([0, x == x])
ans =
    logical
        0
```

All nonzero numeric values, including negative and complex values, become logical 1 s :

```
all([1, 2, -3, 4 + i, x == x])
ans =
    logical
        1
```


Input Arguments

A - Input

symbolic array
Input, specified as a symbolic array. For example, it can be an array of symbolic equations, inequalities, or logical expressions with symbolic subexpressions.

dim - Dimension

first non-singleton dimension (default) | integer

Dimension, specified as an integer. For example, if A is a matrix, any $(A, 1)$ tests elements of each column and returns a row vector of logical 1 s and 0 s . any $(\mathrm{A}, 2)$ tests elements of each row and returns a column vector of logical 1 s and 0 s .

Tips

- If A is an empty symbolic array, all (A) returns logical 1.
- If some elements of A are just numeric values (not equations or inequalities), all converts these values as follows. All numeric values except 0 become logical 1. The value 0 becomes logical 0 .
- If A is a vector and all its elements return logical $1, \operatorname{all}(A)$ returns logical 1 . If one or more elements are zero, all (A) returns logical 0.
- If A is a multidimensional array, all (A) treats the values along the first dimension that is not equal to 1 (nonsingleton dimension) as vectors, returning logical 1 or 0 for each vector.

See Also

and | any | isAlways | not | or | xor

Introduced in R2012a

allMuPADNotebooks

All open notebooks

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

L = allMuPADNotebooks

Description

L = allMuPADNotebooks returns a vector with handles (pointers) to all currently open MuPAD notebooks.

If there are no open notebooks, allMuPADNotebooks returns an empty object [empty mupad].

Examples

Identify All Open Notebooks

Get a vector of handles to all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFilel
nb2 =
myFile2
nb3 =
Notebook1
```

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a vector of handles to these notebooks:
allNBs = allMuPADNotebooks
allNBs =
myFile1
myFile2
Notebook1

Create Handle to Existing Notebook

If you already created a MuPAD notebook without a handle or if you lost the handle to a notebook, use allMuPADNotebooks to create a new handle. Alternatively, you can save the notebook, close it, and then open it again using a handle.

Create a new notebook:
mupad
Suppose that you already performed some computations in that notebook, and now want to transfer a few variables to the MATLAB workspace. To be able to do it, you need to create a handle to this notebook:
nb = allMuPADNotebooks

```
nb =
Notebook1
```

Now, you can use nb when transferring data and results between the notebook Notebook1 and the MATLAB workspace. This approach does not require you to save Notebook1.

```
getVar(nb,'x')
```

ans $=$
x

- "Create MuPAD Notebooks" on page 3-3
- "Open MuPAD Notebooks" on page 3-6
- "Save MuPAD Notebooks" on page 3-12
- "Evaluate MuPAD Notebooks from MATLAB" on page 3-13
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
- "Close MuPAD Notebooks from MATLAB" on page 3-17

Output Arguments

L - All open MuPAD notebooks

vector of handles to notebooks
All open MuPAD notebooks, returned as a vector of handles to these notebooks.

See Also

close|evaluateMuPADNotebook|getVar|mupad|mupadNotebookTitle|openmn | setVar

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6
"Save MuPAD Notebooks" on page 3-12
"Evaluate MuPAD Notebooks from MATLAB" on page 3-13
"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
"Close MuPAD Notebooks from MATLAB" on page 3-17

Introduced in R2013b

and

Logical AND for symbolic expressions

Syntax

$A \& B$
and (A, B)

Description

$A \& B$ represents the logical conjunction. $A \& B$ is true only when both A and B are true. and (A, B) is equivalent to $A \& B$.

Examples

Construct and Set Assumptions

Combine symbolic inequalities into one condition by using \& .

```
syms x y
cond = x>=0 & y>=0;
```

Set the assumptions represented by the condition by using assume.

```
assume(cond)
```

Verify that the assumptions are set.
assumptions
ans $=$
[$0<=x, 0<=y$]

Evaluate Inequalities or Conditions

Define a range for a variable by combining two inequalities into a logical condition by using \& .

```
syms x
range = 0 < x & x < 1;
```

Return the condition at $1 / 2$ and 10 by substituting for x by using subs. The subs function does not automatically evaluate the conditions.

```
x1 = subs(range,x,1/2)
x2 = subs(range,x,10)
x1 =
0< 1/2 & 1/2 < 1
x2 =
0 < 10 & 10 < 1
```

Evaluate these inequalities to logical 1 or 0 by using isAlways.

```
isAlways(x1)
```

isAlways(x2)
ans =
logical
1
ans $=$
logical
0

Input Arguments

A - Input

symbolic equation | symbolic inequality | symbolic expression
Input, specified as a symbolic equation, inequality, or expression.

B - Input
 symbolic equation | symbolic inequality | symbolic expression

Input, specified as a symbolic equation, inequality, or expression.

Tips

- If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.

See Also

all|any|isAlways|not|or|piecewise|xor

Introduced in R2012a

angle

Symbolic polar angle

Syntax

angle(Z)

Description

angle(Z) computes the polar angle of the complex value Z.

Examples

Compute Polar Angle of Numeric Inputs

Compute the polar angles of these complex numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[angle(1 + i), angle(4 + pi*i), angle(Inf + Inf*i)]
ans =
```

```
    0.7854
```

```
    0.7854
```


Compute Polar Angle of Symbolic Inputs

Compute the polar angles of these complex numbers which are converted to symbolic objects:

```
[angle(sym(1) + i), angle(sym(4) + sym(pi)*i), angle(Inf + sym(Inf)*i)]
```

ans $=$
[pi/4, atan(pi/4), pi/4]

Compute Polar Angle of Symbolic Expressions

Compute the limits of these symbolic expressions:

```
syms x
limit(angle(x + x^2*i/(1 + x)), x, -Inf)
limit(angle(x + x^2*i/(1 + x)), x, Inf)
ans =
-(3*pi)/4
ans =
pi/4
```


Compute Polar Angle of Array

Compute the polar angles of the elements of matrix Z :

```
Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);
angle(Z)
ans =
[ pi/3, pi/6]
[ pi/4, pi/2]
```


Input Arguments

Z - Input

number | vector | matrix | array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function.

Tips

- Calling angle for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB angle function.
- If $Z=0$, then angle (Z) returns 0 .

Alternatives

For real X and Y such that $Z=X+Y * i$, the call angle (Z) is equivalent to $\operatorname{atan} 2(Y, X)$.

See Also
atan2|conj|imag|real|sign|signIm
Introduced in R2013a

any

Test whether at least one of equations and inequalities represented as elements of symbolic array is valid

Syntax

any (A)
any(A,dim)

Description

any (A) tests whether at least one element of A returns logical 1 (true). If A is a matrix, any tests elements of each column. If A is a multidimensional array, any tests elements along one dimension.
any (A, dim) tests along the dimension of A specified by dim.

Examples

Test Vector of Symbolic Conditions

Create vector V that contains the symbolic equation and inequalities as its elements:

```
syms x real
V = [x ~= x + 1, abs(x) >= 0, x == x];
```

Use any to test whether at least one of them is valid for all values of x :

```
any(V)
ans =
    logical
    1
```


Test Matrix of Symbolic Conditions

Create this matrix of symbolic equations and inequalities:

```
syms \(x\) real
M = [x == 2*x, \(x==a b s(x) ; ~ a b s(x) ~>=~ 0, ~ x ~==~ 2 * x] ~\)
M =
[ \(x==2 * x, x==a b s(x)]\)
[ \(0<=\) abs ( \(x\) ), \(\quad x==2^{*} x\) ]
```

Use any to test equations and inequalities of this matrix. By default, any tests whether any element of each column is valid for all possible values of variables. If at least one equation or inequality in the column is valid (returns logical 1), then any returns logical 1 for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first column and 0 for the second column:

```
any(M)
ans =
    1\times2 logical array
    1 0
```


Specify Dimension to Test Along

Create this matrix of symbolic equations and inequalities:

```
syms \(x\) real
\(M=\) [x == 2*x, \(x==a b s(x) ; ~ a b s(x) ~>=~ 0, ~ x ~==~ 2 * x] ~\)
\(M=\)
[ \(x==2 * x, x==a b s(x)]\)
[ \(0<=\operatorname{abs}(x), \quad x==2^{*} x\) ]
```

For matrices and multidimensional arrays, any can test elements along the specified dimension. To specify the dimension, use the second argument of any. For example, to test elements of each column of a matrix, use the value 1 as the second argument:

```
any(M, 1)
ans =
    1\times2 logical array
        1 0
```

To test elements of each row, use the value 2 as the second argument:

```
any(M, 2)
ans =
    2x1 logical array
        0
    1
```


Test Arrays with Numeric Values

Test whether any element of this vector returns logical 1 . Note that any also converts all numeric values outside equations and inequalities to logical 1 s and 0 s . The numeric value 0 becomes logical 0:

```
syms x
any([0, x == x + 1])
ans =
    logical
        0
```

All nonzero numeric values, including negative and complex values, become logical 1 s :

```
any([-4 + i, x == x + 1])
ans =
    logical
        1
```


Input Arguments

A - Input

symbolic array
Input, specified as a symbolic array. For example, it can be an array of symbolic equations, inequalities, or logical expressions with symbolic subexpressions.

dim - Dimension

first non-singleton dimension (default) | integer

Dimension, specified as an integer. For example, if A is a matrix, any $(A, 1)$ tests elements of each column and returns a row vector of logical 1 s and 0 s. any $(A, 2)$ tests elements of each row and returns a column vector of logical 1 s and 0 s .

Tips

- If A is an empty symbolic array, any (A) returns logical 0 .
- If some elements of A are just numeric values (not equations or inequalities), any converts these values as follows. All nonzero numeric values become logical 1. The value 0 becomes logical 0 .
- If A is a vector and any of its elements returns logical 1 , any (A) returns logical 1 . If all elements are zero, any (A) returns logical 0.
- If A is a multidimensional array, any (A) treats the values along the first dimension that is not equal to 1 (non-singleton dimension) as vectors, returning logical 1 or 0 for each vector.

See Also

all|and |isAlways | not | or | xor

Introduced in R2012a

argnames

Input variables of symbolic function

Syntax

argnames(f)

Description

$\operatorname{argnames}(\mathrm{f})$ returns input variables of f .

Examples

Find Input Variables of Symbolic Function

Create this symbolic function:
syms $f(x, y)$
$f(x, y)=x+y ;$
Use argnames to find input variables of f :
argnames(f)

```
ans =
```

[x, y]

Create this symbolic function:
syms $f(a, b, x, y)$
$f(x, b, y, a)=a * x+b * y ;$
Use argnames to find input variables of f. When returning variables, argnames uses the same order as you used when you defined the function:
argnames(f)
ans =
$[\mathrm{x}, \mathrm{b}, \mathrm{y}, \mathrm{a}]$

Input Arguments

f - Input

symbolic function
Input, specified as a symbolic function.

See Also

formula|sym|syms|symvar

Introduced in R2012a

asec

Symbolic inverse secant function

Syntax

$\operatorname{asec}(X)$

Description

$\operatorname{asec}(X)$ returns the inverse secant function (arcsecant function) of X.

Examples

Inverse Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, asec returns floating-point or exact symbolic results.
Compute the inverse secant function for these numbers. Because these numbers are not symbolic objects, asec returns floating-point results.

```
A = asec([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A =
    2.0944 + 0.0000i 0.0000 + Infi 0.5236 + 0.0000i...
    0.0000 + 1.3170i 0.0000 + 0.0000i 1.3694 + 0.0000i
```

Compute the inverse secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asec returns unresolved symbolic calls.

```
symA = asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))
symA =
[ (2*pi)/3, Inf, pi/6, acos(2), 0, acos(1/5)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 2.0943951023931954923084289221863,...
Inf,...
0.52359877559829887307710723054658,...
1.3169578969248165734029498707969i,...
0,...
1.3694384060045659001758622252964]
```


Plot Inverse Secant Function

Plot the inverse secant function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(asec(x), [-10, 10])
grid on

Handle Expressions Containing Inverse Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing asec.

Find the first and second derivatives of the inverse secant function:

```
syms x
diff(asec(x), x)
diff(asec(x), x, x)
ans =
1/(x^2*(1 - 1/x^2)^(1/2))
```

```
ans =
- 2/(x^3*(1 - 1/x^2)^(1/2)) - 1/(x^5*(1 - 1/x^2)^(3/2))
```

Find the indefinite integral of the inverse secant function:

```
int(asec(x), x)
ans =
x*acos(1/x) - log(x + (x^2 - 1)^(1/2))*sign(x)
```

Find the Taylor series expansion of $\operatorname{asec}(x)$ around $x=$ Inf:

```
taylor(asec(x), x, Inf)
```

ans $=$
pi/2 - $1 / x-1 /\left(6 * x^{\wedge} 3\right)-3 /\left(40 * x^{\wedge} 5\right)$

Rewrite the inverse secant function in terms of the natural logarithm:

```
rewrite(asec(x), 'log')
ans =
-log(1/x + (1 - 1/x^2)^(1/2)*1i)*1i
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos |acot|acsc|asin|atan|cos|cot|csc|sec|sin|tan
\section*{Introduced before R2006a}

asech

Symbolic inverse hyperbolic secant function

Syntax

$\operatorname{asech}(X)$

Description

asech (X) returns the inverse hyperbolic secant function of X.

Examples

Inverse Hyperbolic Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, asech returns floating-point or exact symbolic results.
Compute the inverse hyperbolic secant function for these numbers. Because these numbers are not symbolic objects, asech returns floating-point results.

```
A = asech([-2, 0, 2/sqrt(3), 1/2, 1, 3])
A =
    0.0000+2.0944i 
```

Compute the inverse hyperbolic secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asech returns unresolved symbolic calls.

```
symA = asech(sym([-2, 0, 2/sqrt(3), 1/2, 1, 3]))
symA =
[ (pi*2i)/3, Inf, (pi*1i)/6, acosh(2), 0, acosh(1/3)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 2.0943951023931954923084289221863i,....
    Inf,...
    0.52359877559829887307710723054658i,...
    1.316957896924816708625046347308,...
    0,...
    1.230959417340774682134929178248i]
```


Plot Inverse Hyperbolic Secant Function

Plot the inverse hyperbolic secant function on the interval from 0 to 1. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(asech(x), [0, 1])
grid on
```


Handle Expressions Containing Inverse Hyperbolic Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing asech.

Find the first and second derivatives of the inverse hyperbolic secant function. Simplify the second derivative by using simplify.

```
syms x
diff(asech(x), x)
simplify(diff(asech(x), x, x))
```

```
ans =
-1/(x^2*(1/x - 1)^(1/2)*(1/x + 1)^(1/2))
ans =
-(2*x^2 - 1)/(x^5*(1/x - 1)^(3/2)*(1/x + 1)^(3/2))
```

Find the indefinite integral of the inverse hyperbolic secant function:

```
int(asech(x), x)
ans =
atan(1/((1/x - 1)^(1/2)*(1/x + 1)^(1/2))) + x*acosh(1/x)
```

Find the Taylor series expansion of $\operatorname{asech}(x)$ around $x=\operatorname{Inf}:$

```
taylor(asech(x), x, Inf)
```

ans $=$
(pi*1i)/2 - 1i/x - 1i/(6*x^3) - 3i/(40*x^5)

Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:

```
rewrite(asech(x), 'log')
ans =
log((1/x - 1)^(1/2)*(1/x + 1)^(1/2) + 1/x)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

asin

Symbolic inverse sine function

Syntax

```
asin(X)
```


Description

$\operatorname{asin}(X)$ returns the inverse sine function (arcsine function) of X.

Examples

Inverse Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asin returns floating-point or exact symbolic results.
Compute the inverse sine function for these numbers. Because these numbers are not symbolic objects, asin returns floating-point results.

```
A = asin([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])
A =
    -1.5708 -0.3398 -0.5236 0.2527 0.5236 1.0472 1.5708
```

Compute the inverse sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asin returns unresolved symbolic calls.

```
symA = asin(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))
symA =
[ -pi/2, -asin(1/3), -pi/6, asin(1/4), pi/6, pi/3, pi/2]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
[ -1.5707963267948966192313216916398,...
-0.33983690945412193709639251339176,..
-0.52359877559829887307710723054658,...
0.25268025514207865348565743699371,...
0.52359877559829887307710723054658,...
1.0471975511965977461542144610932,...
1.5707963267948966192313216916398]
```


Plot Inverse Sine Function

Plot the inverse sine function on the interval from -1 to 1. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(asin(x), [-1, 1])
grid on
```


Handle Expressions Containing Inverse Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing asin.

Find the first and second derivatives of the inverse sine function:

```
syms x
diff(asin(x), x)
diff(asin(x), x, x)
ans =
1/(1 - x^2)^(1/2)
```

```
ans =
x/(1 - x^2)^(3/2)
```

Find the indefinite integral of the inverse sine function:

```
int(asin(x), x)
ans =
x*asin(x) + (1 - x^2)^(1/2)
```

Find the Taylor series expansion of $\operatorname{asin}(x)$:

```
taylor(asin(x), x)
```

ans $=$
$\left(3^{*} x^{\wedge} 5\right) / 40+x^{\wedge} 3 / 6+x$

Rewrite the inverse sine function in terms of the natural logarithm:

```
rewrite(asin(x), 'log')
ans =
-log((1 - x^2)^(1/2) + x*1i)*1i
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

```
See Also
acos|acot|acsc| asec| atan| cos| cot|csc| sec| sin|tan
Introduced before R2006a
```


asinh

Symbolic inverse hyperbolic sine function

Syntax

asinh (X)

Description

asinh (X) returns the inverse hyperbolic sine function of X.

Examples

Inverse Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, asinh returns floating-point or exact symbolic results.
Compute the inverse hyperbolic sine function for these numbers. Because these numbers are not symbolic objects, asinh returns floating-point results.
$A=\operatorname{asinh}([-i, 0,1 / 6, i / 2, i, 2])$
$A=$

| $0.0000-1.5708 i$ | $0.0000+0.0000 i$ | $0.1659+0.0000 i \ldots$ |
| :--- | :--- | :--- |
| $0.0000+0.5236 i$ | $0.0000+1.5708 i$ | $1.4436+0.0000 i$ |

Compute the inverse hyperbolic sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, asinh returns unresolved symbolic calls.

```
symA = asinh(sym([-i, 0, 1/6, i/2, i, 2]))
symA =
[ -(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -1.5707963267948966192313216916398i,...
0,...
0.16590455026930117643502171631553,...
0.52359877559829887307710723054658i,...
1.5707963267948966192313216916398i,...
1.4436354751788103012444253181457]
```


Plot Inverse Hyperbolic Sine Function

Plot the inverse hyperbolic sine function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(asinh(x), [-10, 10])
grid on
```


Handle Expressions Containing Inverse Hyperbolic Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing asinh.

Find the first and second derivatives of the inverse hyperbolic sine function:

```
syms x
diff(asinh(x), x)
diff(asinh(x), x, x)
```

```
ans =
1/(x^2 + 1)^(1/2)
ans =
-x/(x^2 + 1)^(3/2)
```

Find the indefinite integral of the inverse hyperbolic sine function:

```
int(asinh(x), x)
ans =
x*asinh(x) - (x^2 + 1)^(1/2)
```

Find the Taylor series expansion of asinh (x):

```
taylor(asinh(x), x)
```

ans $=$
$\left(3 * x^{\wedge} 5\right) / 40-x^{\wedge} 3 / 6+x$

Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:

```
rewrite(asinh(x), 'log')
ans =
log(x + (x^2 + 1)^(1/2))
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

assume

Set assumption on symbolic object

Syntax

```
assume(condition)
assume(expr,set)
assume(expr,'clear')
```


Description

assume(condition) states that condition is valid. assume is not additive. Instead, it automatically deletes all previous assumptions on the variables in condition.
assume (expr, set) states that expr belongs to set. assume deletes previous assumptions on variables in expr.
assume (expr,'clear') clears all assumptions on all variables in expr.

Examples

Common Assumptions

Set an assumption using the associated syntax.

| Assume ' \mathbf{x} ' is | Syntax |
| :--- | :--- |
| real | $\operatorname{assume}(x$, ' real' $)$ |
| rational | $\operatorname{assume}(x$, ' rational' $)$ |
| positive | $\operatorname{assume}(x>0)$ |
| less than -1 or greater than 1 | $\operatorname{assume}(x<-1 \quad x>1)$ |

| Assume ' x ' is | Syntax |
| :---: | :---: |
| an integer from 2 through 10 | $\begin{aligned} & \text { assume(in(x,'integer') \& x>2 \& } \\ & x<10) \end{aligned}$ |
| not an integer | assume(~in(z,'integer')) |
| not equal to 0 | assume (x ~= 0) |
| even | assume(x/2,'integer') |
| odd | assume($(x-1) / 2$, integer') |
| from 0 through 2п | assume (x>0 \& $x<2 *$ pi) |
| a multiple of п | assume(x/pi,'integer') |

Assume Variable Is Even or Odd

Assume x is even by assuming that $\mathrm{x} / 2$ is an integer. Assume x is odd by assuming that $(x-1) / 2$ is an integer.

Assume x is even.

```
syms x
assume(x/2,'integer')
```

Find all even numbers between 0 and 10 using solve.

```
solve( }x>0,x<10,x
ans =
    2
    4
    6
    8
```

Assume x is odd. assume is not additive, but instead automatically deletes the previous assumption in(x/2, 'integer').

```
assume((x-1)/2,'integer')
solve(x>0,x<10,x)
ans =
    1
3
5
```

7
9
Clear the assumptions on x for further computations.
assume (x,'clear')

Multiple Assumptions

Successive assume commands do not set multiple assumptions. Instead, each assume command deletes previous assumptions and sets new assumptions. Set multiple assumptions by using assumeAlso or the $\&$ operator.

Assume $x>5$ and then $x<10$ by using assume. Use assumptions to check that only the second assumption exists because assume deleted the first assumption when setting the second.

```
syms x
assume(x > 5)
assume(x < 10)
assumptions
ans =
x < 10
```

Assume the first assumption in addition to the second by using assumeAl so. Check that both assumptions exist.

```
assumeAlso(x > 5)
assumptions
ans =
[ 5 < x, x < 10]
```

Clear the assumptions on x.

```
assume(x,'clear')
```

Assume both conditions using the \& operator. Check that both assumptions exist.

```
assume(x>5 & x<10)
assumptions
ans =
[ 5 < x, x < 10]
```

Clear the assumptions on x for future calculations.
assume(x,'clear')

Assumptions on Integrand

Compute an indefinite integral with and without the assumption on the symbolic parameter a.

Use assume to set an assumption that a does not equal -1 .

```
syms x a
assume(a ~= -1)
```

Compute this integral.

```
int(x^a,x)
ans =
x^(a + 1)/(a + 1)
```

Now, clear the assumption and compute the same integral. Without assumptions, int returns this piecewise result.

```
assume(a,'clear')
int(x^a, x)
ans =
piecewise(a == -1, log(x), a ~= -1, x^(a + 1)/(a + 1))
```


Assumptions on Parameters and Variables of Equation

Use assumptions to restrict the returned solutions of an equation to a particular interval.
Solve this equation.

```
syms x
eqn = x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3;
solve(eqn, x)
ans =
    -5
    -1
    -1/3
```

Use assume to restrict the solutions to the interval $-1<=x<=1$.

```
assume(-1 <= x <= 1)
solve(eqn, x)
ans =
    -1
    -1/3
    1/2
```

Set several assumptions simultaneously by using the logical operators and, or, xor, not, or their shortcuts. For example, all negative solutions less than - 1 and all positive solutions greater than 1.

```
assume(x < -1 | x > 1)
solve(eqn, x)
ans =
    -5
    100
```

For further computations, clear the assumptions.
assume(x,'clear')

Use Assumptions for Simplification

Setting appropriate assumptions can result in simpler expressions.
Try to simplify the expression sin(2*pi*n) using simplify. The simplify function cannot simplify the input and returns the input as it is.

```
syms n
simplify(sin(2*n*pi))
ans =
sin(2*pi*n)
```

Assume n is an integer. simplify now simplifies the expression.

```
assume(n,'integer')
simplify(sin(2*n*pi))
```

For further computations, clear the assumption.
assume(n,'clear')

Assumptions on Expressions

Set assumption on the symbolic expression.
You can set assumptions not only on variables, but also on expressions. For example, compute this integral.

```
syms x
f = 1/abs(x^2 - 1);
int(f,x)
ans =
-atanh(x)/sign(x^2 - 1)
```

Set the assumption $x^{2}-1>0$ to produce a simpler result.

```
assume(x^2 - 1 > 0)
int(f,x)
ans =
-atanh(x)
```

For further computations, clear the assumption.
assume (x,'clear')

Assumptions to Prove Relations

Prove relations that hold under certain conditions by first assuming the conditions and then using isAlways.

Prove that $\sin \left(\mathrm{pi}^{*} \mathrm{x}\right)$ is never equal to 0 when x is not an integer. The isAlways function returns logical 1 (true), which means the condition holds for all values of x under the set assumptions.

```
syms x
assume(~in(x,'integer'))
isAlways(sin(pi*x) ~= 0)
ans =
    logical
    1
```


Assumptions on Matrix Elements

Set assumptions on all elements of a matrix using sym.
Create the 3-by-3 symbolic matrix A with auto-generated elements. Specify the set as rational.

```
A = sym('A',[3 3],'rational')
A =
[ A1_1, A1_2, A1_3]
[ A2-1, A2_2, A2_3]
[ A3-1, A3-2, A3-3]
```

Return the assumptions on the elements of A using assumptions.

```
assumptions(A)
ans =
[ in(A1_1, 'rational'), in(A1_2, 'rational'), in(A1_3, 'rational'),...
    in(A2_1, 'rational'), in(A2_2, 'rational'), in(A2_3, 'rational'),...
    in(A3_1, 'rational'), in(A3_2, 'rational'), in(A3_3, 'rational')]
```

You can also use assume to set assumptions on all elements of a matrix. Assume all elements of A are positive using assume.
assume(A,'positive')
For further computations, clear the assumptions.

```
assume(A,'clear')
```


Input Arguments

condition - Assumption statement

symbolic expression | symbolic equation | symbolic relation | vector or matrix of symbolic expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or matrix of symbolic expressions, equations, or relations. You also can combine several assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr - Expression to set assumption on

symbolic variable | symbolic expression | vector or matrix of symbolic variables or expressions

Expression to set assumption on, specified as a symbolic variable, expression, vector, or matrix. If expr is a vector or matrix, then assume (expr, set) sets an assumption that each element of expr belongs to set.

set - Set of integer, rational, real, or positive numbers

'integer'|'rational'|'real'|'positive'
Set of integer, rational, real, or positive numbers, specified as 'integer', 'rational', 'real', or 'positive'.

Tips

- assume removes any assumptions previously set on the symbolic variables. To retain previous assumptions while adding an assumption, use assumeAlso.
- When you delete a symbolic variable from the MATLAB workspace using clear, all assumptions that you set on that variable remain in the symbolic engine. If you later declare a new symbolic variable with the same name, it inherits these assumptions.
- To clear all assumptions set on a symbolic variable var, use this command.

```
assume(var,'clear')
```

- To delete all objects in the MATLAB workspace and close the Symbolic Math Toolbox engine associated with the MATLAB workspace clearing all assumptions, use this command:

```
clear all
```

- MATLAB projects complex numbers in inequalities to the real axis. If condition is an inequality, then both sides of the inequality must represent real values. Inequalities with complex numbers are invalid because the field of complex numbers is not an ordered field. (It is impossible to tell whether $5+i$ is greater or less than $2+3 *_{i}$.) For example, $x>i$ becomes $x>0$, and $x<=3+2 * i$ becomes $x<=3$.
- The toolbox does not support assumptions on symbolic functions. Make assumptions on symbolic variables and expressions instead.
- When you create a new symbolic variable using sym and syms, you also can set an assumption that the variable is real, positive, integer, or rational.

```
a = sym('a','real');
b = sym('b','integer');
c = sym('c','positive');
d = sym('d','positive');
e = sym('e','rational');
or more efficiently
syms a real
syms b integer
syms c d positive
syms e rational
```


See Also

and |assumeAlso|assumptions|clear all|in|isAlways|not|or|piecewise | sym | syms

Topics

"Set Assumptions" on page 1-28
"Check Existing Assumptions" on page 1-29
"Delete Symbolic Objects and Their Assumptions" on page 1-29
"Default Assumption" on page 1-28

Introduced in R2012a

assumeAlso

Add assumption on symbolic object

Syntax

```
assumeAlso(condition)
assumeAlso(expr,set)
```


Description

assumeAlso(condition) states that condition is valid for all symbolic variables in condition. It retains all assumptions previously set on these symbolic variables.
assumeAlso (expr, set) states that expr belongs to set, in addition to all previously made assumptions.

Examples

Assumptions Specified as Relations

Set assumptions using assume. Then add more assumptions using assumeAlso.
Solve this equation assuming that both x and y are nonnegative.

```
syms x y
assume(x >= 0 & y >= 0)
s = solve(x^2 + y^2 == 1, y)
Warning: Solutions are valid under the following
conditions: x <= 1;
x == 1.
    To include parameters and conditions in the
    solution, specify the 'ReturnConditions' value as
'true'.
> In solve>warnIfParams (line 508)
```

In solve (line 357)
s =
$(1-x)^{\wedge}(1 / 2)^{*}(x+1)^{\wedge}(1 / 2)$
$-(1-x)^{\wedge}(1 / 2) *(x+1)^{\wedge}(1 / 2)$
The solver warns that both solutions hold only under certain conditions.
Add the assumption that $x<1$. To add a new assumption without removing the previous one, use assumeAlso.
assumeAlso(x < 1)
Solve the same equation under the expanded set of assumptions.

```
s = solve(x^2 + y^2 == 1, y)
S =
(1 - x)^(1/2)*(x + 1)^(1/2)
```

For further computations, clear the assumptions.
assume([x y],'clear')

Assumptions Specified as Sets

Set assumptions using syms. Then add more assumptions using assumeAlso.
When declaring the symbolic variable n , set an assumption that n is positive.
syms n positive
Using assumeAlso, add more assumptions on the same variable n. For example, assume also that n is and integer.
assumeAlso(n,'integer')
Return all assumptions affecting variable n using assumptions. In this case, n is a positive integer.

```
assumptions(n)
ans =
[ 0 < n, in(n, 'integer')]
```

For further computations, clear the assumptions.

```
assume(n,'clear')
```


Assumptions on Matrix Elements

Use the assumption on a matrix as a shortcut for setting the same assumption on each matrix element.

Create the 3 -by- 3 symbolic matrix A with auto-generated elements. To assume every element of A is rational, specify set as 'rational'.

```
A = sym('A',[3 3],'rational')
A =
[ A1_1, A1_2, A1_3]
[ A2 1, A2 2, A2 3]
[ A3_1, A3_2, A3_3]
```

Now, add the assumption that each element of A is greater than 1.

```
assumeAlso(A > 1)
```

Return assumptions affecting elements of A using assumptions:

```
assumptions(A)
ans =
[ 1 < A1 1, 1 < A1 2, 1 < A1 3, 1 < A2 1, 1 < A2 2, 1 < A2 3,...
    1 < A3 1, 1 < A3 2, 1 < A3 3,...
    in(A1_1, 'rational'), in(A1_2, 'rational'), in(A1_3, 'rational'),...
    in(A2_1, 'rational'), in(A2_2, 'rational'), in(A2_3, 'rational'),...
    in(A3_1, 'rational'), in(A3_2, 'rational'), in(A3_3, 'rational')]
```

For further computations, clear the assumptions.

```
assume(A,'clear')
```


Contradicting Assumptions

When you add assumptions, ensure that the new assumptions do not contradict the previous assumptions. Contradicting assumptions can lead to inconsistent and unpredictable results. In some cases, assumeAl so detects conflicting assumptions and issues an error.

Try to set contradicting assumptions. assumeAlso returns an error.

```
syms y
assume(y,'real')
assumeAlso(y == i)
Error using mupadengine/feval (line 163)
Assumptions are inconsistent.
Error in sym/assumeAlso (line 551)
    feval(symengine, 'assumeAlso', cond);
```

assumeAlso does not guarantee to detect contradicting assumptions. For example, assume that y is nonzero, and both y and $\mathrm{y}^{*} \mathrm{i}$ are real values.

```
syms y
assume(y ~= 0)
assumeAlso(y,'real')
assumeAlso(y*i,'real')
```

Return all assumptions affecting variable y using assumptions:

```
assumptions(y)
```

```
ans =
[ in(y, 'real'), in(y*li, 'real'), y ~= 0]
```

For further computations, clear the assumptions.

```
assume(y,'clear')
```


Input Arguments

condition - Assumption statement

symbolic expression | symbolic equation | relation | vector or matrix of symbolic expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or matrix of symbolic expressions, equations, or relations. You also can combine several assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr - Expression to set assumption on

symbolic variable | symbolic expression | vector or matrix of symbolic variables or expressions

Expression to set assumption on, specified as a symbolic variable, expression, or a vector or matrix of symbolic variables or expressions. If expr is a vector or matrix, then assumeAlso (expr, set) sets an assumption that each element of expr belongs to set.

set - Set of integer, rational, real, or positive numbers

```
'integer'|'rational'|'real'|'positive'
```

Set of integer, rational, real, or positive numbers, specified as 'integer', 'rational', 'real', or 'positive'.

Tips

- assumeAlso keeps all assumptions previously set on the symbolic variables. To replace previous assumptions with the new one, use assume.
- When adding assumptions, always check that a new assumption does not contradict the existing assumptions. To see existing assumptions, use assumptions. Symbolic Math Toolbox does not guarantee to detect conflicting assumptions. Conflicting assumptions can lead to unpredictable and inconsistent results.
- When you delete a symbolic variable from the MATLAB workspace using clear, all assumptions that you set on that variable remain in the symbolic engine. If later you declare a new symbolic variable with the same name, it inherits these assumptions.
- To clear all assumptions set on a symbolic variable var use this command.
assume (var, 'clear')
- To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox engine associated with the MATLAB workspace resetting all its assumptions, use this command.
clear all
- MATLAB projects complex numbers in inequalities to the real axis. If condition is an inequality, then both sides of the inequality must represent real values. Inequalities with complex numbers are invalid because the field of complex numbers is not an ordered field. (It is impossible to tell whether $5+i$ is greater or less than $2+3 * i$.) For example, $x>i$ becomes $x>0$, and $x<=3+2 * i$ becomes $x<=3$.
- The toolbox does not support assumptions on symbolic functions. Make assumptions on symbolic variables and expressions instead.
- Instead of adding assumptions one by one, you can set several assumptions in one function call. To set several assumptions, use assume and combine these assumptions by using the logical operators and, or, xor, not, all, any, or their shortcuts.

```
See Also
and|assume| assumptions|in|isAlways|not|or|piecewise| sym| syms
```


Topics

"Set Assumptions" on page 1-28
"Check Existing Assumptions" on page 1-29
"Delete Symbolic Objects and Their Assumptions" on page 1-29
"Default Assumption" on page 1-28

Introduced in R2012a

assumptions

Show assumptions affecting symbolic variable, expression, or function

Syntax

assumptions(var)
assumptions

Description

assumptions(var) returns all assumptions that affect variable var. If var is an expression or function, assumptions returns all assumptions that affect all variables in var.
assumptions returns all assumptions that affect all variables in MATLAB Workspace.

Examples

Assumptions on Variables

Assume that the variable n is an integer using assume. Return the assumption using assumptions.
syms n

```
assume(n,'integer')
```

assumptions
ans $=$
in(n, 'integer')
The syntax $\mathrm{in}(\mathrm{n}$, 'integer') indicates n is an integer.
Assume that n is less than x and that $\mathrm{x}<42$ using assume. The assume function replaces old assumptions on input with the new assumptions. Return all assumptions that affect n .

```
syms x
assume(n<x & x<42)
assumptions(n)
ans =
[ n < x, x < 42]
```

assumptions returns the assumption $x<42$ because it affects n through the assumption $n<x$. Thus, assumptions returns the transitive closure of assumptions, which is all assumptions that mathematically affect the input.

Set the assumption on variable m that $1<m<3$. Return all assumptions on m and x using assumptions.

```
syms m
assume(1<m<3)
assumptions([m x])
ans =
[ n < x, 1 < m, m < 3, x < 42]
```

To see the assumptions that affect all variables, use assumptions without any arguments.

```
assumptions
```

```
ans =
[ n < x, 1 < m, m < 3, x < 42]
```

For further computations, clear the assumptions.
assume([m n x],'clear')

Multiple Assumptions on One Variable

You cannot set an additional assumption on a variable using assume because assume clears all previous assumptions on that variable. To set an additional assumption on a variable, using assumeAlso.

Set an assumption on x using assume. Set an additional assumption on x use assumeAlso. Use assumptions to return the multiple assumptions on x.
syms x
assume(x,'real')

```
assumeAlso(x<0)
assumptions(x)
ans =
[ in(x, 'real'), x < 0]
```

The syntax in(x, 'real') indicates x is real.
For further computations, clear the assumptions.

```
assume(x,'clear')
```


Assumptions Affecting Expressions and Functions

assumptions accepts symbolic expressions and functions as input and returns all assumptions that affect all variables in the symbolic expressions or functions.

Set assumptions on variables in a symbolic expression. Find all assumptions that affect all variables in the symbolic expression using assumptions.

```
syms a b c
expr = a*exp(b)*sin(c);
assume(a+b > 3 & in(a,'integer') & in(c,'real'))
assumptions(expr)
ans =
[ 3 < a + b, in(a, 'integer'), in(c, 'real')
```

Find all assumptions that affect all variables that are inputs to a symbolic function.

```
syms f(a,b,c)
assumptions(f)
ans =
[ 3 < a + b, in(a, 'integer'), in(c, 'real')]
```

Clear the assumptions for further computations.

```
assume([a b c],'clear')
```


Restore Old Assumptions

To restore old assumptions, first store the assumptions returned by assumptions. Then you can restore these assumptions at any point by calling assume or assumeAlso.

Solve the equation for a spring using dsolve under the assumptions that the mass and spring constant are positive.

```
syms m k positive
syms x(t)
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)
ans =
C8*}\operatorname{sin}((k^(1/2)*t)/m^(1/2)
```

Suppose you want to explore solutions unconstrained by assumptions, but want to restore the assumptions afterwards. First store the assumptions using assumptions, then clear the assumptions and solve the equation. dsolve returns unconstrained solutions.

```
tmp = assumptions;
assume([m k],'clear')
dsolve(m*diff(x,t,t) == - k*x, x(0)==0)
ans =
C10* exp((t*(-k*m)^(1/2))/m) + C10* exp(-(t*(-k*m)^(1/2))/m)
```

Restore the original assumptions using assume.

```
assume(tmp)
```

After computations are complete, clear assumptions using assume.

```
assume([m k],'clear')
```


Input Arguments

var - Symbolic input to check for assumptions

symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array
Symbolic input for which to show assumptions, specified as a symbolic variable, expression, or function, or a vector, matrix, or multidimensional array of symbolic variables, expressions, or functions.

Tips

- When you delete a symbolic object from the MATLAB workspace by using clear, all assumptions that you set on that object remain in the symbolic engine. If you declare a new symbolic variable with the same name, it inherits these assumptions.
- To clear all assumptions set on a symbolic variable var use this command.
assume(var,'clear')
- To close the Symbolic Math Toolbox engine associated with the MATLAB workspace resetting all its assumptions, use this command.

```
reset(symengine)
```

Immediately before or after executing reset (symengine) you should clear all symbolic objects in the MATLAB workspace.

- To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox engine associated with the MATLAB workspace resetting all its assumptions, use this command.

```
clear all
```


See Also

and | assume | assumeAlso|clear|in|isAlways|not|or|piecewise| sym| syms

Topics

"Set Assumptions" on page 1-28
"Check Existing Assumptions" on page 1-29
"Delete Symbolic Objects and Their Assumptions" on page 1-29
"Default Assumption" on page 1-28

Introduced in R2012a

atan

Symbolic inverse tangent function

Syntax

$\operatorname{atan}(X)$

Description

atan (X) returns the inverse tangent function (arctangent function) of X.

Examples

Inverse Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, atan returns floating-point or exact symbolic results.
Compute the inverse tangent function for these numbers. Because these numbers are not symbolic objects, atan returns floating-point results.

```
A = atan([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])
A =
    -0.7854 -0.3218 -0.5236 0.4636 0.7854 1.0472
```

Compute the inverse tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, atan returns unresolved symbolic calls.

```
symA = atan(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))
symA =
[ -pi/4, -atan(1/3), -pi/6, atan(1/2), pi/4, pi/3]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.78539816339744830961566084581988,...
-0.32175055439664219340140461435866
-0.52359877559829887307710723054658, ...
0.46364760900080611621425623146121,...
0.78539816339744830961566084581988,...
1.0471975511965977461542144610932]
```


Plot Inverse Tangent Function

Plot the inverse tangent function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(atan(x), [-10, 10])
grid on
```


Handle Expressions Containing Inverse Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing atan.

Find the first and second derivatives of the inverse tangent function:

```
syms x
diff(atan(x), x)
diff(atan(x), x, x)
ans =
1/(x^2 + 1)
```

```
ans =
-(2*x)/( (x^2 + 1)^2
```

Find the indefinite integral of the inverse tangent function:

```
int(atan(x), x)
ans =
x*atan(x) - log(x^2 + 1)/2
```

Find the Taylor series expansion of atan (x):

```
taylor(atan(x), x)
```

ans $=$
$x^{\wedge} 5 / 5-x^{\wedge} 3 / 3+x$

Rewrite the inverse tangent function in terms of the natural logarithm:

```
rewrite(atan(x), 'log')
ans =
(log(1 - x*1i)*1i)/2 - (log(1 + x*1i)*1i)/2
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

```
See Also
acos|acot|acsc| asec| asin| atan2| cos| cot|csc| sec| sin|tan
Introduced before R2006a
```


atan2

Symbolic four-quadrant inverse tangent

Syntax

```
atan2(Y,X)
```


Description

$\operatorname{atan} 2(Y, X)$ computes the four-quadrant inverse tangent (arctangent) of Y and X. If Y and X are vectors or matrices, atan2 computes arctangents element by element.

Examples

Four-Quadrant Inverse Tangent for Numeric and Symbolic Arguments

Compute the arctangents of these parameters. Because these numbers are not symbolic objects, you get floating-point results.

```
[atan2(1, 1), atan2(pi, 4), atan2(Inf, Inf)]
ans =
```

0.6658
0.7854

```
```

 0.7854
    ```
```

 0.7854
    ```

Compute the arctangents of these parameters which are converted to symbolic objects:
```

[atan2(sym(1), 1), atan2(sym(pi), sym(4)), atan2(Inf, sym(Inf))]

```
ans \(=\)
[ pi/4, atan(pi/4), pi/4]

\section*{Limit of Four-Quadrant Inverse Tangent}

Compute the limits of this symbolic expression:
```

syms x
limit(atan2(x^2/(1 + x), x), x, -Inf)
limit(atan2(x^2/(1 + x), x), x, Inf)
ans =
-(3*pi)/4
ans =
pi/4

```

\section*{Four-Quadrant Inverse Tangent of Array Input}

Compute the arctangents of the elements of matrices Y and X :
```

Y = sym([3 sqrt(3); 1 1]);
X = sym([sqrt(3) 3; 1 0]);
atan2(Y, X)
ans =
[pi/3, pi/6]
[pi/4, pi/2]

```

\section*{Input Arguments}

\section*{Y - Input}
number | vector | matrix | array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a symbolic number, vector, matrix, array, or a symbolic number, array, function, or expression. If \(Y\) is a number, it must be real. If \(Y\) is a vector or matrix, it must either be a scalar or have the same dimensions as \(X\). All numerical elements of \(Y\) must be real.

\section*{X - Input}
number | vector | matrix | array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a symbolic number, vector, matrix, array, or a symbolic number, array, function, or expression. The function also accepts a vector or matrix of symbolic numbers, variables, expressions, functions. If \(X\) is a number, it must be real. If \(X\) is a vector or matrix, it must either be a scalar or have the same dimensions as Y . All numerical elements of X must be real.

\section*{Definitions}

\section*{Four-Quadrant Inverse Tangent}

If \(X \neq 0\) and \(Y \neq 0\), then
\[
\operatorname{atan} 2(Y, X)=\operatorname{atan}\left(\frac{Y}{X}\right)+\frac{\pi}{2} \operatorname{sign}(Y)(1-\operatorname{sign}(X))
\]

Results returned by atan2 belong to the closed interval [-pi, pi]. Results returned by atan belong to the closed interval [-pi/2, pi/2].

\section*{Tips}
- Calling atan2 for numbers (or vectors or matrices of numbers) that are not symbolic objects invokes the MATLAB atan2 function.
- If one of the arguments \(X\) and \(Y\) is a vector or a matrix, and another one is a scalar, then atan 2 expands the scalar into a vector or a matrix of the same length with all elements equal to that scalar.
- Symbolic arguments \(X\) and \(Y\) are assumed to be real.
- If \(X=0\) and \(Y>0\), then \(\operatorname{atan} 2(Y, X)\) returns \(p i / 2\).

If \(X=0\) and \(Y<0\), then \(\operatorname{atan} 2(Y, X)\) returns \(-\mathrm{pi} / 2\).
If \(X=Y=0\), then \(\operatorname{atan} 2(Y, X)\) returns 0 .

\section*{Alternatives}

For complex \(Z=X+Y * i\), the call atan2 \((Y, X)\) is equivalent to angle( \(Z\) ).

\section*{See Also}
angle|atan|conj|imag|real

\section*{Introduced in R2013a}

\section*{atanh}

Symbolic inverse hyperbolic tangent function

\section*{Syntax}
```

atanh(X)

```

\section*{Description}
atanh ( X ) returns the inverse hyperbolic tangent function of \(X\).

\section*{Examples}

\section*{Inverse Hyperbolic Tangent Function for Numeric and Symbolic Arguments}

Depending on its arguments, atanh returns floating-point or exact symbolic results.
Compute the inverse hyperbolic tangent function for these numbers. Because these numbers are not symbolic objects, atanh returns floating-point results.
```

A = atanh([-i, 0, 1/6, i/2, i, 2])
A =

| $0.0000-0.7854 i$ | $0.0000+0.0000 i$ | $0.1682+0.0000 i \ldots$ |
| :--- | :--- | :--- |
| $0.0000+0.4636 i$ | $0.0000+0.7854 i$ | $0.5493+1.5708 i$ |

```

Compute the inverse hyperbolic tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, atanh returns unresolved symbolic calls.
```

symA = atanh(sym([-i, 0, 1/6, i/2, i, 2]))
symA =
[-(pi*li)/4, 0, atanh(1/6), atanh(1i/2), (pi*1i)/4, atanh(2)]

```

Use vpa to approximate symbolic results with floating-point numbers:
```

vpa(symA)
ans =
[-0.78539816339744830961566084581988i,...
0,...
0.1682361183106064652522967051085
0.46364760900080611621425623146121i,...
0.78539816339744830961566084581988i,...
0.54930614433405484569762261846126 - 1.5707963267948966192313216916398i]

```

\section*{Plot Inverse Hyperbolic Tangent Function}

Plot the inverse hyperbolic tangent function on the interval from -1 to 1. Prior to R2016a, use ezplot instead of fplot.
```

syms x
fplot(atanh(x), [-1, 1])
grid on

```


\section*{Handle Expressions Containing Inverse Hyperbolic Tangent Function}

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing atanh.

Find the first and second derivatives of the inverse hyperbolic tangent function:
```

syms x
diff(atanh(x), x)
diff(atanh(x), x, x)

```
```

ans =
-1/(x^2 - 1)
ans =
(2*x)/(x^2 - 1)^2

```

Find the indefinite integral of the inverse hyperbolic tangent function:
```

int(atanh(x), x)
ans =
log(x^2 - 1)/2 + x*atanh(x)

```
Find the Taylor series expansion of atanh ( \(x\) ):
taylor(atanh(x), x)
ans \(=\)
\(x^{\wedge} 5 / 5+x^{\wedge} 3 / 3+x\)

Rewrite the inverse hyperbolic tangent function in terms of the natural logarithm:
```

rewrite(atanh(x), 'log')
ans =
log(x + 1)/2 - log(1 - x)/2

```

\section*{Input Arguments}

\section*{X - Input}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

\section*{See Also}
acosh| acoth | acsch | asech | asinh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

\section*{baseUnits}

Base units of unit system

\section*{Syntax}
baseUnits(unitSystem)

\section*{Description}
baseUnits(unitSystem) returns the base units of the unit system unitSystem as a vector of symbolic units. You can use the returned units to create new unit systems by using newUnitSystem.

\section*{Examples}

\section*{Base Units of Unit System}

Get the base units of a unit system by using baseUnits. Then, modify the base units and create a new unit system using the modified base units. Available unit systems include SI, CGS, and US. For all unit systems, see "Unit Systems List" on page 2-28.

Get the base units of the SI unit system.
```

SIUnits = baseUnits('SI')
SIUnits =
[[kg], [s], [m], [A], [cd], [mol], [K]]

```

Note Do not define a variable called baseUnits because the variable will prevent access to the baseUnits function.

Define base units that use kilometer for length and hour for time by modifying SIUnits using subs.
```

u = symunit;
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr])
newUnits =
[[kg], [h], [km], [A], [cd], [mol], [K]]

```

Define the new unit system by using newUnitSystem.
```

newUnitSystem('SI_km_hr',newUnits)

```
```

ans =
"SI_km_hr"

```

To convert units between unit systems, see "Unit Conversions and Unit Systems" on page 2-31.
- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

\section*{Input Arguments}

\section*{unitSystem - Name of unit system}
string | character vector
Name of the unit system, specified as a string or character vector.

\section*{See Also}
derivedUnits|newUnitSystem|removeUnitSystem|rewrite| symunit

\section*{Topics}
"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

\section*{External Websites}

The International System of Units (SI)

\section*{Introduced in R2017b}

\section*{bernoulli}

Bernoulli numbers and polynomials

\section*{Syntax}
```

bernoulli(n)

```
bernoulli( \(\mathrm{n}, \mathrm{x}\) )

\section*{Description}
bernoulli(n) returns the nth Bernoulli number on page 4-120.
bernoulli \((n, x)\) returns the nth Bernoulli polynomial on page 4-120.

\section*{Examples}

\section*{Bernoulli Numbers with Odd and Even Indices}

The 0th Bernoulli number is 1. The next Bernoulli number can be \(-1 / 2\) or \(1 / 2\), depending on the definition. The bernoulli function uses \(-1 / 2\). The Bernoulli numbers with even indices \(n>1\) alternate the signs. Any Bernoulli number with an odd index \(n>2\) is 0 .

Compute the even-indexed Bernoulli numbers with the indices from 0 to 10. Because these indices are not symbolic objects, bernoulli returns floating-point results.
```

bernoulli(0:2:10)

```
ans =
1.0000
0.1667
-0.0333
0.0238
\(-0.0333\)
0.0758

Compute the same Bernoulli numbers for the indices converted to symbolic objects:
```

bernoulli(sym(0:2:10))

```
ans \(=\)
[ 1, 1/6, -1/30, 1/42, -1/30, 5/66]

Compute the odd-indexed Bernoulli numbers with the indices from 1 to 11:
```

bernoulli(sym(1:2:11))
ans =
[-1/2, 0, 0, 0, 0, 0]

```

\section*{Bernoulli Polynomials}

For the Bernoulli polynomials, use bernoulli with two input arguments.
Compute the first, second, and third Bernoulli polynomials in variables \(x, y\), and \(z\), respectively:
```

syms x y z
bernoulli(1, x)
bernoulli(2, y)
bernoulli(3, z)
ans =
x - 1/2
ans =
y^2 - y + 1/6
ans =
z^3 - (3*z^2)/2 + z/2

```

If the second argument is a number, bernoulli evaluates the polynomial at that number. Here, the result is a floating-point number because the input arguments are not symbolic numbers:
bernoulli(2, 1/3)
```

ans =
-0.0556

```

To get the exact symbolic result, convert at least one of the numbers to a symbolic object:
```

bernoulli(2, sym(1/3))

```
```

ans =

```
-1/18

\section*{Plot Bernoulli Polynomials}

Plot the first six Bernoulli polynomials. Prior to R2016a, use ezplot instead of fplot. Prior to R2016a, use ezplot instead of fplot.
syms \(x\)
fplot(bernoulli(0:5, x), [-0.8 1.8])
title('Bernoulli Polynomials')
grid on


\section*{Handle Expressions Containing Bernoulli Polynomials}

Many functions, such as diff and expand, handles expressions containing bernoulli.
```

Find the first and second derivatives of the Bernoulli polynomial:
syms n x
diff(bernoulli(n,x^2), x)
ans =
2*n*x*bernoulli(n - 1, x^2)
diff(bernoulli(n, x^2), x, x)
ans =
2*n*bernoulli(n - 1, x^2) +...
4*n*x^2*bernoulli(n - 2, x^2)*(n - 1)

```

Expand these expressions containing the Bernoulli polynomials:
```

expand(bernoulli(n, x + 3))
ans =
bernoulli(n, x) + (n*(x + 1)^n)/(x + 1) +...
(n*(x + 2)^n)/(x + 2) + (n*x^n)/x
expand(bernoulli(n, 3*x))
ans =
(3^n*bernoulli(n, x))/3 + (3^n*bernoulli(n, x + 1/3))/3 +...
(3^n*bernoulli(n, x + 2/3))/3

```

\section*{Input Arguments}

\section*{n - Index of the Bernoulli number or polynomial}
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Index of the Bernoulli number or polynomial, specified as a nonnegative integer, symbolic nonnegative integer, variable, expression, function, vector, or matrix. If \(n\) is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials for each element of \(n\). If one input argument is a scalar and the other one is a vector or a matrix, bernoulli ( \(n, x\) ) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

\section*{x - Polynomial variable}
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Polynomial variable, specified as a symbolic variable, expression, function, vector, or matrix. If \(x\) is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials for each element of \(x\). When you use the bernoulli function to find Bernoulli polynomials, at least one argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, bernoulli \((n, x)\) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

\section*{Definitions}

\section*{Bernoulli Polynomials}

The Bernoulli polynomials are defined as follows:
\[
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} \operatorname{bernoulli}(n, x) \frac{t^{n}}{n!}
\]

\section*{Bernoulli Numbers}

The Bernoulli numbers are defined as follows:
\[
\text { bernoulli }(n)=\operatorname{bernoulli}(n, 0)
\]

\section*{See Also}

\author{
euler
}

Introduced in R2014a

\section*{bernstein}

Bernstein polynomials

\section*{Syntax}
bernstein( \(\mathrm{f}, \mathrm{n}, \mathrm{t}\) )
bernstein ( \(\mathrm{g}, \mathrm{n}, \mathrm{t}\) )
bernstein(g,var,n,t)

\section*{Description}
bernstein ( \(\mathrm{f}, \mathrm{n}, \mathrm{t}\) ) with a function handle f returns the nth-order Bernstein polynomial on page 4-127 symsum ( \(\left.\mathrm{nchoosek}(\mathrm{n}, \mathrm{k}) * \mathrm{t}^{\wedge} \mathrm{k}^{*}(1-\mathrm{t})^{\wedge}(\mathrm{n}-\mathrm{k}) * \mathrm{f}(\mathrm{k} / \mathrm{n}), \mathrm{k}, 0, \mathrm{n}\right)\), evaluated at the point \(t\). This polynomial approximates the function \(f\) over the interval [0,1].
bernstein ( \(\mathrm{g}, \mathrm{n}, \mathrm{t}\) ) with a symbolic expression or function g returns the nth-order Bernstein polynomial, evaluated at the point t . This syntax regards g as a univariate function of the variable determined by symvar \((\mathrm{g}, 1)\).

If any argument is symbolic, bernstein converts all arguments except a function handle to symbolic, and converts a function handle's results to symbolic.
bernstein( g , var, \(\mathrm{n}, \mathrm{t}\) ) with a symbolic expression or function g returns the approximating nth-order Bernstein polynomial, regarding \(g\) as a univariate function of the variable var.

\section*{Examples}

\section*{Approximation of Sine Function Specified as Function Handle}

Approximate the sine function by the 10th- and 100th-degree Bernstein polynomials:
```

syms t
b10 = bernstein(@(t) sin(2*pi*t), 10, t);
b100 = bernstein(@(t) sin(2*pi*t), 100, t);
Plot sin(2*pi*t) and its approximations:

```
```

fplot(sin(2*pi*t),[0,1])

```
fplot(sin(2*pi*t),[0,1])
hold on
fplot(b10,[0,1])
fplot(b100,[0,1])
legend('sine function','10th-degree polynomial',...
    '100th-degree polynomial')
title('Bernstein polynomials')
hold off
```


Approximation of Exponential Function Specified as Symbolic Expression

Approximate the exponential function by the second-order Bernstein polynomial in the variable t :

```
syms x t
bernstein(exp(x), 2, t)
ans =
(t - 1)^2 + t^2*exp(1) - 2*t*exp(1/2)*(t - 1)
```

Approximate the multivariate exponential function. When you approximate a multivariate function, bernstein regards it as a univariate function of the default variable determined by symvar. The default variable for the expression $y^{*} \exp \left(x^{*} y\right)$ is x :

```
syms x y t
```

symvar (y*exp($\left.\mathrm{x}^{*} \mathrm{y}\right), 1$)
ans $=$
x
bernstein treats this expression as a univariate function of x :

```
bernstein(y*exp(x*y), 2, t)
```

```
ans =
y*(t - 1)^2 + t^2* y*exp(y) - 2*t*y*exp(y/2)*(t - 1)
```

To treat $y^{*} \exp \left(x^{*} y\right)$ as a function of the variable y, specify the variable explicitly:

```
bernstein(y*exp(x*y), y, 2, t)
```

ans $=$
$t^{\wedge} 2 * \exp (x)-t^{*} \exp (x / 2) *(t-1)$

Approximation of Linear Ramp Specified as Symbolic Function

Approximate function f representing a linear ramp by the fifth-order Bernstein polynomials in the variable t :

```
syms f(t)
f(t) = triangularPulse(1/4, 3/4, Inf, t);
p = bernstein(f, 5, t)
p =
7*t^3*(t - 1)^2 - 3*t^2*(t - 1)^3 - 5*t^4*(t - 1) + t^5
```

Simplify the result:

```
simplify(p)
```

ans $=$
$-t^{\wedge} 2^{*}\left(2^{*} t-3\right)$

Numerical Stability of Simplified Bernstein Polynomials

When you simplify a high-order symbolic Bernstein polynomial, the result often cannot be evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial, and then simplify the result:

```
f = @(x)rectangularPulse(1/4,3/4,x);
b1 = bernstein(f, 100, sym('t'));
b2 = simplify(b1);
```

Convert the polynomial b1 and the simplified polynomial b2 to MATLAB functions:

```
f1 = matlabFunction(b1);
f2 = matlabFunction(b2);
```

Compare the plot of the original rectangular pulse function, its numerically stable Bernstein representation f1, and its simplified version f2. The simplified version is not numerically stable.

```
t = 0:0.001:1;
plot(t, f(t), t, f1(t), t, f2(t))
hold on
legend('original function','Bernstein polynomial',...
    'simplified Bernstein polynomial')
hold off
```


Input Arguments

f - Function to be approximated by a polynomial

function handle
Function to be approximated by a polynomial, specified as a function handle. f must accept one scalar input argument and return a scalar value.
g - Function to be approximated by a polynomial
symbolic expression | symbolic function

Function to be approximated by a polynomial, specified as a symbolic expression or function.

n - Bernstein polynomial order

nonnegative integer
Bernstein polynomial order, specified as a nonnegative number.

t - Evaluation point
 number | symbolic number | symbolic variable | symbolic expression | symbolic function

Evaluation point, specified as a number, symbolic number, variable, expression, or function. If t is a symbolic function, the evaluation point is the mathematical expression that defines t. To extract the mathematical expression defining t, bernstein uses formula(t).

var - Free variable

symbolic variable
Free variable, specified as a symbolic variable.

Definitions

Bernstein Polynomials

A Bernstein polynomial is a linear combination of Bernstein basis polynomials.
A Bernstein polynomial of degree n is defined as follows:

$$
B(t)=\sum_{k=0}^{n} \beta_{k} b_{k, n}(t) .
$$

Here,

$$
b_{k, n}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}, \quad k=0, \ldots, n
$$

are the Bernstein basis polynomials, and $\binom{n}{k}$ is a binomial coefficient.

The coefficients β_{k} are called Bernstein coefficients or Bezier coefficients.
If f is a continuous function on the interval $[0,1]$ and

$$
B_{n}(f)(t)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) b_{k, n}(t)
$$

is the approximating Bernstein polynomial, then

$$
\lim _{n \rightarrow \infty} B_{n}(f)(t)=f(t)
$$

uniformly in t on the interval $[0,1]$.

Tips

- Symbolic polynomials returned for symbolic t are numerically stable when substituting numerical values between 0 and 1 for t.
- If you simplify a symbolic Bernstein polynomial, the result can be unstable when substituting numerical values for the curve parameter t.

See Also

bernsteinMatrix|formula|nchoosek|symsum|symvar

Introduced in R2013b

bernsteinMatrix

Bernstein matrix

Syntax

$B=$ bernsteinMatrix(n,t)

Description

$B=$ bernsteinMatrix($n, t)$, where t is a vector, returns the length($t)-$ by- $(n+1)$
Bernstein matrix B, such that $B(i, k+1)=n \operatorname{choosek}(n, k) * t(i)^{\wedge} k^{*}(1-t(i))^{\wedge}(n-k)$. Here, the index i runs from 1 to length(t), and the index k runs from 0 to n.

The Bernstein matrix is also called the Bezier matrix.
Use Bernstein matrices to construct Bezier curves:

```
bezierCurve = bernsteinMatrix(n, t)*P
```

Here, the $\mathrm{n}+1$ rows of the matrix P specify the control points of the Bezier curve. For example, to construct the second-order 3-D Bezier curve, specify the control points as:

```
P = [p0x, p0y, p0z; p1x, p1y, p1z; p2x, p2y, p2z]
```


Examples

2-D Bezier Curve

Plot the fourth-order Bezier curve specified by the control points p0 = [01], p1 = [4 3], p2 = [6 2], p3 = [3 0], p4 = [2 4]. Create a matrix with each row representing a control point:
$\mathrm{P}=[01 ; 43 ; 62 ; 30 ; 24] ;$
Compute the fourth-order Bernstein matrix B:

```
syms t
B = bernsteinMatrix(4, t)
B =
[ (t - 1)^4, -4*t*(t - 1)^3, 6*t^2*(t - 1)^2, -4*t^3*(t - 1), t^4]
```

Construct the Bezier curve:

```
bezierCurve = simplify(B*P)
bezierCurve =
[ -2*t*(- 5*t^3 + 6*t^2 + 6*t - 8), 5*t^4 + 8*t^3 - 18*t^2 + 8*t + 1]
```

Plot the curve adding the control points to the plot:

```
fplot(bezierCurve(1), bezierCurve(2), [0, 1])
hold on
scatter(P(:,1), P(:,2),'filled')
title('Fourth-order Bezier curve')
hold off
```

Fourth-order Bezier curve

3-D Bezier Curve

Construct the third-order Bezier curve specified by the 4 -by- 3 matrix P of control points. Each control point corresponds to a row of the matrix P.

```
P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];
```

Compute the third-order Bernstein matrix:

```
syms t
B = bernsteinMatrix(3,t)
B =
[ -(t - 1)^3, 3*t*(t - 1)^2, -3*t^2*(t - 1), t^3]
```

Construct the Bezier curve:

```
bezierCurve = simplify(B*P)
bezierCurve =
[ 6*t*(t^2 - t + 1), t*(10*t^2 - 15*t + 6), 3*t*(2*t^2 - 3*t + 2)]
```

Plot the curve adding the control points to the plot:
fplot3(bezierCurve(1), bezierCurve(2), bezierCurve(3), [0, 1]) hold on
scatter3(P(:,1), P(:,2), P(:,3),'filled')
hold off

3-D Bezier Curve with Evaluation Point Specified as Vector

Construct the third-order Bezier curve with the evaluation point specified by the following 1-by-101 vector t :
$\mathrm{t}=0: 1 / 100: 1 ;$
Compute the third-order 101-by-4 Bernstein matrix and specify the control points:

```
B = bernsteinMatrix(3,t);
P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];
```

Construct and plot the Bezier curve. Add grid lines and control points to the plot.

```
bezierCurve = B*P;
plot3(bezierCurve(:,1), bezierCurve(:,2), bezierCurve(:,3))
hold on
grid
scatter3(P(:,1), P(:,2), P(:,3),'filled')
hold off
```


Input Arguments

n - Approximation order
nonnegative integer
Approximation order, specified as a nonnegative integer.

t - Evaluation point

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic vector

Evaluation point, specified as a number, symbolic number, variable, expression, or vector.

Output Arguments

B - Bernstein matrix

matrix
Bernstein matrix, returned as a length(t$)-\mathrm{by}-\mathrm{n}+1$ matrix.

See Also
bernstein | nchoosek | symsum | symvar
Introduced in R2013b

besseli

Modified Bessel function of the first kind

Syntax

```
besseli(nu,z)
```


Description

besseli(nu,z) returns the modified Bessel function of the first kind on page 4-140, $I_{\nu}(z)$.

Examples

Find Modified Bessel Function of First Kind

Compute the modified Bessel functions of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]
ans =
    27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i
```

Compute the modified Bessel functions of the first kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, besseli returns unresolved symbolic calls.

```
[besseli(sym(0), 5), besseli(sym(-1), 2),...
    besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]
ans =
[ besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]
```

For symbolic variables and expressions, besseli also returns unresolved symbolic calls:

```
syms x y
[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
ans =
[ besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]
```


Solve Bessel Differential Equation for Modified Bessel Functions

Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.

```
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans =
C2*besseli(nu, z) + C3*besselk(nu, z)
```

Verify that the modified Bessel function of the first kind is a valid solution of the modified Bessel differential equation.

```
syms nu z
isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)...
    - (z^2 + nu^2)*besseli(nu, z) == 0)
ans =
    logical
    1
```


Special Values of Modified Bessel Function of First Kind

If the first parameter is an odd integer multiplied by $1 / 2$, besseli rewrites the Bessel functions in terms of elementary functions:

```
syms x
besseli(1/2, x)
ans =
(2^(1/2)*sinh (x))/( (x^(1/2)*pi^(1/2))
besseli(-1/2, x)
ans =
(2^(1/2)* cosh(x))/(x^(1/2)*pi^(1/2))
```

```
besseli(-3/2, x)
ans =
(2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))
besseli(5/2, x)
ans =
-(2^(1/2)*((3*\operatorname{cosh}(x))/x - sinh (x)*(3/\mp@subsup{x}{}{\wedge}2 + 1)))/(x^(1/2)*pi^(1/2))
```


Differentiate Modified Bessel Function of First Kind

Differentiate the expressions involving the modified Bessel functions of the first kind:

```
syms x y
diff(besseli(1, x))
diff(diff(besseli(0, x^2 + x*y - y^2), x), y)
ans =
besseli(0, x) - besseli(1, x)/x
ans =
besseli(1, x^2 + x*y - y^2) +...
(2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
```


Bessel Function for Matrix Input

Call besseli for the matrix A and the value $1 / 2$. The result is a matrix of the modified Bessel functions besseli(1/2, A(i,j)).
syms x
A = [-1, pi; x, 0];
besseli(1/2, A)
ans =
[(2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi]
$\left[\left(2^{\wedge}(1 / 2) * \sinh (x)\right) /\left(x^{\wedge}(1 / 2) * \operatorname{pi}^{\wedge}(1 / 2)\right), \quad 0\right]$

Plot the Modified Bessel Functions of the First Kind

Plot the modified Bessel functions of the first kind for $v=0,1,2,3$. Prior to R2016a, use ezplot instead of fplot.
syms x y
fplot(besseli(0:3, x))
axis([0 4 -0.1 4])
grid on

```
ylabel('I_v(x)')
legend('I_0','I_1','I_2','I_3', 'Location','Best')
title('Mo\overline{dified Besse\overline{l}}\mathrm{ func}\overline{t}ions of the first kind')
```


Input Arguments

nu - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

z - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the First Kind

The modified Bessel differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+v^{2}\right) w=0
$$

has two linearly independent solutions. These solutions are represented by the modified Bessel functions of the first kind, $I_{v}(z)$, and the modified Bessel functions of the second kind, $K_{v}(z)$:

$$
w(z)=C_{1} I_{v}(z)+C_{2} K_{v}(z)
$$

This formula is the integral representation of the modified Bessel functions of the first kind:

$$
I_{v}(z)=\frac{(z / 2)^{v}}{\sqrt{\pi} \Gamma(v+1 / 2)} \int_{0}^{\pi} e^{z \cos (t)} \sin (t)^{2 v} d t
$$

Tips

- Calling besseli for a number that is not a symbolic object invokes the MATLAB besseli function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, besseli(nu,z) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. "Bessel Functions of Integer Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. "Bessel Functions of Fractional Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy|besselj|besselk|bessely

Introduced in R2014a

besselj

Bessel function of the first kind

Syntax

besselj(nu,z)

Description

besselj (nu,z) returns the Bessel function of the first kind on page 4-146, $J_{\nu}(z)$.

Examples

Find Bessel Function of First Kind

Compute the Bessel functions of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[besselj(0, 5), besselj(-1, 2), besselj(1/3, 7/4),...
    besselj(1, 3/2 + 2*i)]
ans =
    -0.1776 + 0.0000i -0.5767 + 0.0000i 0.5496 + 0.0000i 1.6113 + 0.3982i
```

Compute the Bessel functions of the first kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, besselj returns unresolved symbolic calls.

```
[besselj(sym(0), 5), besselj(sym(-1), 2),...
    besselj(1/3, sym(7/4)), besselj(sym(1), 3/2 + 2*i)]
ans =
[ besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4), besselj(1, 3/2 + 2i)]
```

For symbolic variables and expressions, besselj also returns unresolved symbolic calls:

```
syms x y
[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]
```


ans =

```
[ besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]
```


Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.

```
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)
ans =
C2*besselj(nu, z) + C3*bessely(nu, z)
```

Verify that the Bessel function of the first kind is a valid solution of the Bessel differential equation:

```
syms nu z
isAlways(z^2*diff(besselj(nu, z), z, 2) + z*diff(besselj(nu, z), z)...
    + (z^2 - nu^2)*besselj(nu, z) == 0)
ans =
    logical
        1
```


Special Values of Bessel Function of First Kind

If the first parameter is an odd integer multiplied by $1 / 2$, bessel j rewrites the Bessel functions in terms of elementary functions:

```
syms x
besselj(1/2, x)
ans =
(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
besselj(-1/2, x)
ans =
(2^(1/2)*\operatorname{cos}(x))/(x^(1/2)*pi^(1/2))
besselj(-3/2, x)
ans =
-(2^(1/2)*(sin(x) + cos(x)/x))/(x^(1/2)*pi^(1/2))
```

```
besselj(5/2, x)
ans =
-(2^(1/2)*((3*}\operatorname{cos}(x))/x - sin(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2)
```


Differentiate Bessel Function of First Kind

Differentiate the expressions involving the Bessel functions of the first kind:

```
syms x y
diff(besselj(1, x))
diff(diff(besselj(0, x^2 + x*y - y^2), x), y)
ans =
besselj(0, x) - besselj(1, x)/x
ans =
- besselj(1, x^2 + x*y - y^2)
(2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y)
(besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
```


Find Bessel Function for Matrix Input

Call besselj for the matrix A and the value $1 / 2$. The result is a matrix of the Bessel functions besselj(1/2, A(i,j)).

```
syms x
A = [-1, pi; x, 0];
besselj(1/2, A)
ans =
[ (2^(1/2)*sin(1)*1i)/pi^(1/2), 0]
[ (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2)), 0]
```


Plot Bessel Functions of First Kind

Plot the Bessel functions of the first kind for $0,1,2,3$. Prior to R2016a, use ezplot instead of fplot.

```
syms x y
fplot(besselj(0:3, x))
axis([0 10 -0.5 1.1])
```

grid on

```
ylabel('J_v(x)')
legend('J_0','J_1','J_2','J_3', 'Location','Best')
title('Bessel functions of the first kind')
```


Input Arguments

nu - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

z - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

Definitions

Bessel Functions of the First Kind

The Bessel differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-v^{2}\right) w=0
$$

has two linearly independent solutions. These solutions are represented by the Bessel functions of the first kind, $J_{\nu}(z)$, and the Bessel functions of the second kind, $Y_{\nu}(z)$:

$$
w(z)=C_{1} J_{v}(z)+C_{2} Y_{V}(z)
$$

This formula is the integral representation of the Bessel functions of the first kind:

$$
J_{v}(z)=\frac{(z / 2)^{v}}{\sqrt{\pi} \Gamma(v+1 / 2)} \int_{0}^{\pi} \cos (z \cos (t)) \sin (t)^{2 v} d t
$$

Tips

- Calling besselj for a number that is not a symbolic object invokes the MATLAB besselj function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, besselj ($n u, z$) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. "Bessel Functions of Integer Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. "Bessel Functions of Fractional Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy|besseli|besselk|bessely

Introduced in R2014a

besselk

Modified Bessel function of the second kind

Syntax

```
besselk(nu,z)
```


Description

besselk(nu,z) returns the modified Bessel function of the second kind on page 4-152, $K_{v}(z)$.

Examples

Find Modified Bessel Function of Second Kind

Compute the modified Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),...
    besselk(1, 3/2 + 2*i)]
```

```
ans =
```

```
ans =
```

Compute the modified Bessel functions of the second kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, besselk returns unresolved symbolic calls.

```
[besselk(sym(0), 5), besselk(sym(-1), 2),...
    besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]
ans =
[ besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]
```

For symbolic variables and expressions, besselk also returns unresolved symbolic calls:

```
syms x y
[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
ans =
[ besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]
```


Special Values of Modified Bessel Function of Second Kind

If the first parameter is an odd integer multiplied by $1 / 2$, bessel k rewrites the Bessel functions in terms of elementary functions:

```
syms x
besselk(1/2, x)
ans =
(2^(1/2)*pi^(1/2)*\operatorname{exp}(-x))/(2*x^(1/2))
besselk(-1/2, x)
ans =
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))
besselk(-3/2, x)
ans =
(2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))
besselk(5/2, x)
ans =
(2^}(1/2)*\mp@subsup{p}{}{\wedge}(1/2)*\operatorname{exp}(-x)*(3/x + 3/\mp@subsup{x}{}{\wedge}2+1))/(2*x^(1/2)
```


Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the modified Bessel functions of the first and the second kind.

```
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)
ans =
C2*besseli(nu, z) + C3*besselk(nu, z)
```

Verify that the modified Bessel function of the second kind is a valid solution of the modified Bessel differential equation:

```
syms nu z
isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)...
    - (z^2 + nu^2)*besselk(nu, z) == 0)
ans =
    logical
        1
```


Differentiate Modified Bessel Function of Second Kind

Differentiate the expressions involving the modified Bessel functions of the second kind:

```
syms x y
diff(besselk(1, x))
diff(diff(besselk(0, x^2 + x*y - y^2), x), y)
ans =
- besselk(1, x)/x - besselk(0, x)
ans =
(2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +...
(besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -...
besselk(1, x^2 + x*y - y^2)
```


Find Bessel Function for Matrix Input

Call besselk for the matrix A and the value $1 / 2$. The result is a matrix of the modified Bessel functions besselk(1/2, A(i,j)).
syms x

```
A = [-1, pi; x, 0];
```

besselk(1/2, A)
ans $=$
[$\left.\quad-\left(2^{\wedge}(1 / 2) * \operatorname{pi}^{\wedge}(1 / 2) * \exp (1)^{*} 1 i\right) / 2, \quad\left(2^{\wedge}(1 / 2) * \exp (-\mathrm{pi})\right) / 2\right]$
[(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]

Plot Modified Bessel Functions of Second Kind

Plot the modified Bessel functions of the second kind for $v=0,1,2,3$. Prior to R2016a, use ezplot instead of fplot.

```
syms x y
fplot(besselk(0:3, x))
axis([0 4 0 4])
grid on
ylabel('K_v(x)')
legend('K_0','K_1','K_2','K_3', 'Location','Best')
title('Modified Bessel functions of the second kind')
```


Input Arguments

nu - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

z - Input
 number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable, expression, function, or array. If nu is a vector or matrix, besseli returns the modified Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the Second Kind

The modified Bessel differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+v^{2}\right) w=0
$$

has two linearly independent solutions. These solutions are represented by the modified Bessel functions of the first kind, $I_{v}(z)$, and the modified Bessel functions of the second kind, $K_{\nu}(z)$:

$$
w(z)=C_{1} I_{v}(z)+C_{2} K_{v}(z)
$$

The modified Bessel functions of the second kind are defined via the modified Bessel functions of the first kind:

$$
K_{v}(z)=\frac{\pi / 2}{\sin (v \pi)}\left(I_{-v}(z)-I_{v}(z)\right)
$$

Here $I_{v}(z)$ are the modified Bessel functions of the first kind:

$$
I_{v}(z)=\frac{(z / 2)^{v}}{\sqrt{\pi} \Gamma(v+1 / 2)} \int_{0}^{\pi} e^{z \cos (t)} \sin (t)^{2 v} d t
$$

Tips

- Calling besselk for a number that is not a symbolic object invokes the MATLAB besselk function.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, besselk (nu,z) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. "Bessel Functions of Integer Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. "Bessel Functions of Fractional Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy|besseli|besselj|bessely

Introduced in R2014a

bessely

Bessel function of the second kind

Syntax

```
bessely(nu,z)
```


Description

bessely (nu,z) returns the Bessel function of the second kind on page 4-158, $Y_{\nu}(z)$.

Examples

Find Bessel Function of Second Kind

Compute the Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]
ans =
    -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i
```

Compute the Bessel functions of the second kind for the numbers converted to symbolic objects. For most symbolic (exact) numbers, bessely returns unresolved symbolic calls.

```
[bessely(sym(0), 5), bessely(sym(-1), 2),...
    bessely(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]
ans =
[ bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]
```

For symbolic variables and expressions, bessely also returns unresolved symbolic calls:

```
syms x y
[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]
```


ans =

```
[ bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]
```


Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.

```
syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)
ans =
C2*besselj(nu, z) + C3*bessely(nu, z)
```

Verify that the Bessel function of the second kind is a valid solution of the Bessel differential equation:

```
syms nu z
isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)...
    + (z^2 - nu^2)*bessely(nu, z) == 0)
ans =
    logical
        1
```


Special Values of Bessel Function of Second Kind

If the first parameter is an odd integer multiplied by $1 / 2$, bessely rewrites the Bessel functions in terms of elementary functions:

```
syms x
bessely(1/2, x)
ans =
-(2^(1/2)*\operatorname{cos}(x))/(x^(1/2)*pi^(1/2))
bessely(-1/2, x)
ans =
(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
bessely(-3/2, x)
ans =
(2^(1/2)*(cos(x) - sin(x)/x))/(x^(1/2)*pi^(1/2))
```

```
bessely(5/2, x)
ans =
-(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))
```


Differentiate Bessel Functions of Second Kind

Differentiate the expressions involving the Bessel functions of the second kind:

```
syms x y
diff(bessely(1, x))
diff(diff(bessely(0, x^2 + x*y - y^2), x), y)
ans =
bessely(0, x) - bessely(1, x)/x
ans =
- bessely(1, x^2 + x*y - y^2)
(2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y)
(bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
```


Find Bessel Function for Matrix Input

Call bessely for the matrix A and the value $1 / 2$. The result is a matrix of the Bessel functions bessely(1/2, A(i,j)).

```
syms x
```

A = [-1, pi; x, 0];
bessely(1/2, A)
ans $=$
[$\left.\left(2^{\wedge}(1 / 2) * \cos (1) * 1 \mathrm{i}\right) / \mathrm{pi}^{\wedge}(1 / 2), 2^{\wedge}(1 / 2) / \mathrm{pi}\right]$
$\left[-\left(2^{\wedge}(1 / 2) * \cos (x)\right) /\left(x^{\wedge}(1 / 2) * \mathrm{pi}^{\wedge}(1 / 2)\right), \quad\right.$ Inf]

Plot Bessel Functions of Second Kind

Plot the Bessel functions of the second kind for $v=0,1,2,3$. Prior to R2016a, use ezplot instead of fplot.

```
syms x y
fplot(bessely(0:3, x))
axis([0 10 -1 0.6])
```

grid on
ylabel('Y_v(x)')
legend('Y_0','Y_1','Y_2','Y_3', 'Location','Best')
title('Bessel functions of the second kind')

Input Arguments

nu - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If nu is a vector or matrix, bessely returns the Bessel function of the second kind for each element of nu.

z - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If z is a vector or matrix, bessely returns the Bessel function of the second kind for each element of z.

Definitions

Bessel Function of the Second Kind

The Bessel differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-v^{2}\right) w=0
$$

has two linearly independent solutions. These solutions are represented by the Bessel functions of the first kind, $J_{v}(z)$, and the Bessel functions of the second kind, $Y_{\nu}(z)$:

$$
w(z)=C_{1} J_{v}(z)+C_{2} Y_{v}(z)
$$

The Bessel functions of the second kind are defined via the Bessel functions of the first kind:

$$
Y_{v}(z)=\frac{J_{v}(z) \cos (v \pi)-J_{-v}(z)}{\sin (v \pi)}
$$

Here $\mathrm{J}_{\nu}(z)$ are the Bessel function of the first kind:

$$
J_{v}(z)=\frac{(z / 2)^{v}}{\sqrt{\pi} \Gamma(v+1 / 2)} \int_{0}^{\pi} \cos (z \cos (t)) \sin (t)^{2 v} d t
$$

Tips

- Calling bessely for a number that is not a symbolic object invokes the MATLAB bessely function.

At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, bessely (nu,z) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Olver, F. W. J. "Bessel Functions of Integer Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. "Bessel Functions of Fractional Order." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy|besseli|besselj|besselk

Introduced in R2014a

beta

Beta function

Syntax

```
beta(x,y)
```


Description

beta (x, y) returns the beta function on page 4-162 of x and y.

Examples

Compute Beta Function for Numeric Inputs

Compute the beta function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```
[beta(1, 5), beta(3, sqrt(2)), beta(pi, exp(1)), beta(0, 1)]
```

ans =
0.2000
0.1716
0.0379
Inf

Compute Beta Function for Symbolic Inputs

Compute the beta function for the numbers converted to symbolic objects:

```
[beta(sym(1), 5), beta(3, sym(2)), beta(sym(4), sym(4))]
ans =
[ 1/5, 1/12, 1/140]
```

If one or both parameters are complex numbers, convert these numbers to symbolic objects:

```
[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i + 2), 1 - i)]
ans =
[ (pi^(1/2)*gamma(1i))/(2*gamma(3/2 + 1i)), gamma(1i)^2/gamma(2i),...
    (pi*(1/2 + 1i/2))/sinh(pi)]
```


Compute Beta Function for Negative Parameters

Compute the beta function for negative parameters. If one or both arguments are negative numbers, convert these numbers to symbolic objects:

```
[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3), 4), beta(sym(-3), -2)]
ans =
[ 1/6, -9/2, Inf, Inf]
```


Compute Beta Function for Matrix Inputs

Call beta for the matrix A and the value 1. The result is a matrix of the beta functions beta(A(i,j),1):

```
A = sym([1 2; 3 4]);
beta(A,1)
ans =
[ 1, 1/2]
[ 1/3, 1/4]
```


Differentiate Beta Function

Differentiate the beta function, then substitute the variable t with the value $2 / 3$ and approximate the result using vpa:

```
syms t
u = diff(beta(t^2 + 1, t))
vpa(subs(u, t, 2/3), 10)
u =
beta(t, t^2 + 1)*(psi(t) + 2*t*psi(t^2 + 1) -...
psi(t^2 + t + 1)*(2*t + 1))
ans =
-2.836889094
```


Expand Beta Function

```
Expand these beta functions:
syms x y
expand(beta(x, y))
expand(beta(x + 1, y - 1))
ans =
(gamma(x)*gamma(y))/gamma(x + y)
ans =
-(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))
```


Input Arguments

x - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If x is a vector or matrix, beta returns the beta function for each element of x.

y - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If y is a vector or matrix, beta returns the beta function for each element of y .

Definitions

Beta Function

This integral defines the beta function:

$$
\mathrm{B}(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Tips

- The beta function is uniquely defined for positive numbers and complex numbers with positive real parts. It is approximated for other numbers.
- Calling beta for numbers that are not symbolic objects invokes the MATLAB beta function. This function accepts real arguments only. If you want to compute the beta function for complex numbers, use sym to convert the numbers to symbolic objects, and then call beta for those symbolic objects.
- If one or both parameters are negative numbers, convert these numbers to symbolic objects using sym, and then call beta for those symbolic objects.
- If the beta function has a singularity, beta returns the positive infinity Inf.
- beta $(\operatorname{sym}(0), 0), \operatorname{beta}(0, \operatorname{sym}(0))$, and beta (sym(0), sym(0)) return $N a N$.
- beta $(x, y)=\operatorname{beta}(y, x)$ and $\operatorname{beta}(x, A)=\operatorname{beta}(A, x)$.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, beta (x, y) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Zelen, M. and N. C. Severo. "Probability Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

factorial | gamma|nchoosek|psi

Introduced in R2014a

cat

Concatenate symbolic arrays along specified dimension

Syntax

```
cat(dim,A1,...,AN)
```


Description

cat ($\operatorname{dim}, \mathrm{A} 1, \ldots, \mathrm{AN}$) concatenates the arrays $\mathrm{A} 1, \ldots$, AN along dimension dim. The remaining dimensions must be the same size.

Examples

Concatenate Two Vectors into Matrix

Create vectors A and B.
$A=\operatorname{sym}\left(' a \% d ',\left[\begin{array}{ll}14\end{array}\right]\right)$
$B=\operatorname{sym}\left(' b \% d ',\left[\begin{array}{ll}1 & 4\end{array}\right]\right)$
A =
[a1, a2, a3, a4]
B $=$
[b1, b2, b3, b4]
To concatenate A and B into a matrix, specify dimension dim as 1 .

```
cat(1,A,B)
ans =
[ a1, a2, a3, a4]
[ b1, b2, b3, b4]
```

Alternatively, use the syntax [A;B].

```
[A;B]
ans =
[ a1, a2, a3, a4]
[ b1, b2, b3, b4]
```


Concatenate Two Vectors into One Vector

To concatenate two vectors into one vector, specify dimension dim as 2.

```
A = sym('a%d',[1 4]);
B = sym('b%d',[1 4]);
cat(2,A,B)
ans =
[ a1, a2, a3, a4, b1, b2, b3, b4]
```

Alternatively, use the syntax [A B].
[A B]
ans $=$
[a1, a2, a3, a4, b1, b2, b3, b4]

Concatenate Multidimensional Arrays Along Their Third Dimension

Create arrays A and B.

```
A = sym('a%d%d',[2 2]);
A(:,:,2) = -A
B = sym('b%d%d', [2 2]);
B(:,:,2) = -B
A(:,:,1) =
[ a11, a12]
[ a21, a22]
A(:,:,2) =
[ -a11, -al2]
[ -a21, -a22]
B(:,:,1) =
[ b11, b12]
[ b21, b22]
```

```
B(:,:,2) =
[ -b11, -b12]
[ -b21, -b22]
```

Concatenate A and B by specifying dimension dim as 3 .

```
cat(3,A,B)
ans(:,:,1) =
[ a11, a12]
[ a21, a22]
ans(:,:,2) =
[ -a11, -a12]
[ -a21, -a22]
ans(:,:,3) =
[ b11, b12]
[ b21, b22]
ans(:,:,4) =
[ -b11, -b12]
[ -b21, -b22]
```


Input Arguments

dim - Dimension to concatenate arrays along positive integer

Dimension to concatenate arrays along, specified as a positive integer.

A1, . . . , AN - Input arrays

symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

See Also

horzcat | reshape | vertcat

Introduced in R2010b

catalan

Catalan constant

Syntax

catalan

Description

catalan represents the Catalan constant on page 4-169. To get a floating-point approximation with the current precision set by digits, use vpa(catalan).

Examples

Approximate Catalan Constant

Find a floating-point approximation of the Catalan constant with the default number of digits and with the 10 -digit precision.

Use vpa to approximate the Catalan constant with the default 32-digit precision:
vpa(catalan)

ans $=$

0.91596559417721901505460351493238

Set the number of digits to 10 and approximate the Catalan constant:
old = digits(10);
vpa(catalan)
ans $=$
0.9159655942

Restore the default number of digits:
digits(old)

Definitions

Catalan Constant

The Catalan constant is defined as follows:

$$
\text { catalan }=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)^{2}}=\frac{1}{1^{2}}-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\ldots
$$

See Also

dilog|eulergamma
Introduced in R2014a

ccode

C code representation of symbolic expression

Syntax

```
ccode(f)
ccode(f,Name,Value)
```


Description

ccode (f) returns C code for the symbolic expression f.
ccode(f, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Generate C Code from Symbolic Expression

Generate C code from the symbolic expression $\log (1+x)$.
syms x
$\mathrm{f}=\log (1+\mathrm{x})$;

```
ccode(f)
```

ans $=$

```
    t0 = log(x+1.0);'
```

Generate C code for the 3-by-3 Hilbert matrix.

```
H = sym(hilb(3));
ccode(H)
ans =
    H[0][0] = 1.0;
```

```
H[0][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;
H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;
```


Initialize Arrays Efficiently

Because generated C code initializes only non-zero elements, you can efficiently initialize arrays by setting all elements to 0 directly in your C code. Then, use the generated C code to initialize only nonzero elements. This approach enables efficient initialization of matrices, especially sparse matrices.

Initialize the 3-by-3 identity matrix. First initialize the matrix with all elements set to 0 in your C code. Then use the generated C code to initialize the nonzero values.

```
I3 = sym(eye(3));
I3code = ccode(I3)
I3code =
    I3[0][0] = 1.0;
    I3[1][1] = 1.0;
    I3[2][2] = 1.0;'
```


Write Optimized C Code to File with Comments

Write C code to the file ccodetest. c by specifying the File option. When writing to a file, ccode optimizes the code by using intermediate variables named t0, t1, and so on.

```
syms x
f = diff(tan(x));
ccode(f,'File','ccodetest.c')
t2 = tan(x);
t0 = t2*t2+1.0;
```

Include the comment Version: 1.1 in the file by using the Comments option. ccode uses block comments.

```
ccode(f,'File','ccodetest.c','Comments','Version: 1.1')
```

```
/*
Version: 1.1
*/
    t2 = tan(x);
    t0 = t2*t2+1.0;
```


Input Arguments

f - Symbolic input

symbolic expression
Symbolic input, specified as a symbolic expression.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.

Example: ccode(x^2,'File','ccode.c','Comments','V1.2')

File - File to write to

character vector | string
File to write to, specified as a character vector or string. When writing to a file, ccode optimizes the code by using intermediate variables named $t 0, \mathrm{t}$, and so on.

Comments - Comments to include in file header

character vector \mid cell array of character vectors \mid string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector. Because ccode uses block comments, the comments must not contain /* or */.

See Also

fortran| latex| matlabFunction

Introduced before R2006a

cell2sym

Convert cell array to symbolic array

Syntax

```
S = cell2sym(C)
S = cell2sym(C,flag)
```


Description

$S=\operatorname{cell2sym}(C)$ converts a cell array C to a symbolic array S. The elements of C must be convertible to symbolic objects.

If each element of the input cell array C is a scalar, then $\operatorname{size}(S)=\operatorname{size}(C)$, and $S(k)$ $=\operatorname{sym}(C(k))$ for all indices k. If the cell array C contains nonscalar elements, then the contents of C must support concatenation into an N-dimensional rectangle. Otherwise, the results are undefined. For example, the contents of cells in the same column must have the same number of columns. However, they do not need to have the same number of rows. See figure.

$S=c e l l 2 s y m(C, f l a g)$ uses the technique specified by flag for converting floatingpoint numbers to symbolic numbers.

Examples

Convert Cell Array of Scalars

Convert a cell array of only scalar elements to a symbolic array.
Create a cell array of scalar elements.

```
C = {'x','y','z'; 1 2 3}
C =
    2x3 cell array
\begin{tabular}{lll}
\(\left\{x^{\prime}\right\}\) & \(\left\{y^{\prime}\right\}\) & \(\left\{{ }^{\prime}\right\}\) \\
\(\{[1]\}\) & \(\{[2]\}\) & \(\{[3]\}\)
\end{tabular}
```

Convert this cell array to a symbolic array.

```
S = cell2sym(C)
S =
[ x, y, z]
[ 1, 2, 3]
```

cell2sym does not create symbolic variables x, y, and z in the MATLAB workspace. To access an element of S, use parentheses.

```
S(1,1)
```

ans $=$
x

Convert Cell Array Containing Nonscalar Elements

Convert a cell array whose elements are scalars, vectors, and matrices into a symbolic array. Such conversion is possible only if the contents of the cell array can be concatenated into an N -dimensional rectangle.

Create a cell array, the elements of which are a scalar, a row vector, a column vector, and a matrix.

```
C = {'x' [2 3 4]; ['y'; sym(9)] [6 7 8; 10 11 12]}
C =
    2\times2 cell array
```

```
{'x' } {1\times3 double}
{2\times1 sym} {2\times3 double}
```

Convert this cell array to a symbolic array.

```
S = cell2sym(C)
S =
[ x, 2, 3, 4]
[ y, 6, 7, 8]
[ 9, 10, 11, 12]
```


Choose Conversion Technique for Floating-Point Values

When converting a cell array containing floating-point numbers, you can explicitly specify the conversion technique.

Create a cell array pi with two elements: the double-precision value of the constant pi and the exact value pi.

```
C = {pi, sym(pi)}
C =
    1\times2 cell array
    {[3.1416]} {1\times1 sym}
```

Convert this cell array to a symbolic array. By default, cell2sym uses the rational conversion mode. Thus, results returned by cell2sym without a flag are the same as results returned by cell2sym with the flag ' r '.

```
S = cell2sym(C)
S =
[ pi, pi]
S = cell2sym(C,'r')
S =
[ pi, pi]
```

Convert the same cell array to a symbolic array using the flags 'd', 'e', and 'f'. See the "Input Arguments" on page 4-177 section for the details about conversion techniques.

S = cell2sym(C,'d')

```
S =
[ 3.1415926535897931159979634685442, pi]
S = cell2sym(C,'e')
S =
[ pi - (198*eps)/359, pi]
S = cell2sym(C,'f')
S =
[ 884279719003555/281474976710656, pi]
```


Input Arguments

C - Input cell array

cell array

Input cell array, specified as a cell array. The elements of C must be convertible to symbolic objects.

```
flag - Conversion technique
'r'(default)|'d'|'e'|'f'
```

Conversion technique, specified as one of the characters listed in this table.

| 'r' | In the rational mode, cell2sym converts floating-point numbers obtained by evaluating expressions of the form $p / q, p^{*} p i / q, \operatorname{sqrt}(p), 2^{\wedge} q$, and 10^q for modest sized integers p and q to the corresponding symbolic form. This approach effectively compensates for the round-off error involved in the original evaluation, but might not represent the floating-point value precisely. If cell2sym cannot find simple rational approximation, then it uses the same technique as it would use with the flag ' f '. |
| :---: | :---: |
| 'd' | In the decimal mode, cell2sym takes the number of digits from the current setting of digits. Conversions with fewer than 16 digits lose some accuracy, while more than 16 digits might not be warranted. For example, cell2sym($\{4 / 3\}$, 'd') with the 10-digit accuracy returns 1.333333333, while with the 20-digit accuracy it returns 1.3333333333333332593 . The latter does not end in 3 s , but it is an accurate decimal representation of the floating-point number nearest to 4/3. |

| 'e' | In the estimate error mode, cell2sym supplements a result obtained in the rational mode by a term involving the variable eps. This term estimates the difference between the theoretical rational expression and its actual floatingpoint value. For example, cell2sym(\{3*pi/4\}, 'e') returns (3*pi)/4 (103*eps)/249. |
| :---: | :---: |
| 'f' | In the floating-point mode, cell2sym represents all values in the form $N^{*} 2^{\wedge} e$ or $-N^{*} 2^{\wedge} e$, where $N>=0$ and e are integers. For example, cell2sym(\{1/10\},'f') returns $3602879701896397 / 36028797018963968$. The returned rational value is the exact value of the floating-point number that you convert to a symbolic number. |

Output Arguments

S - Resulting symbolic array

symbolic array
Resulting symbolic array, returned as a symbolic array.

See Also

cell2mat|mat2cell|num2cell|sym2cell

Introduced in R2016a

charpoly

Characteristic polynomial of matrix

Syntax

charpoly(A)

charpoly(A,var)

Description

charpoly (A) returns a vector of coefficients of the characteristic polynomial on page 4181 of A. If A is a symbolic matrix, charpoly returns a symbolic vector. Otherwise, it returns a vector of double-precision values.
charpoly (A, var) returns the characteristic polynomial of A in terms of var.

Examples

Compute Coefficients of Characteristic Polynomial of Matrix

Compute the coefficients of the characteristic polynomial of A by using charpoly.

```
A = [1 1 0; 0 1 0; 0 0 1];
charpoly(A)
ans =
    1 -3 3 -1
```

For symbolic input, charpoly returns a symbolic vector instead of double. Repeat the calculation for symbolic input.
$A=\operatorname{sym}(A)$;
charpoly(A)

```
ans =
[ 1, -3, 3, -1]
```


Compute Characteristic Polynomial of Matrix

Compute the characteristic polynomial of the matrix A in terms of x.

syms x

A = sym([1 1 0; 0 1 0; 0 0 1]);
polyA $=$ charpoly(A, x)
polyA =
$x^{\wedge} 3-3 * x^{\wedge} 2+3 * x-1$
Solve the characteristic polynomial for the eigenvalues of A.

```
eigenA = solve(polyA)
eigenA =
    1
    1
    1
```


Input Arguments

A - Input

symbolic matrix
Input, specified as a matrix.

var - Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Definitions

Characteristic Polynomial of Matrix

The characteristic polynomial of an n-by- n matrix A is the polynomial $p_{\mathrm{A}}(x)$, is defined as follows.

$$
p_{A}(x)=\operatorname{det}\left(x I_{n}-A\right)
$$

Here I_{n} is the n-by- n identity matrix.

References

[1] Cohen, H. "A Course in Computational Algebraic Number Theory." Graduate Texts in Mathematics (Axler, Sheldon and Ribet, Kenneth A., eds.). Vol. 138, Springer, 1993.
[2] Abdeljaoued, J. "The Berkowitz Algorithm, Maple and Computing the Characteristic Polynomial in an Arbitrary Commutative Ring." MapleTech, Vol. 4, Number 3, pp 21-32, Birkhauser, 1997.

See Also

det |eig|jordan|minpoly|poly2sym| sym2poly

Introduced in R2012b

chebyshevT

Chebyshev polynomials of the first kind

Syntax

chebyshevT(n, x)

Description

chebyshevT (n, x) represents the nth degree Chebyshev polynomial of the first kind on page 4-186 at the point x.

Examples

First Five Chebyshev Polynomials of the First Kind

Find the first five Chebyshev polynomials of the first kind for the variable x .

```
syms x
chebyshevT([0, 1, 2, 3, 4], x)
ans =
[ 1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1]
```


Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevT returns floating-point or exact symbolic results.

Find the value of the fifth-degree Chebyshev polynomial of the first kind at these points. Because these numbers are not symbolic objects, chebyshevT returns floating-point results.

```
chebyshevT(5, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])
```

```
ans =
    0.7428 0.9531 0.9918 0.5000 -0.4856 -0.8906
```

Find the value of the fifth-degree Chebyshev polynomial of the first kind for the same numbers converted to symbolic objects. For symbolic numbers, chebyshevT returns exact symbolic results.

```
chebyshevT(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))
```

ans =
[361/486, 61/64, 241/243, 1/2, -118/243, -57/64]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevT is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Chebyshev polynomial of the first kind at $1 / 3$ and vpa(1/3). Floating-point evaluation is numerically stable.

```
chebyshevT(500, 1/3)
```

chebyshevT(500, vpa(1/3))

```
ans =
    0.9631
```

ans =
0.963114126817085233778571286718

Now, find the symbolic polynomial T500 $=$ chebyshevT(500, x), and substitute $\mathrm{x}=$ vpa ($1 / 3$) into the result. This approach is numerically unstable.

```
syms X
T500 = chebyshevT(500, x);
subs(T500, x, vpa(1/3))
ans =
-3293905791337500897482813472768.0
```

Approximate the polynomial coefficients by using vpa, and then substitute $\mathrm{x}=$ sym (1/3) into the result. This approach is also numerically unstable.

```
subs(vpa(T500), x, sym(1/3))
ans =
1202292431349342132757038366720.0
```


Plot Chebyshev Polynomials of the First Kind

Plot the first five Chebyshev polynomials of the first kind. Prior to R2016a, use ezplot instead of fplot.
syms x y
fplot(chebyshevT(0:4, x))
axis([-1.5 1.5 -2 2])
grid on
ylabel('T_n(x)')
legend('T_0(x)', 'T_1(x)', 'T_2(x)', 'T_3(x)', 'T_4(x)', 'Location', 'Best') title('Chebyshev pō̄ynomials of the first kind')

Input Arguments

n - Degree of polynomial

nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

x - Evaluation point

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Definitions

Chebyshev Polynomials of the First Kind

Chebyshev polynomials of the first kind are defined as $T_{n}(x)=\cos (n * \arccos (x))$.
These polynomials satisfy the recursion formula

$$
T(0, x)=1, \quad T(1, x)=x, \quad T(n, x)=2 x T(n-1, x)-T(n-2, x)
$$

Chebyshev polynomials of the first kind are orthogonal on the interval $-1 \leq x \leq 1$ with respect to the weight function

$$
w(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials

$$
T(n, x)=\frac{2^{2 n}(n!)^{2}}{(2 n)!} P\left(n,-\frac{1}{2},-\frac{1}{2}, x\right)
$$

and Gegenbauer polynomials

$$
T(n, x)=\frac{n}{2} G(n, 0, x)
$$

Tips

- chebyshevT returns floating-point results for numeric arguments that are not symbolic objects.
- chebyshevT acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then chebyshevT expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser, U. W. "Orthogonal Polynomials." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

chebyshevU | gegenbauerC| hermiteH| jacobiP | laguerreL | legendreP

Introduced in R2014b

chebyshevU

Chebyshev polynomials of the second kind

Syntax

chebyshevU (n, x)

Description

chebyshevU (n, x) represents the nth degree Chebyshev polynomial of the second kind on page 4-192 at the point x.

Examples

First Five Chebyshev Polynomials of the Second Kind

Find the first five Chebyshev polynomials of the second kind for the variable x.

```
syms x
chebyshevU([0, 1, 2, 3, 4], x)
ans =
[ 1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1]
```


Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevU returns floating-point or exact symbolic results.

Find the value of the fifth-degree Chebyshev polynomial of the second kind at these points. Because these numbers are not symbolic objects, chebyshevU returns floatingpoint results.
chebyshevU(5, [1/6, 1/3, 1/2, 2/3, 4/5])

```
ans =
    0.8560 0.9465 0.0000 -1.2675 -1.0982
```

Find the value of the fifth-degree Chebyshev polynomial of the second kind for the same numbers converted to symbolic objects. For symbolic numbers, chebyshevU returns exact symbolic results.

```
chebyshevU(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 4/5]))
```

ans =
[208/243, 33/32, 230/243, 0, -308/243, -3432/3125]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevU is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Chebyshev polynomial of the second kind at $1 / 3$ and $\mathrm{vpa}(1 / 3)$. Floating-point evaluation is numerically stable.

```
chebyshevU(500, 1/3)
chebyshevU(500, vpa(1/3))
```

ans $=$
0.8680
ans =
0.86797529488884242798157148968078

Now, find the symbolic polynomial U500 = chebyshevU(500, x), and substitute $x=$ vpa (1/3) into the result. This approach is numerically unstable.

```
syms x
U500 = chebyshevU(500, x);
subs(U500, x, vpa(1/3))
ans =
63080680195950160912110845952.0
```

Approximate the polynomial coefficients by using vpa, and then substitute $\mathrm{x}=$ sym (1/3) into the result. This approach is also numerically unstable.

```
subs(vpa(U500), x, sym(1/3))
ans =
-1878009301399851172833781612544.0
```


Plot Chebyshev Polynomials of the Second Kind

Plot the first five Chebyshev polynomials of the second kind. Prior to R2016a, use ezplot instead of fplot.
syms x y
fplot(chebyshevU(0:4, x))
axis([-1.5 1.5 -2 2])
grid on
ylabel('U_n(x)')
legend('U_0(x)', 'U_1(x)', 'U_2(x)', 'U_3(x)', 'U_4(x)', 'Location', 'Best')

Input Arguments

n - Degree of polynomial

nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

x - Evaluation point

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Definitions

Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind are defined as follows:

$$
U(n, x)=\frac{\sin ((n+1) a \cos (x))}{\sin (a \cos (x))}
$$

These polynomials satisfy the recursion formula

$$
U(0, x)=1, \quad U(1, x)=2 x, \quad U(n, x)=2 x U(n-1, x)-U(n-2, x)
$$

Chebyshev polynomials of the second kind are orthogonal on the interval $-1 \leq x \leq 1$ with respect to the weight function

$$
w(x)=\sqrt{1-x^{2}}
$$

Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials

$$
U(n, x)=\frac{2^{2 n} n!(n+1)!}{(2 n+1)!} P\left(n, \frac{1}{2}, \frac{1}{2}, x\right)
$$

and Gegenbauer polynomials

$$
U(n, x)=G(n, 1, x)
$$

Tips

- chebyshevU returns floating-point results for numeric arguments that are not symbolic objects.
- chebyshevU acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then chebyshevU expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser, U. W. "Orthogonal Polynomials." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

chebyshevT| gegenbauerC| hermiteH|jacobiP|laguerreL|legendreP

Introduced in R2014b

checkUnits

Check for compatible dimensions and consistent units

Syntax

$C=$ checkUnits(expr)
C = checkUnits(expr,'Compatible')
C = checkUnits(expr,'Consistent')

Description

$C=$ checkUnits(expr) checks expr for compatible dimensions and consistent units and returns a structure containing the fields Consistent and Compatible. The fields contain logical 0 (false) or logical 1 (true) depending on the check results.
expr has compatible dimensions if all terms have the same dimensions, such as length or time. expr has consistent units if all units of the same dimension can be converted to each other with a conversion factor of 1.

C = checkUnits(expr,'Compatible') only checks expr for compatible dimensions.
C = checkUnits(expr,'Consistent') only checks expr for consistent units.

Examples

Check Dimensions of Units

Check the dimensions of an equation or expression. The dimensions are checked to confirm that the equation or expression is valid.

Verify the dimensions of the equation

$$
A \frac{\mathrm{~m}}{\mathrm{~s}}=B \frac{\mathrm{~kg}}{\mathrm{~s}}
$$

by using checkUnits with the option 'Compatible'. MATLAB assumes that symbolic variables are dimensionless. The checkUnits function returns logical 0 (false) because the dimensions of the equation are not compatible.

```
u = symunit;
syms A B
eqn = A*u.m/u.s == B*u.kg/u.s;
checkUnits(eqn,'Compatible')
ans =
    logical
        0
```

Replace u.kg with u.m by using subs and repeat the check. Because the dimensions are now compatible, checkUnits returns logical 1 (true).

```
eqn = subs(eqn,u.kg,u.m);
checkUnits(eqn,'Compatible')
ans =
    logical
    1
```


Check Consistency of Units

Checking units for consistency is a stronger check than compatibility. Units are consistent when all units of the same dimension can be converted to each other with a conversion factor of 1 . For example, 1 Newton is consistent with $1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ but not with $1 \mathrm{~kg} \mathrm{~cm} / \mathrm{s}^{2}$.

Show that 1 Newton is consistent with $1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$ by checking expr1 but not with 1 kg $\mathrm{cm} / \mathrm{s}^{2}$ by checking expr2.

```
u = symunit;
expr1 = 1*u.N + 1*u.kg*u.m/u.s^2;
expr2 = 1*u.N + 1*u.kg*u.cm/u.s^2;
checkUnits(expr1,'Consistent')
ans =
    logical
        1
checkUnits(expr2,'Consistent')
```

```
ans =
    logical
        0
```

Show the difference between compatibility and consistency by showing that expr2 has compatible dimensions but not consistent units.

```
checkUnits(expr2,'Compatible')
ans =
    logical
        1
```


Check Multiple Equations or Expressions

Check multiple equations or expressions by placing them in an array. checkUnits returns an array whose elements correspond to the elements of the input.

Check multiple equations for compatible dimensions. checkUnits returns [10], meaning that the first equation has compatible dimensions while the second equation does not.

```
u = symunit;
syms x y z
eqn1 = x*u.m == y*u.m^2/(z*u.m);
eqn2 = x*u.m + y*u.s == z*u.m;
eqns = [eqn1 eqn2];
compatible = checkUnits(eqns,'Compatible')
compatible =
    1\times2 logical array
    1 0
```


Check Dimensions and Consistency of Units

Check for both compatible dimensions and consistent units of the equation or expression by using checkUnits.

Define the equations for x - and y -displacement of a moving projectile. Check their units for compatibility and consistency.

```
u = symunit;
g = 9.81*u.cm/u.s^2;
```

```
v = 10*u.m/u.s^2;
syms theta x(t) y(t)
x(t) = v*cos(theta)*t;
y(t) = v*sin(theta)*t + (-g*t^2)/2;
S = checkUnits([x y])
S =
    struct with fields:
```

 Consistent: [1 0]
 Compatible: [1 1]
 The second equation has compatible dimensions but inconsistent units. This inconsistency is because g incorrectly uses cm instead of m . Redefine g and check the equations again. The second equation now has consistent units.

```
g = 9.81*u.m/u.s^2;
y(t) = v*sin(theta)*t + (-g*t^2)/2;
S = checkUnits([x y])
S =
    struct with fields:
    Consistent: [1 1]
    Compatible: [1 1]
```


Input Arguments

expr - Input expression

symbolic expression | symbolic equation | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input expression, specified as a symbolic expression, equation, function, vector, matrix, or multidimensional array.

See Also

findUnits |isUnit|newUnit| separateUnits|str2symunit|symunit| symunit2str|unitConversionFactor

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

Introduced in R2017a

children

Subexpressions or terms of symbolic expression

Syntax

children(expr)
children(A)

Description

children(expr) returns a vector containing the child subexpressions of the symbolic expression expr. For example, the child subexpressions of a sum are its terms.
children (A) returns a cell array containing the child subexpressions of each expression in A.

Examples

Find Child Subexpressions of Symbolic Expression

Find the child subexpressions of this expression. Child subexpressions of a sum are its terms.

```
syms x y
children(x^2 + x*y + y^2)
ans =
[ x*y, x^2, y^2]
```

Find the child subexpressions of this expression. This expression is also a sum, only some terms of that sum are negative.

```
children(x^2 - x*y - y^2)
ans =
[ -x*y, x^2, - y^2]
```

The child subexpression of a variable is the variable itself:

```
children(x)
ans =
x
```


Find Child Subexpressions of Equation

Find the child subexpressions of this equation. The child subexpressions of an equation are the left and right sides of that equation.

```
syms x y
children(x^2 + x*y == y^2 + 1)
ans =
[ x^2 + y*x, y^2 + 1]
```

Find the child subexpressions of this inequality. The child subexpressions of an inequality are the left and right sides of that inequality.

```
children(sin(x) < cos(x))
ans =
[ sin(x), cos(x)]
```


Find Child Subexpressions of Elements of Matrix

Call the children function for this matrix. The result is the cell array containing the child subexpressions of each element of the matrix.

```
syms x y
s = children([x + y, sin(x)*\operatorname{cos}(y); x^3 - y^3, exp(x*y^2)])
S =
    2\times2 cell array
    {1\times2 sym} {1\times2 sym}
    {1\times2 sym} {1\times1 sym}
```

To access the contents of cells in the cell array, use braces:
s\{1:4\}

```
ans =
[ x, y]
ans =
[ x^3, - y^3]
ans =
[ cos(y), sin(x)]
ans =
x*y^2
```


Input Arguments

expr - Input

symbolic number | symbolic variable | symbolic function | symbolic expression
Input, specified as a symbolic number, variable, function, or expression.
A - Input
symbolic array
Input, specified as a symbolic array.

See Also

coeffs | hhs | numden | rhs | subs

Topics

"Create Symbolic Numbers, Variables, and Expressions" on page 1-3

Introduced in R2012a

chol

Cholesky factorization

Syntax

```
T = chol(A)
[T,p] = chol(A)
[T,p,S] = chol(A)
[T,p,s] = chol(A,'vector')
    = chol(A,'lower')
    = chol(A,'nocheck')
    = chol(A,'real')
    = chol(A,'lower','nocheck','real')
[T,p,s] = chol(A,'lower','vector','nocheck','real')
```


Description

$T=\operatorname{chol}(A)$ returns an upper triangular matrix T, such that $T^{\prime} * T=A . A$ must be a Hermitian positive definite matrix on page 4-209. Otherwise, this syntax throws an error.
$[T, p]=\operatorname{chol}(A)$ computes the Cholesky factorization on page 4-209 of A. This syntax does not error if A is not a Hermitian positive definite matrix. If A is a Hermitian positive definite matrix, then p is 0 . Otherwise, T is $s y m([])$, and p is a positive integer (typically, $p=1$).
$[T, p, S]=\operatorname{chol}(A)$ returns a permutation matrix S, such that $T^{\prime} * T=S^{\prime *} A^{*} S$, and the value $p=0$ if matrix A is Hermitian positive definite. Otherwise, it returns a positive integer p and an empty object $S=\operatorname{sym}([])$.
$[T, p, s]=\operatorname{chol}\left(A,{ }^{\prime} v e c t o r '\right)$ returns the permutation information as a vector s, such that $A(s, s)=T^{\prime} * T$. If A is not recognized as a Hermitian positive definite matrix, then p is a positive integer and $s=\operatorname{sym}([])$.
$=\operatorname{chol}(A, '$ lower' $)$ returns a lower triangular matrix T, such that $\mathrm{T}^{*} \mathrm{~T}^{\prime}=\mathrm{A}$.
$=\operatorname{chol}(A$, ' nocheck' $)$ skips checking whether matrix A is Hermitian positive definite. ' nocheck' lets you compute Cholesky factorization of a matrix that contains symbolic parameters without setting additional assumptions on those parameters.
$=\operatorname{chol}(\mathrm{A}$, ' real ' $)$ computes the Cholesky factorization of A using real arithmetic. In this case, chol computes a symmetric factorization $A=T .{ }^{\prime} * T$ instead of a Hermitian factorization $A=T^{\prime} * T$. This approach is based on the fact that if A is real and symmetric, then $\mathrm{T}^{\prime *} \mathrm{~T}=\mathrm{T} .{ }^{\prime} * \mathrm{~T}$. Use 'real' to avoid complex conjugates in the result.
$=\operatorname{chol}(A, ' l o w e r ', ' n o c h e c k ', ' r e a l ')$ computes the Cholesky factorization of A with one or more of these optional arguments: 'lower', 'nocheck', and 'real'. These optional arguments can appear in any order.
[T,p,s] = chol(A,'lower','vector','nocheck','real') computes the Cholesky factorization of A and returns the permutation information as a vector s. You can use one or more of these optional arguments: 'lower', 'nocheck', and 'real'. These optional arguments can appear in any order.

Examples

Compute Cholesky Factorization of Numeric and Symbolic Matrices

Compute the Cholesky factorization of the 3-by-3 Hilbert matrix. Because these numbers are not symbolic objects, you get floating-point results.

```
chol(hilb(3))
ans =
    1.0000 0.5000 0.3333
    0 0.2887 0.2887
    0 0 0.0745
```

Now convert this matrix to a symbolic object, and compute the Cholesky factorization:

```
chol(sym(hilb(3)))
ans =
[ 1, 1/2, 1/3]
```

```
[ 0, 3^(1/2)/6, 3^(1/2)/6]
[ 0, 0, 5^(1/2)/30]
```


Return Lower Triangular Matrix

Compute the Cholesky factorization of the 3-by-3 Pascal matrix returning a lower triangular matrix as a result:

```
chol(sym(pascal(3)), 'lower')
ans =
[ 1, 0, 0]
[ 1, 1, 0]
[ 1, 2, 1]
```


If Input is not Hermitian Positive Definite

Try to compute the Cholesky factorization of this matrix. Because this matrix is not Hermitian positive definite, chol used without output arguments or with one output argument throws an error:

```
A = sym([1 1 1; 1 2 3; 1 3 5]);
T = chol(A)
Error using sym/chol (line 132)
Cannot prove that input matrix is Hermitian positive definite.
Define a Hermitian positive definite matrix by setting
appropriate assumptions on matrix components, or use 'nocheck'
to skip checking whether the matrix is Hermitian positive definite.
```

To suppress the error, use two output arguments, T and p . If the matrix is not recognized as Hermitian positive definite, then this syntax assigns an empty symbolic object to T and the value 1 to p :

```
[T,p] = chol(A)
T =
[ empty sym ]
p =
    1
```

For a Hermitian positive definite matrix, p is 0 :

```
[T,p] = chol(sym(pascal(3)))
T =
[ 1, 1, 1]
[ 0, 1, 2]
[ 0, 0, 1]
p =
    0
```

Alternatively, ' nocheck' lets you skip checking whether A is a Hermitian positive definite matrix. Thus, this flag lets you compute the Cholesky factorization of a symbolic matrix without setting additional assumptions on its components to make it Hermitian positive definite:

```
syms a
A = [a 0; 0 a];
chol(A,'nocheck')
ans =
```


If you use ' nocheck' for computing the Cholesky factorization of a matrix that is not Hermitian positive definite, chol can return a matrix T for which the identity $T^{\prime} * T=A$ does not hold. To make isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

```
T = chol(sym([1 1; 2 1]), 'nocheck')
T =
[ 1, 2]
[ 0, 3^(1/2)*1i]
isAlways(A == T'*T,'Unknown','false')
ans =
    2\times2 logical array
        0}
        0}
```


Return Permutation Matrix

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the permutation matrix:

```
A = sym(invhilb(3));
[T, p, S] = chol(A)
T =
[ 3, -12, 10]
[ 0, 4*3^(1/2), -5*3^(1/2)]
[ 0, 0, 5^(1/2)]
p =
    0
S =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{tabular}
```


Return Permutation Information as Vector

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the permutation information as a vector:

```
A = sym(invhilb(3));
[T, p, S] = chol(A, 'vector')
T =
[ 3, -12, 10]
[ 0, 4*3^(1/2), -5*3^(1/2)]
[ 0, 0, 5^(1/2)]
p =
    0
S =
    1 2 
```


Use Assumptions to Make Matrix Hermitian Positive Definite

Compute the Cholesky factorization of matrix A containing symbolic parameters. Without additional assumptions on the parameter a, this matrix is not Hermitian. To make isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.
syms a
A = [a 0; 0 a];
isAlways(A == A','Unknown','false')

```
ans =
    2\times2 logical array
        0 1
    1 0
```

By setting assumptions on a and b, you can define A to be Hermitian positive definite. Therefore, you can compute the Cholesky factorization of A :

```
assume(a > 0)
chol(A)
ans =
[ a^(1/2), 0]
```

For further computations, remove the assumptions:
syms a clear

Return Real Result Without Complex Conjugates

Compute the Cholesky factorization of this matrix. To skip checking whether it is Hermitian positive definite, use ' nocheck'. By default, chol computes a Hermitian factorization $\mathrm{A}=\mathrm{T}^{\prime} * \mathrm{~T}$. Thus, the result contains complex conjugates.

```
syms a b
A = [a b; b a];
T = chol(A, 'nocheck')
T =
[ a^(1/2), conj(b)/conj(a^(1/2))]
[ 0, (a*abs(a) - abs(b)^2)^(1/2)/abs(a)^(1/2)]
```

To avoid complex conjugates in the result, use 'real ':

```
T = chol(A, 'nocheck', 'real')
T =
[ a^(1/2), b/a^(1/2)]
[ 0, ((a^2 - b^2)/a)^(1/2)]
```

When you use this flag, chol computes a symmetric factorization $\mathrm{A}=\mathrm{T} .{ }^{\prime} * \mathrm{~T}$ instead of a Hermitian factorization $A=T^{\prime *}$. To make isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

```
isAlways(A == T.'*T)
ans =
    2\times2 logical array
        1
        1
isAlways(A == T'*T,'Unknown','false')
ans =
    2\times2 logical array
        0}
            0}
```


Input Arguments

A - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Output Arguments

T - Upper triangular matrix

symbolic matrix
Upper triangular matrix, returned as a symbolic matrix such that $\mathrm{T}^{\prime} * \mathrm{~T}=\mathrm{A}$. If T is a lower triangular matrix, then $\mathrm{T}^{*} \mathrm{~T}{ }^{\prime}=\mathrm{A}$.

p - Output

symbolic number
Flag, returned as a symbolic number. Value 0 if A is Hermitian positive definite or if you use 'nocheck'.

If chol does not identify A as a Hermitian positive definite matrix, then p is a positive integer. R is an upper triangular matrix of order $q=p-1$, such that $R^{\prime *} R=A(1: q$, 1:q).

S - Permutation matrix
 symbolic matrix

Permutation matrix returned as a symbolic matrix.

s - Permutation vector
 symbolic vector

Permutation vector returned as as symbolic vector.

Definitions

Hermitian Positive Definite Matrix

A square complex matrix A is Hermitian positive definite if $v^{\prime} * A * v$ is real and positive for all nonzero complex vectors v, where v ' is the conjugate transpose (Hermitian transpose) of v.

Cholesky Factorization of a Matrix

The Cholesky factorization of a Hermitian positive definite n-by- n matrix A is defined by an upper or lower triangular matrix with positive entries on the main diagonal. The Cholesky factorization of matrix A can be defined as $T^{\prime} * T=A$, where T is an upper triangular matrix. Here T^{\prime} is the conjugate transpose of T. The Cholesky factorization also can be defined as $\mathrm{T}^{*} \mathrm{~T}^{\prime}=\mathrm{A}$, where T is a lower triangular matrix. T is called the Cholesky factor of A.

Tips

- Calling chol for numeric arguments that are not symbolic objects invokes the MATLAB chol function.
- If you use ' nocheck', then the identities $\mathrm{T}^{\prime} * \mathrm{~T}=\mathrm{A}$ (for an upper triangular matrix T) and $\mathrm{T}^{*} \mathrm{~T}^{\prime}=\mathrm{A}$ (for a lower triangular matrix T) are not guaranteed to hold.
- If you use 'real', then the identities $\mathrm{T}^{\prime} * \mathrm{~T}=\mathrm{A}$ (for an upper triangular matrix T) and $\mathrm{T}^{*} \mathrm{~T}^{\prime}=\mathrm{A}$ (for a lower triangular matrix T) are only guaranteed to hold for a real symmetric positive definite A.
- To use 'vector', you must specify three output arguments. Other flags do not require a particular number of output arguments.
- If you use 'matrix' instead of 'vector', then chol returns permutation matrices, as it does by default.
- If you use 'upper' instead of ' lower', then chol returns an upper triangular matrix, as it does by default.
- If A is not a Hermitian positive definite matrix, then the syntaxes containing the argument p typically return $\mathrm{p}=1$ and an empty symbolic object T .
- To check whether a matrix is Hermitian, use the operator ' (or its functional form ctranspose). Matrix A is Hermitian if and only if $A^{\prime}=A$, where A ' is the conjugate transpose of A.

See Also

chol|ctranspose|eig|isAlways|lu|qr|svd|transpose|vpa

Introduced in R2013a

close

Close MuPAD notebook

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

```
close(nb)
close(nb,'force')
```


Description

close(nb) closes the MuPAD notebook with the handle nb. If you modified the notebook, close(nb) brings up a dialog box asking if you want to save the changes.
close(nb,' force') closes notebook nb without prompting you to save the changes. If you modified the notebook, close(nb,'force') discards the changes.

This syntax can be helpful when you evaluate MuPAD notebooks by using evaluateMuPADNotebook. When you evaluate a notebook, MuPAD inserts results in the output regions or at least inserts the new input region at the bottom of the notebook, thus modifying the notebook. If you want to close the notebook quickly without saving such changes, use close(nb,'force').

Examples

Close One Notebook

Open and close an existing notebook.
Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open this notebook keeping its handle in the variable nb1:

```
nb1 = mupad('myFile1.mn');
```

Suppose that you finished using this notebook and now want to close it. Enter this command in the MATLAB Command Window. If you have unsaved changes in that notebook, then this command will bring up a dialog box asking if you want to save the changes.
close(nb1)

Close Several Notebooks

Use a vector of notebook handles to close several notebooks.
Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb 1 and nb 2 , respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
nb3 =
Notebook1
```

Close myFile1.mn and myFile2.mn. If you have unsaved changes in any of these two notebooks, then this command will bring up a dialog box asking if you want to save the changes.
close([nb1, nb2])

Close All Open Notebooks

Identify and close all currently open MuPAD notebooks.
Get a list of all currently open notebooks:
allNBs = allMuPADNotebooks;
Close all notebooks. If you have unsaved changes in any notebook, then this command will bring up a dialog box asking if you want to save the changes.
close(allNBs)

Close All Open Notebooks and Discard Modifications

Identify and close all currently open MuPAD notebooks without saving changes.
Get a list of all currently open notebooks:
allNBs = allMuPADNotebooks;
Close all notebooks using the force flag to suppress the dialog box that offers you to save changes:
close(allNBs,'force')

- "Create MuPAD Notebooks" on page 3-3
- "Open MuPAD Notebooks" on page 3-6
- "Save MuPAD Notebooks" on page 3-12
- "Evaluate MuPAD Notebooks from MATLAB" on page 3-13
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
- "Close MuPAD Notebooks from MATLAB" on page 3-17

Input Arguments

nb - Pointer to MuPAD notebook
 handle to notebook | vector of handles to notebooks

Pointer to notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function. close accepts a vector of handles returned by allMuPADNotebooks.

See Also

allMuPADNotebooks | evaluateMuPADNotebook|getVar|mupad| mupadNotebookTitle|openmn|setVar

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6
"Save MuPAD Notebooks" on page 3-12
"Evaluate MuPAD Notebooks from MATLAB" on page 3-13
"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
"Close MuPAD Notebooks from MATLAB" on page 3-17

Introduced in R2013b

coeffs

Coefficients of polynomial

Syntax

```
C = coeffs(p)
C = coeffs(p,var)
C = coeffs(p,vars)
[C,T] = coeffs(___)
___ coeffs(___,'All')
```


Description

$C=\operatorname{coeffs}(p)$ returns coefficients of the polynomial p with respect to all variables determined in p by symvar.
$C=\operatorname{coeffs}(p, v a r)$ returns coefficients of the polynomial p with respect to the variable var.
$C=$ coeffs (p, vars $)$ returns coefficients of the multivariate polynomial p with respect to the variables vars.
$[\mathrm{C}, \mathrm{T}]=$ coeffs $(\ldots \quad)$ returns the coefficient C and the corresponding terms T of the polynomial p .
$=\operatorname{coeffs}\left(\ldots,{ }^{\prime} A l l '\right)$ returns all coefficients, including coefficients that are 0. For example, coeffs($\left.2 * x^{\wedge} 2, ' A l l '\right)$ returns [$\left.2,0,0\right]$ instead of 2.

Examples

Coefficients of Univariate Polynomial

Find the coefficients of this univariate polynomial. The coefficients are ordered from the lowest degree to the highest degree.

```
syms x
c = coeffs(16*x^2 + 19*x + 11)
c =
[ 11, 19, 16]
```

Reverse the ordering of coefficients by using fliplr.

```
c = fliplr(c)
```

C $=$
[16, 19, 11]

Coefficients of Multivariate Polynomial with Respect to Particular Variable

Find the coefficients of this polynomial with respect to variable x and variable y .

```
syms x y
cx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)
cy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4* y^3, y)
CX =
[ 4*y^3, 3*y^2, 2*y, 1]
cy =
[ x^3, 2*x^2, 3*x, 4]
```


Coefficients of Multivariate Polynomial with Respect to Two Variables

Find the coefficients of this polynomial with respect to both variables x and y.

```
syms x y
cxy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x y])
cyx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y x])
cxy =
[ 4, 3, 2, 1]
cyx =
[ 1, 2, 3, 4]
```


Coefficients and Corresponding Terms of Univariate Polynomial

Find the coefficients and the corresponding terms of this univariate polynomial. When two outputs are provided, the coefficients are ordered from the highest degree to the lowest degree.

```
syms x
[c,t] = coeffs(16*x^2 + 19*x + 11)
C =
[ 16, 19, 11]
t =
[ x^2, x, 1]
```


Coefficients and Corresponding Terms of Multivariate Polynomial

Find the coefficients and the corresponding terms of this polynomial with respect to variable x and variable y .

```
syms x y
[cx,tx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)
[cy,ty] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)
cx =
[ 1, 2*y, 3*y^2, 4*y^3]
tx =
[ x^3, x^2, x, 1]
cy =
[ 4, 3*x, 2*x^2, x^3]
ty =
[ y^3, y^2, y, 1]
```

Find the coefficients of this polynomial with respect to both variables x and y.

```
syms x y
[cxy, txy] = coeffs(x^3 + 2*x^2*y + 3* ***y^2 + 4*y^3, [x,y])
[cyx, tyx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y,x])
```

```
cxy =
[ 1, 2, 3, 4]
txy =
[ x^3, x^2*y, x*y^2, y^3]
cyx =
[ 4, 3, 2, 1]
tyx =
[ y^3, x* y^2, x^2*y, x^3]
```


All Coefficients of Polynomial

Find all coefficients of a polynomial, including coefficients that are 0 , by specifying the option 'All'.

Find all coefficients of $3 x^{2}$.
syms x

```
c = coeffs(3*x^2, 'All')
```

c $=$
[3, 0, 0]

If you find coefficients with respect to multiple variables and specify ' All ' , then coeffs returns coefficients for all combinations of the variables.

Find all coefficients and corresponding terms of $a x^{2}+b y$.

```
syms a b y
cxy =
[ 0, 0, b]
[ a, 0, 0]
txy =
[ x^2*y, x*y, y]
[ x^2, x, 1]
```

[cxy, txy] = coeffs(a*x^2 + b*y, [y x], 'All')

Input Arguments

p - Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

var - Polynomial variable

symbolic variable
Polynomial variable, specified as a symbolic variable.

vars - Polynomial variables

vector of symbolic variables
Polynomial variables, specified as a vector of symbolic variables.

Output Arguments

C - Coefficients of polynomial

symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array

Coefficients of polynomial, returned as a symbolic number, variable, expression, vector, matrix, or multidimensional array. If there is only one coefficient and one corresponding term, then C is returned as a scalar.

T - Terms of polynomial

symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array

Terms of polynomial, returned as a symbolic number, variable, expression, vector, matrix, or multidimensional array. If there is only one coefficient and one corresponding term, then T is returned as a scalar.

See Also

```
poly2sym| sym2poly
```


Introduced before R2006a

collect

Collect coefficients

Syntax

collect (P)
collect($\mathrm{P}, \mathrm{expr}$)

Description

collect (P) collects coefficients in P of the powers of the default variable of P. The default variable is found by symvar.
collect ($\mathrm{P}, \mathrm{expr}$) collects coefficients in P of the powers of the symbolic expression expr. If P is a vector or matrix, then collect acts element-wise on P . If expr is a vector, then collect finds coefficients in terms of all expressions in expr.

Examples

Collect Coefficients of Powers of Default Variable

Collect the coefficients of a symbolic expression.

```
syms x
coeffs = collect((exp(x) + x)*(x + 2))
coeffs =
x^2 + (exp(x) + 2)*x + 2*exp(x)
```

Because you did not specify the variable, collect uses the default variable defined by symvar. For this expression, the default variable is x.

```
symvar((exp(x) + x)*(x + 2), 1)
ans =
x
```


Collect Coefficients of Powers of a Particular Variable

Collect coefficients of a particular variable by specifying the variable as the second argument to collect.

Collect coefficients of an expression in powers of x, and then in powers of y.

```
syms x y
coeffs x = collect(x^2*y + y*x - x^2 - 2*x, x)
coeffs_y = collect(x^2*y + y*x - x^2 - 2*x, y)
coeffs_x =
(y - 1)*x^2 + (y - 2)*x
coeffs_y =
(x^2 + x)*y - x^2 - 2*x
```

Collect coefficients in powers of both x and y by specifying the second argument as a vector of variables.

```
syms a b
coeffs_xy = collect(a^2*x*y + a*b*x^2 + a*x*y + x^2, [x y])
coeffs_xy =
(a*b + 1)*x^2 + (a^2 + a)*x*y
```


Collect Coefficients in Terms of \mathbf{i} and pi

Collect coefficients of an expression in terms of i, and then in terms of pi.

```
syms x y
coeffs_i = collect(2*x*i - 3*i*y, i)
coeffs_pi = collect(x*pi*(pi - y) + x*(pi + i) + 3*pi*y, pi)
coeffs_i =
(2*x - 3*y)*1i
coeffs_pi =
x*pi^2 + (x + 3*y - x*y)*pi + x*1i
```


Collect Coefficients of Symbolic Expressions and Functions

Collect coefficients of expressions and functions by specifying the second argument as an expression or function. Collect coefficients of multiple expressions or functions by using vector input.

```
Expand sin(x+3*y) and collect coefficients of cos(y), and then of both sin(x) and
sin(y).
syms x y
f = expand(sin(x + 3*y));
coeffs_cosy = collect(f, cos(y))
coeffs_cosy =
4*\operatorname{sin}(\overline{x})*\operatorname{cos}(y)^3 + 4* cos(x)*\operatorname{sin}(y)*\operatorname{cos}(y)^2 + (-3*\operatorname{sin}(x))*\operatorname{cos}(y)-\operatorname{cos}(x)*\operatorname{sin}(y)
coeffs_sinxsiny = collect(f, [sin(x) sin(y)])
coeffs_sinxsiny =
(4* cos(y)^3 - 3* cos(y))*}\operatorname{sin}(x)+(4*\operatorname{cos}(x)*\operatorname{cos}(y\mp@subsup{)}{}{\wedge}2-\operatorname{cos}(x))*\operatorname{sin}(y
```

Collect coefficients of the symbolic function $y(x)$ in a symbolic expression.

```
syms y(x)
f = y^2*x + y*x^2 + y*sin(x) + x*y;
coeffs_y = collect(f, y)
coeffs_y(x) =
x*y(x)^2 + (x + sin(x) + x^2)*y(x)
```


Collect Coefficients for Each Element of Matrix

Call collect on a matrix. collect acts element-wise on the matrix.

```
syms x y
collect([(x + 1)*(y + 1), x^2 + x*(x - y); 2*x*y - x, x*y + x/y], x)
ans =
[ (y + 1)*x + y + 1, 2*x^2 - y*x]
[ (2*y - 1)*x, (y + 1/y)*x]
```


Collect Coefficients of Function Calls

Collect coefficients of calls to a particular function by specifying the function name as the second argument. Collect coefficients of function calls with respect to multiple functions by specifying the multiple functions as a cell array of character vectors.

Collect coefficients of calls to the sin function in F, where F contains multiple calls to different functions.

```
syms a b c d e f x
F = a*sin(2*x) + b* sin(2*x) + c* cos(x) + d* cos(x) + e*sin(3*x) +f*sin(3*x);
collect(F, 'sin')
ans =
(a + b)*sin(2*x) + (e + f)*sin(3*x) + c*cos(x) + d*cos(x)
```

Collect coefficients of calls to both the sin and cos functions in F.

```
collect(F, {'sin' 'cos'})
```

ans $=$
$(\mathrm{c}+\mathrm{d}) * \cos (\mathrm{x})+(\mathrm{a}+\mathrm{b}) * \sin (2 * \mathrm{x})+(\mathrm{e}+\mathrm{f}) * \sin (3 * \mathrm{x})$

Input Arguments

P - Input expression
 symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

expr - Expression in terms of which you collect coefficients

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | character vector | cell array of character vectors

Expression in terms of which you collect the coefficients, specified as a symbolic number, variable, expression, function, or vector; a character vector; a cell array of character vectors.

Example: i, pi, $x, \sin (x), y(x),[\sin (x) \cos (y)],\left\{' \sin ' \quad \cos ^{\prime}\right\}$.

See Also

combine | expand | factor| horner|numden | rewrite | simplify | simplifyFraction| symvar

Introduced before R2006a

colon:

Create symbolic vectors, array subscripting, and for-loop iterators

Syntax

m: n
m:d:n
x:x+r
$x: d: x+r$

Description

$m: n$ returns a symbolic vector of values $[m, m+1, \ldots, n$], where m and n are symbolic constants. If n is not an increment of m, then the last value of the vector stops before n. This behavior holds for all syntaxes.
$\mathrm{m}: \mathrm{d}: \mathrm{n}$ returns a symbolic vector of values $[\mathrm{m}, \mathrm{m}+\mathrm{d}, \ldots, \mathrm{n}$], where d is a rational number.
$x: x+r$ returns a symbolic vector of values $[x, x+1, \ldots, x+r]$, where x is a symbolic variable and r is a rational number.
$x: d: x+r$ returns a symbolic vector of values $[x, x+d, \ldots, x+r]$, where d and r are rational numbers.

Examples

Create Numeric and Symbolic Arrays

Use the colon operator to create numeric and symbolic arrays. Because these inputs are not symbolic objects, you receive floating-point results.

1/2:7/2

```
ans =
    0.5000 1.5000 2.5000 3.5000
```

To obtain symbolic results, convert the inputs to symbolic objects.
sym(1/2): sym(7/2)
ans $=$
[1/2, 3/2, 5/2, 7/2]
Specify the increment used.

```
sym(1/2):2/3:sym(7/2)
ans =
[ 1/2, 7/6, 11/6, 5/2, 19/6]
```


Obtain Increments of Symbolic Variable

```
syms x
x:x+2
ans =
[ x, x + 1, x + 2]
```

Specify the increment used.

```
syms x
x:3/7:x+2
ans =
[ x, x + 3/7, x + 6/7, x + 9/7, x + 12/7]
```

Obtain increments between x and $2 * x$ in intervals of $x / 3$.
syms x
$x: x / 3: 2^{*} x$
ans $=$
[x, (4*x)/3, (5*x)/3, 2*x]

Find Product of Harmonic Series

Find the product of the first four terms of the harmonic series.

```
syms x
p = sym(1);
for i = x:x+3
    p = p*l/i;
end
p
p =
1/(x*(x+1)*(x+2)*(x+3))
```

Use expand to obtain the full polynomial.

```
expand(p)
ans =
1/(x^4 + 6*x^3 + 11*x^2 + 6*x)
```

Use subs to replace x with 1 and find the product in fractions.

```
p = subs(p,x,1)
p =
1/24
```

Use vpa to return the result as a floating-point value.

```
vpa(p)
```

ans $=$
0.041666666666666666666666666666667

You can also perform the described operations in a single line of code.

```
vpa(subs( expand(prod(1./(x:x+3))) ,x,1))
```

ans $=$
0.041666666666666666666666666666667

Input Arguments

m - Input

symbolic constant
Input, specified as a symbolic constant.

n - Input

symbolic constant
Input, specified as a symbolic constant.
x - Input
symbolic variable
Input, specified as a symbolic variable.
r - Upper bound on vector values
symbolic rational
Upper bound on vector values, specified as a symbolic rational. For example, $x: x+2$ returns [$x, x+1$, $x+2$].

d - Increment in vector values

symbolic rational
Increment in vector values, specified as a symbolic rational. For example, $x: 1 / 2: x+2$ returns [$x, x+1 / 2, x+1$, $x+3 / 2, x+2]$.

See Also

reshape
Introduced before R2006a

colspace

Basis for column space of matrix

Syntax

colspace(A)

Description

colspace (A) returns a symbolic matrix whose columns form a basis for the column space of the symbolic matrix A.

Examples

Compute Basis for Column Space of Symbolic Matrix

Compute the basis for the column space of a symbolic matrix.
A $=\operatorname{sym}([20 ; 34 ; 05]) ;$
$B=$ colspace(A)

```
B =
\begin{tabular}{rrr}
{\([\)} & 1, & \(0]\) \\
{\([\)} & 0, & \(1]\) \\
{\([-15 / 8\),} & \(5 / 4]\)
\end{tabular}
```


See Also

null

Introduced before R2006a

combine

Combine terms of identical algebraic structure

Syntax

```
Y = combine(S)
Y = combine(S,T)
Y = combine(__,'IgnoreAnalyticConstraints'
IgnoreAnalyticConstraints)
```


Description

$\mathrm{Y}=$ combine (S) rewrites products of powers in the expression S as a single power.
$\mathrm{Y}=$ combine (S, T) combines multiple calls to the target function T in the expression S . Use combine to implement the inverse functionality of expand with respect to the majority of the applied rules.
$Y=$ combine(\qquad ,'IgnoreAnalyticConstraints'
IgnoreAnalyticConstraints) applies common identities, such as $\log (a)$ $+\log (b)=\log (a * b)$, to simplify the output, when 'IgnoreAnalyticConstraints' is set to true. These identities are not valid for all values of the variables, but applying them can return simpler results.

Examples

Powers of the Same Base

Combine powers of the same base.

```
syms x y z
combine(x^y*x^z)
ans =
x^(y + z)
```

Combine powers of numeric arguments. To prevent MATLAB from evaluating the expression, use sym to convert at least one numeric argument into a symbolic value.

```
syms x y
combine(x^(3)*x^y*x^exp(sym(1)))
ans =
x^(y + exp(1) + 3)
```

Here, sym converts 1 into a symbolic value, preventing MATLAB from evaluating the expression e^{1}.

Powers of the Same Exponent

Combine powers with the same exponents in certain cases.

```
combine(sqrt(sym(2))*sqrt(3))
ans =
6^(1/2)
```

combine does not usually combine the powers because the internal simplifier applies the same rules in the opposite direction to expand the result.

```
syms x y
combine(y^5*x^5)
ans =
x^5* (y^5
```


Terms with Logarithms

Combine terms with logarithms by specifying the target argument as log. For real positive numbers, the logarithm of a product equals the sum of the logarithms of its factors.

```
S = log(sym(2)) + log(sym(3));
combine(S,'log')
ans =
log(6)
```

Try combining $\log (a)+\log (b)$. Because a and b are assumed to be complex numbers by default, the rule does not hold and combine does not combine the terms.

```
syms a b
S = log(a) + log(b);
combine(S,'log')
ans =
log(a) + log(b)
```

Apply the rule by setting assumptions such that a and b satisfy the conditions for the rule.

```
assume(a > 0)
assume(b > 0)
S = log(a) + log(b);
combine(S,'log')
ans =
log(a*b)
```

For future computations, clear the assumptions set on variables a and b .

```
syms a clear
syms b clear
```

Alternatively, apply the rule by ignoring analytic constraints using IgnoreAnalyticConstraints.

```
syms a b
S = log(a) + log(b);
combine(S,'log','IgnoreAnalyticConstraints',true)
ans =
    log(a*b)
```


Terms with Sine and Cosine Function Calls

Rewrite products of sine and cosine functions as a sum of the functions by setting the target argument to sincos.

```
syms a b
combine(sin(a)*cos(b) + sin(b)^2,'sincos')
ans =
sin(a + b)/2 - cos(2*b)/2 + sin(a - b)/2 + 1/2
```

Rewrite sums of sine and cosine functions by setting the target argument to sincos.

```
combine(cos(a) + sin(a),'sincos')
ans =
2^(1/2)*\operatorname{cos(a - pi/4)}
```

combine does not rewrite powers of sine or cosine functions with negative integer exponents.

```
syms a b
combine(sin(b)^(-2)*\operatorname{cos(b)^(-2),'sincos')}
ans =
1/(cos(b)^2*sin(b)^2)
```


Exponential Terms

Combine terms with exponents by specifying the target argument as exp.

```
combine(exp(sym(3))*exp(sym(2)),'exp')
```

ans $=$
$\exp (5)$
syms a
combine (exp(a)^3, 'exp')
ans =
$\exp \left(3^{*} a\right)$

Terms with Integrals

Combine terms with integrals by specifying the target argument as int.

```
syms a f(x) g(x)
combine(int(f(x),x)+int(g(x),x),'int')
combine(a*int(f(x),x),'int')
ans =
int(f(x) + g(x), x)
ans =
int(a*f(x), x)
```

Combine integrals with the same limits.

```
syms a b h(z)
combine(int(f(x),x,a,b)+int(h(z),z,a,b),'int')
ans =
int(f(x) + h(x), x, a, b)
```


Terms with Inverse Tangent Function Calls

Combine two calls to the inverse tangent function by specifying the target argument as atan.

```
syms a b
assume(-1 < a < 1)
assume(-1 < b < 1)
combine(atan(a) + atan(b),'atan')
ans =
-atan((a + b)/(a*b - 1))
```

Combine two calls to the inverse tangent function. combine simplifies the expression to a symbolic value if possible.

```
assume(a > 0)
combine(atan(a) + atan(1/a),'atan')
ans =
pi/2
```

For further computations, clear the assumptions:

```
syms a clear
```

syms b clear

Terms with Calls to Gamma Function

Combine multiple gamma functions by specifying the target as gamma.

```
syms x
combine(gamma(x)*gamma(1-x),'gamma')
ans =
    -pi/sin(pi*(x - 1))
```

combine simplifies quotients of gamma functions to rational expressions.

Multiple Input Expressions in One Call

Evaluate multiple expressions in one function call by using a symbolic matrix as the input parameter.

```
S = [sqrt(sym(2))*sqrt(5), sqrt(2)*sqrt(sym(11))];
combine(S)
ans =
[ 10^(1/2), 22^(1/2)]
```


Input Arguments

S - Input expression

symbolic expression | symbolic vector | symbolic matrix | symbolic function
Input expression, specified as a symbolic expression, function, or as a vector or matrix of symbolic expressions or functions.
combine works recursively on subexpressions of S.
If S is a symbolic matrix, combine is applied to all elements of the matrix.

T - Target function
 'atan'|'exp'|'gamma'|'int'|'log'|'sincos'|'sinhcosh'

Target function, specified as 'atan', 'exp', 'gamma', 'int', 'log', 'sincos', or 'sinhcosh'. The rewriting rules apply only to calls to the target function.

Output Arguments

Y - Expression with combined functions

symbolic variable | symbolic number | symbolic expression | symbolic vector | symbolic matrix

Expression with the combined functions, returned as a symbolic variable, number, expression, or as a vector or matrix of symbolic variables, numbers, or expressions.

Algorithms

combine applies the following rewriting rules to the input expression S , depending on the value of the target argument T .

- When $T=$ 'exp', combine applies these rewriting rules where valid,

$$
\begin{aligned}
& e^{a} e^{b}=e^{a+b} \\
& \left(e^{a}\right)^{b}=e^{a b}
\end{aligned}
$$

- When $\mathrm{T}={ }^{\prime} \log$ ',

$$
\log (a)+\log (b)=\log (a b)
$$

If $b<1000$,

$$
b \log (a)=\log \left(a^{b}\right)
$$

When $\mathrm{b}>=1000$, combine does not apply this second rule.
The rules applied to rewrite logarithms do not hold for arbitrary complex values of a and b. Specify appropriate properties for a or b to enable these rewriting rules.

- When T = 'int',

$$
\begin{aligned}
& a \int f(x) d x=\int a f(x) d x \\
& \int f(x) d x+\int g(x) d x=\int f(x)+g(x) d x \\
& \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)+g(x) d x \\
& \int_{a}^{b} f(x) d x+\int_{a}^{b} g(y) d y=\int_{a}^{b} f(y)+g(y) d y \\
& \int_{a}^{b} y f(x) d x+\int_{a}^{b} x g(y) d y=\int_{a}^{b} y f(c)+x f(c) d c .
\end{aligned}
$$

- When $\mathrm{T}=$ 'sincos',

$$
\sin (x) \sin (y)=\frac{\cos (x-y)}{2}-\frac{\cos (x+y)}{2} .
$$

combine applies similar rules for $\sin (x) \cos (y)$ and $\cos (x) \cos (y)$.

$$
A \cos (x)+B \sin (x)=A \sqrt{1+\frac{B^{2}}{A^{2}}} \cos \left(x+\tan ^{-1}\left(\frac{-B}{A}\right)\right) .
$$

- When $\mathrm{T}=$ ' $\operatorname{atan}^{\prime}$ and $-1<x<1,-1<y<1$,

$$
\operatorname{atan}(x)+\operatorname{atan}(y)=\operatorname{atan}\left(\frac{x+y}{1-x y}\right) .
$$

- When T = 'sinhcosh'

$$
\sinh (x) \sinh (y)=\frac{\cosh (x+y)}{2}-\frac{\cosh (x-y)}{2} .
$$

combine applies similar rules for $\sinh (x) \cosh (y)$ and $\cosh (x) \cosh (y)$.
combine applies the previous rules recursively to powers of sinh and cosh with positive integral exponents.

- When T = 'gamma',

$$
a \Gamma(a)=\Gamma(a+1) .
$$

and,

$$
\frac{\Gamma(a+1)}{\Gamma(a)}=a .
$$

For positive integers n,

$$
\Gamma(-a) \Gamma(a)=-\frac{\pi}{\sin (\pi a)} .
$$

See Also

collect | expand | factor| horner|numden| rewrite | simplify |
simplifyFraction

Introduced in R2014a

compose

Functional composition

Syntax

```
compose(f,g)
```

compose(f,g,z)
compose(f, g, x, z)
compose(f,g,x,y,z)

Description

compose(f,g) returns $f(g(y))$ where $f=f(x)$ and $g=g(y)$. Here x is the symbolic variable of f as defined by symvar and y is the symbolic variable of g as defined by symvar.
compose (f, g, z) returns $f(g(z))$ where $f=f(x), g=g(y)$, and x and y are the symbolic variables of f and g as defined by symvar.
compose (f, g, x, z) returns $f(g(z))$ and makes x the independent variable for f. That is, if $f=\cos (x / t)$, then compose (f, g, x, z) returns $\cos (g(z) / t)$ whereas compose (f, g, t, z) returns $\cos (x / g(z))$.
compose (f, g, x, y, z) returns $f(g(z))$ and makes x the independent variable for f and y the independent variable for g. For $f=\cos (x / t)$ and $g=\sin (y / u)$, compose (f, g, x, y, z) returns cos $(\sin (z / u) / t)$ whereas compose($f, g, x, u, z)$ returns $\cos (\sin (y / z) / t)$.

Examples

Compose Functions From Expressions

Show functional composition by creating functions from existing functions.

Declare functions.

```
syms x y z t u
f = 1/(1 + x^2);
g = sin(y);
h = x^t;
p = exp(-y/u);
```

Compose functions with different functions and variables as inputs.

```
a = compose(f,g)
a =
1/(sin(y)^2 + 1)
b = compose(f,g,t)
b =
1/(sin(t)^2 + 1)
c = compose(h,g,x,z)
c =
sin(z)^t
d = compose(h,g,t,z)
d =
x^sin(z)
e = compose(h,p,x,y,z)
e =
exp(-z/u)^t
```


Input Arguments

f - Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

g - Input

symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

x - Symbolic variable
 symbolic variable

Symbolic variable, specified as a symbolic variable.

y - Symbolic variable

symbolic variable
Symbolic variable, specified as a symbolic variable.

See Also

finverse|subs|syms
Introduced before R2006a

cond

Condition number of matrix

Syntax

cond (A)
cond (A, P)

Description

cond (A) returns the 2 -norm condition number of matrix A.
cond (A, P) returns the P -norm condition number of matrix A .

Examples

Compute 2-Norm Condition Number of Matrix

Compute the 2 -norm condition number of the inverse of the 3 -by- 3 magic square A.

```
A = inv(sym(magic(3)));
condN2 = cond(A)
condN2 =
(5*3^(1/2))/2
```

Use vpa to approximate the result.
vpa(condN2, 20)
ans $=$
4.3301270189221932338186158537647

Compute Different Condition Numbers of Matrix

Compute the 1-norm condition number, the Frobenius condition number, and the infinity condition number of the inverse of the 3 -by- 3 magic square A.

```
A = inv(sym(magic(3)));
condN1 = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)
condN1 =
16/3
condNf =
(285^(1/2)*391^(1/2))/60
condNi =
16/3
```

Approximate these results by using vpa.

```
vpa(condN1)
vpa(condNf)
vpa(condNi)
ans =
5.3333333333333333333333333333333
ans =
5.5636468855119361058627454652148
ans =
5.3333333333333333333333333333333
```


Compute Condition Number of Hilbert Matrix

Hilbert matrices are examples of ill-conditioned matrices. Numerically compute the condition numbers of the 3-by-3 Hilbert matrix by using cond and vpa.

```
H = hilb(sym(3));
condN2 = vpa(cond(H))
condN1 = vpa(cond(H,1))
condNf = vpa(cond(H,'fro'))
condNi = vpa(cond(H,inf))
```

condN2 =
524.05677758606270799646154046059
condN1 =
748.0
condNf =
526.15882107972220183000899851322
condNi =
748.0

Input Arguments

A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

P - Input

2 (default) | number | character vector
One of these values $1,2, i n f$, or 'fro'.

- cond $(A, 1)$ returns the 1-norm condition number.
- cond $(A, 2)$ or cond (A) returns the 2 -norm condition number.
- cond ($A, i n f$) returns the infinity norm condition number.
- cond(A,'fro') returns the Frobenius norm condition number.

Definitions

Condition Number of a Matrix

Condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value. The P-norm condition number of the matrix A is defined as norm(A,P)*norm(inv(A), P).

Tips

- Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB cond function.

See Also
equationsToMatrix|inv|linsolve|norm|rank
Introduced in R2012b

conj

Complex conjugate of symbolic input

Syntax

```
conj(x)
```


Description

conj (x) returns the complex conjugate of x. Because symbolic variables are complex by default, unresolved calls, such as conj (x), can appear in the output of norm, mtimes, and other functions. For details, see "Use Assumptions on Symbolic Variables" on page 128.

For complex $x, \operatorname{conj}(x)=\operatorname{real}(x)-i * i m a g(x)$.

Examples

Conjugate of Numeric and Symbolic Input

Compute the conjugate of numeric input.

```
conj(1+3i)
ans =
    1.0000 - 3.0000i
```

Compute the conjugate of symbolic input.
syms x
$f=x^{\wedge} 2$;
fConj $=\operatorname{conj}(f)$
fConj =
$\operatorname{conj}(x)^{\wedge} 2$

Convert symbolic output to double by substituting for x with a number by using subs, and then using double.

```
fConj = subs(fConj,x,1+2i); % x is 1+2i
fConj = double(fConj)
fConj =
    3.0000 - 4.0000i
```


Conjugate of Real Inputs Using Assumptions

If the input is real, conj returns the input instead of an unresolved call. Assume x is real and find its conjugate. conj returns x instead of conj (x), as expected.

```
syms x
assume(x,'real')
conj(x)
ans =
X
```

Clear the assumption for further computations.
assume(x,'clear')

Input Arguments

```
x - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression
```

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

See Also
imag | real
Introduced before R2006a

convertMuPADNotebook

Convert MuPAD notebook to MATLAB live script

Syntax

convertMuPADNotebook(MuPADfile, MATLABLiveScript)
convertMuPADNotebook(MuPADfile)

Description

convertMuPADNotebook(MuPADfile, MATLABLiveScript) converts a MuPAD notebook file MuPADfile (.mn) to a MATLAB live script file MATLABLiveScript (.mlx). Both MuPADfile and MATLABLiveScript must be full paths unless the files are in the current folder. For information on live scripts, see "Create Live Scripts in the Live Editor" (MATLAB).
convertMuPADNotebook(MuPADfile) uses the same name and path, MuPADfile, for the MATLAB live script file that contains converted code. The extension .mn changes to. mlx in the resulting MATLAB live script file.

Examples

Convert MuPAD Notebook to MATLAB Script

Using convertMuPADNotebook, convert a MuPAD notebook to a MATLAB live script. Alternatively, right-click the notebook in the Current Folder browser and select Open as Live Script from the context menu.

Suppose that your current folder contains a MuPAD notebook named myNotebook.mn. Convert this notebook to the MATLAB live script file named myScript.mlx.
convertMuPADNotebook('myNotebook.mn','myScript.mlx')
Open the resulting file.

```
edit('myScript.mlx')
```

Visually check the code for correctness and completeness. Then verify it by running it.

Use Same Name for Converted File

Convert a MuPAD notebook to a MATLAB live script file with the same name.
Suppose that your current folder contains a MuPAD notebook named myFile.mn. Convert this notebook to the MATLAB live script file named myFile.mlx.

```
convertMuPADNotebook('myFile.mn')
```

Open the resulting file.

```
edit('myFile.mlx')
```

Visually check the code for correctness and completeness. Then verify it by executing it.

Fix Translation Errors or Warnings

If convertMuPADNotebook reports that the converted code has translation errors or warnings, correct the resulting MATLAB code before using it.

Convert the MuPAD notebook, myNotebook. mn, to the MATLAB live script file, myScript.mlx. Because myNotebook.mn contains commands that cannot be directly translated to MATLAB code, convertMuPADNotebook flags these commands as translation errors and warnings.

```
convertMuPADNotebook('myNotebook.mn','myScript.mlx')
Created 'myScript.mlx': 4 translation errors, 1 warnings. For verifying...
    the document, see help.
ans =
c:\MATLABscripts\myScript.mlx
```

A translation error indicates that convertMuPADNotebook was unable to convert part of the MuPAD notebook, and that without this part the translated code will not run properly. A translation warning indicates that convertMuPADNotebook was unable to convert a part of the MuPAD notebook (for example, an empty input region) and ignored it. Converted code containing warnings is likely to run without any issues.

Open the resulting file.

```
edit('myScript.mlx');
```

Eliminate translation errors. First, search for "translation error". Next to "translation error", the converted code displays short comments explaining which MuPAD command did not translate properly. There is also a link to documentation that provides more details and suggestions for fixing the issue. After fixing the issue, remove the corresponding error message and any comments related to it.

Find translation warnings by searching for "translation warning". The converted code displays a short comment and a link to documentation next to "translation warning". Some warnings might require you to adapt the code so it runs properly. In most cases, you can ignore translation warnings. Whether you fixed the code or decided to ignore the warning, remove the warning message and any comments related to it.

Visually check the code for correctness and completeness.
Verify that the resulting MATLAB code runs properly by executing it.

Convert All Notebooks in a Folder

Convert all MuPAD notebooks in a folder by making it your current folder, and then using a loop to call the convertMuPADNotebook function on every notebook in the folder.

```
files = dir('*.mn');
for i = 1:numel(files)
    convertMuPADNotebook(files(i).name)
end
```


Convert MuPAD Procedure to MATLAB Function

convertMuPADNotebook converts MuPAD procedures to MATLAB functions. Not all MuPAD procedures can be converted.

Simple procedures are converted into anonymous functions. Convert a MuPAD notebook with the following code.

```
f := x -> x^2
f(2)
```

The output of convertMuPADNotebook is a live script with the anonymous function f.

```
f=@(x) x^2
    f= @(x) (^^2
f(sym(2))
ans = 4
```

For details on anonymous functions, see "Anonymous Functions" (MATLAB).
When procedures are too complex to convert to anonymous functions, they are converted to local functions in the live script. Local functions are placed at the end of the live script.

Convert a MuPAD notebook with the following code.

```
x -> if x=1 then 2 else 3 end
f(0)
```

The procedure is too complex to convert to an anonymous function. The output of convertMuPADNotebook is a live script with the local function aux2.

```
f = @aux2
    f =
        @aux2
f(sym(0))
    ans = 3
```


Local Functions

```
function returnValue = aux2(x)
if x == sym(l)
    auxl = sym(2);
else
    auxl = sym(3);
end
returnValue = auxl;
end
```

For information on local functions in scripts, see "Add Functions to Scripts" (MATLAB).
When converting a notebook that reads a MuPAD program file (.mu), convertMuPADNotebook replaces the read command with the contents of the .mu file. The notebook and program files must be in the same directory.

Input Arguments

MuPADfile - Name of MuPAD notebook

character vector
Name of a MuPAD notebook, specified as a character vector. This character vector must specify the full path to the file, unless the file is in the current folder.

Example: 'C:\MuPAD_Notebooks\myFile.mn'

MATLABLiveScript - Name of MATLAB live script file

character vector
Name of a MATLAB live script file, specified as a character vector. This character vector must specify the full path to the file, unless you intend to create a file in the current folder.

Example: 'C:\MATLAB_Scripts\myFile.mlx'

See Also

generate::MATLAB

Topics

"Convert MuPAD Notebooks to MATLAB Live Scripts" on page 3-19
"Troubleshoot MuPAD to MATLAB Translation Errors" on page 3-25
"Troubleshoot MuPAD to MATLAB Translation Warnings" on page 3-35

Introduced in R2016a

COS

Symbolic cosine function

Syntax

$\cos (X)$

Description

$\cos (X)$ returns the cosine function on page 4-258 of X.

Examples

Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, cos returns floating-point or exact symbolic results.
Compute the cosine function for these numbers. Because these numbers are not symbolic objects, cos returns floating-point results.

```
A = cos([-2, -pi, pi/6, 5*pi/7, 11])
```

A =
$\begin{array}{lllll}-0.4161 & -1.0000 & 0.8660 & -0.6235 & 0.0044\end{array}$
Compute the cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cos returns unresolved symbolic calls.

```
symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[ cos(2), -1, 3^(1/2)/2, -cos((2*pi)/7), cos(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
[ -0.41614683654714238699756822950076,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0.0044256979880507857483550247239416]
```


Plot Cosine Function

Plot the cosine function on the interval from -4π to 4π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(cos(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing cos.

Find the first and second derivatives of the cosine function:

```
syms x
diff(cos(x), x)
diff(cos(x), x, x)
ans =
-sin(x)
```

```
ans =
- cos(x)
```

Find the indefinite integral of the cosine function:

```
int(cos(x), x)
ans =
sin(x)
```

Find the Taylor series expansion of $\cos (x)$:
taylor(cos(x), x)
ans $=$
$x^{\wedge} 4 / 24-x^{\wedge} 2 / 2+1$

Rewrite the cosine function in terms of the exponential function:

```
rewrite(cos(x), 'exp')
ans =
exp(-x*li)/2 + exp(x*li)/2
```


Evaluate Units with cos Function

cos numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the cosine of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cosinf = cos(f)
cosinf =
[ cos((pi*x)/180), cos(2)]
```

You can calculate cosinf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Function

The cosine of an angle, α, defined with reference to a right angled triangle is

$$
\cos (\alpha)=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{b}{h} .
$$

The cosine of a complex angle, α, is

$$
\cos (\alpha)=\frac{e^{i \alpha}+e^{-i \alpha}}{2}
$$

See Also

acos |acot|acsc|asec|asin|atan|cot|csc|sec|sin|tan

Introduced before R2006a

cosh

Symbolic hyperbolic cosine function

Syntax

```
cosh(X)
```


Description

$\cosh (X)$ returns the hyperbolic cosine function of X.

Examples

Hyperbolic Cosine Function for Numeric and Symbolic Arguments

Depending on its arguments, cosh returns floating-point or exact symbolic results.
Compute the hyperbolic cosine function for these numbers. Because these numbers are not symbolic objects, cosh returns floating-point results.

```
A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A =
    3.7622 -1.0000 0.8660 -0.6235 -0.0000
```

Compute the hyperbolic cosine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cosh returns unresolved symbolic calls.

```
symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA =
[ cosh(2), -1, 3^(1/2)/2, - cosh((pi*2i)/7), 0]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 3.7621956910836314595622134777737,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0]
```


Plot Hyperbolic Cosine Function

Plot the hyperbolic cosine function on the interval from $-\pi$ to π. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(cosh(x), [-pi, pi])
grid on

Handle Expressions Containing Hyperbolic Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing cosh.

Find the first and second derivatives of the hyperbolic cosine function:

```
syms x
diff(cosh(x), x)
diff(cosh(x), x, x)
ans =
sinh(x)
```

```
ans =
cosh(x)
```

Find the indefinite integral of the hyperbolic cosine function:

```
int(cosh(x), x)
ans =
sinh(x)
```

Find the Taylor series expansion of $\cosh (x)$:

```
taylor(cosh(x), x)
```

ans $=$
$x^{\wedge} 4 / 24+x^{\wedge} 2 / 2+1$

Rewrite the hyperbolic cosine function in terms of the exponential function:

```
rewrite(cosh(x), 'exp')
ans =
exp(-x)/2 + exp(x)/2
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | coth | csch \| sech \| sinh | tanh

Introduced before R2006a

coshint

Hyperbolic cosine integral function

Syntax

coshint (X)

Description

coshint (X) returns the hyperbolic cosine integral function on page 4-267 of X.

Examples

Hyperbolic Cosine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, coshint returns floating-point or exact symbolic results.
Compute the hyperbolic cosine integral function for these numbers. Because these numbers are not symbolic objects, coshint returns floating-point results.

```
A = coshint([-1, 0, 1/2, 1, pi/2, pi])
A =
0.8379 + 3.1416i 
```

Compute the hyperbolic cosine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, coshint returns unresolved symbolic calls.

```
symA = coshint(sym([-1, 0, 1/2, 1, pi/2, pi]))
symA =
[ coshint(1) + pi*1i, -Inf, coshint(1/2), coshint(1), coshint(pi/2), coshint(pi)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 0.83786694098020824089467857943576...
    + 3.1415926535897932384626433832795i,...
-Inf
-0.052776844956493615913136063326141,...
0.83786694098020824089467857943576
1.7126607364844281079951569897796,...
5.4587340442160681980014878977798]
```


Plot Hyperbolic Cosine Integral Function

Plot the hyperbolic cosine integral function on the interval from 0 to $2 *$ pi . Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(coshint(x), [0, 2*pi])
grid on
```


Handle Expressions Containing Hyperbolic Cosine Integral Function

Many functions, such as diff and int, can handle expressions containing coshint.
Find the first and second derivatives of the hyperbolic cosine integral function:

```
syms x
diff(coshint(x), x)
diff(coshint(x), x, x)
ans =
cosh(x)/x
```

```
ans =
sinh(x)/x - cosh(x)/x^2
```

Find the indefinite integral of the hyperbolic cosine integral function:

```
int(coshint(x), x)
ans =
x*coshint(x) - sinh(x)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Hyperbolic Cosine Integral Function

The hyperbolic cosine integral function is defined as follows:

$$
\operatorname{Chi}(x)=\gamma+\log (x)+\int_{0}^{x} \frac{\cosh (t)-1}{t} d t
$$

Here, γ is the Euler-Mascheroni constant:

$$
\gamma=\lim _{n \rightarrow \infty}\left(\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right)
$$

References

[1] Cautschi, W. and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

cos | cosint|eulergamma|int|sinhint|sinint|ssinint

Introduced in R2014a

cosint

Cosine integral function

Syntax

cosint(X)

Description

cosint (X) returns the cosine integral function on page 4-272 of X.

Examples

Cosine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, cosint returns floating-point or exact symbolic results.
Compute the cosine integral function for these numbers. Because these numbers are not symbolic objects, cosint returns floating-point results.

```
A = cosint([- 1, 0, pi/2, pi, 1])
A =
    0.3374 + 3.1416i - Inf + 0.0000i 0.4720 + 0.0000i...
    0.0737 + 0.0000i 0.3374 + 0.0000i
```

Compute the cosine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cosint returns unresolved symbolic calls.

```
symA = cosint(sym([- 1, 0, pi/2, pi, 1]))
symA =
[ cosint(1) + pi*li, -Inf, cosint(pi/2), cosint(pi), cosint(1)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 0.33740392290096813466264620388915...
    + 3.1415926535897932384626433832795i,....
-Inf,...
0.47200065143956865077760610761413,...
0.07366791204642548599010096523015,...
0.33740392290096813466264620388915]
```


Plot Cosine Integral Function

Plot the cosine integral function on the interval from 0 to 4*pi. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(cosint(x), [0, 4*pi])
grid on
```


Handle Expressions Containing Cosine Integral Function

Many functions, such as diff and int, can handle expressions containing cosint.
Find the first and second derivatives of the cosine integral function:

```
syms x
diff(cosint(x), x)
diff(cosint(x), x, x)
ans =
cos(x)/x
```

```
ans =
- cos(x)/x^2 - sin(x)/x
```

Find the indefinite integral of the cosine integral function:

```
int(cosint(x), x)
ans =
x*cosint(x) - sin(x)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Integral Function

The cosine integral function is defined as follows:

$$
\operatorname{Ci}(x)=\gamma+\log (x)+\int_{0}^{x} \frac{\cos (t)-1}{t} d t
$$

Here, γ is the Euler-Mascheroni constant:

$$
\gamma=\lim _{n \rightarrow \infty}\left(\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right)
$$

References

[1] Gautschi, W. and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

cos | coshint|eulergamma|int|sinhint|sinint|ssinint

Introduced before R2006a

cot

Symbolic cotangent function

Syntax

$\cot (X)$

Description

$\cot (X)$ returns the cotangent function on page 4-278 of X.

Examples

Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, cot returns floating-point or exact symbolic results.
Compute the cotangent function for these numbers. Because these numbers are not symbolic objects, cot returns floating-point results.

```
A = cot([-2, -pi/2, pi/6, 5*pi/7, 11])
A =
    0.4577 -0.0000 1.7321 -0.7975 -0.0044
```

Compute the cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, cot returns unresolved symbolic calls.

```
symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))
symA =
[ -cot(2), 0, 3^(1/2), -cot((2*pi)/7), cot(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
[ 0.45765755436028576375027741043205,...
0,..
1.7320508075688772935274463415059,...
-0.79747338888240396141568825421443,...
-0.0044257413313241136855482762848043]
```


Plot Cotangent Function

Plot the cotangent function on the interval from $-\pi$ to π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(cot(x), [-pi, pi])
grid on
```


Handle Expressions Containing Cotangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing cot.

Find the first and second derivatives of the cotangent function:

```
syms x
diff(cot(x), x)
diff(cot(x), x, x)
ans =
- cot(x)^2 - 1
```

```
ans =
2*}\operatorname{cot}(x)*(\operatorname{cot}(x\mp@subsup{)}{}{\wedge}2 + 1
```

Find the indefinite integral of the cotangent function:

```
int(cot(x), x)
ans =
log(sin(x))
```

Find the Taylor series expansion of $\cot (x)$ around $x=p i / 2$:

```
taylor(cot(x), x, pi/2)
ans =
pi/2 - x - (x - pi/2)^3/3 - (2*(x - pi/2)^5)/15
```

Rewrite the cotangent function in terms of the sine and cosine functions:

```
rewrite(cot(x), 'sincos')
ans =
    cos(x)/sin(x)
```

Rewrite the cotangent function in terms of the exponential function:

```
rewrite(cot(x), 'exp')
ans =
(exp(x*2i)*1i + 1i)/(exp(x*2i) - 1)
```


Evaluate Units with cot Function

cot numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the cotangent of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cotf = cot(f)
cotf =
[ cot((pi*x)/180), cot(2)]
```

You can calculate cotf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cotangent Function

The cotangent of an angle, α, defined with reference to a right angled triangle is

$$
\cot (\alpha)=\frac{1}{\tan (\alpha)}=\frac{\text { adjacent side }}{\text { opposite side }}=\frac{b}{a} .
$$

The cotangent of a complex angle α is

$$
\cot (\alpha)=\frac{i\left(e^{i \alpha}+e^{-i \alpha}\right)}{\left(e^{i \alpha}-e^{-i \alpha}\right)}
$$

See Also

acos \mid acot \mid acsc \mid asec \mid asin \mid atan $|\cos | \csc |\sec |$ sin \mid tan

Introduced before R2006a

coth

Symbolic hyperbolic cotangent function

Syntax

$\operatorname{coth}(X)$

Description

coth (X) returns the hyperbolic cotangent function of X

Examples

Hyperbolic Cotangent Function for Numeric and Symbolic Arguments

Depending on its arguments, coth returns floating-point or exact symbolic results.
Compute the hyperbolic cotangent function for these numbers. Because these numbers are not symbolic objects, coth returns floating-point results.

```
A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A =
\(-1.0373+0.0000 i \quad 0.0000+0.5774 i \quad 0.0000-1.7321 i . .\).
```

Compute the hyperbolic cotangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, coth returns unresolved symbolic calls.

```
symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA =
[ -coth(2), (3^(1/2)*1i)/3, -3^(1/2)*1i, -coth((pi*2i)/7), 0]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -1.0373147207275480958778097647678,...
0.57735026918962576450914878050196i,...
-1.7320508075688772935274463415059i,...
0.79747338888240396141568825421443i,...
0]
```


Plot Hyperbolic Cotangent Function

Plot the hyperbolic cotangent function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(coth(x), [-10, 10])
grid on
```


Handle Expressions Containing Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing coth.

Find the first and second derivatives of the hyperbolic cotangent function:

```
syms x
diff(coth(x), x)
diff(coth(x), x, x)
ans =
1 - coth(x)^2
```

```
ans =
2*}\operatorname{coth}(x)*(\operatorname{coth}(x\mp@subsup{)}{}{\wedge}2 - 1
```

Find the indefinite integral of the hyperbolic cotangent function:

```
int(coth(x), x)
ans =
log(sinh(x))
```

Find the Taylor series expansion of coth (x) around $x=p i * i / 2$:

```
taylor(coth(x), x, pi*i/2)
```

ans =
$x-(p i * 1 i) / 2-(x-(p i * 1 i) / 2)^{\wedge} 3 / 3+\left(2 *(x-(p i * 1 i) / 2)^{\wedge} 5\right) / 15$

Rewrite the hyperbolic cotangent function in terms of the exponential function:

```
rewrite(coth(x), 'exp')
ans =
(exp(2*x) + 1)/(exp(2*x) - 1)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | csch \| sech | sinh | tanh

Introduced before R2006a

CSC

Symbolic cosecant function

Syntax

$\csc (X)$

Description

$\csc (X)$ returns the cosecant function on page 4-289 of X.

Examples

Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, csc returns floating-point or exact symbolic results.
Compute the cosecant function for these numbers. Because these numbers are not symbolic objects, csc returns floating-point results.

```
A = csc([-2, -pi/2, pi/6, 5*pi/7, 11])
A =
    -1.0998 -1.0000 2.0000 1.2790 -1.0000
```

Compute the cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, csc returns unresolved symbolic calls.

```
symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))
symA =
[ -1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

```
ans =
[ -1.0997501702946164667566973970263,...
-1.0,...
2.0,...
1.2790480076899326057478506072714,...
-1.0000097935452091313874644503551]
```


Plot Cosecant Function

Plot the cosecant function on the interval from -4π to 4π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(csc(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing CSC.

Find the first and second derivatives of the cosecant function:

```
syms x
diff(csc(x), x)
diff(csc(x), x, x)
ans =
- cos(x)/sin(x)^2
```

```
ans =
1/sin(x) + (2* cos(x)^2)/sin(x)^3
```

Find the indefinite integral of the cosecant function:

```
int(csc(x), x)
ans =
log(tan(x/2))
```

Find the Taylor series expansion of $\csc (x)$ around $x=p i / 2$:

```
taylor(csc(x), x, pi/2)
```

ans $=$
$(x-p i / 2)^{\wedge} 2 / 2+\left(5 *(x-p i / 2)^{\wedge} 4\right) / 24+1$

Rewrite the cosecant function in terms of the exponential function:

```
rewrite(csc(x), 'exp')
ans =
1/((exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2)
```


Evaluate Units with csc Function

csc numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the cosecant of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cosecf = csc(f)
cosecf =
[ 1/sin((pi*x)/180), 1/sin(2)]
```

You can calculate cosecf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosecant Function

The cosecant of an angle, α, defined with reference to a right angled triangle is

$$
\csc (\alpha)=\frac{1}{\sin (\alpha)}=\frac{\text { hypotenuse }}{\text { opposite side }}=\frac{h}{a} .
$$

The cosecant of a complex angle, α, is

$$
\csc (\alpha)=\frac{2 i}{e^{i \alpha}-e^{-i \alpha}}
$$

See Also

acos |acot|acsc|asec|asin|atan|cos|cot|csc|sin|tan

Introduced before R2006a

csch

Symbolic hyperbolic cosecant function

Syntax

$\operatorname{csch}(X)$

Description

$\operatorname{csch}(X)$ returns the hyperbolic cosecant function of X.

Examples

Hyperbolic Cosecant Function for Numeric and Symbolic Arguments

Depending on its arguments, csch returns floating-point or exact symbolic results.
Compute the hyperbolic cosecant function for these numbers. Because these numbers are not symbolic objects, csch returns floating-point results.

```
A = csch([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2])
A =
\begin{tabular}{rrr}
\(-0.2757+0.0000 i\) & \(0.0000+1.0000 i\) & Inf + 0.0000i... \\
\(0.0000-1.1547 i\) & \(0.0000-1.2790 i\) & \(0.0000-1.0000 i\)
\end{tabular}
```

Compute the hyperbolic cosecant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, csch returns unresolved symbolic calls.

```
symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))
symA =
[ -1/sinh(2), 1i, Inf, -(3^(1/2)*2i)/3, 1/sinh((pi*2i)/7), -1i]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.27572056477178320775835148216303,...
1.0i,...
Inf,
-1.1547005383792515290182975610039i,...
-1.2790480076899326057478506072714i,...
-1.0i]
```


Plot Hyperbolic Cosecant Function

Plot the hyperbolic cosecant function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(csch(x), [-10, 10])
grid on
```


Handle Expressions Containing Hyperbolic Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing Csch.

Find the first and second derivatives of the hyperbolic cosecant function:

```
syms x
diff(csch(x), x)
diff(csch(x), x, x)
ans =
- cosh(x)/sinh(x)^2
```

```
ans =
(2*}\operatorname{cosh}(x\mp@subsup{)}{}{\wedge}2)/\operatorname{sinh}(x\mp@subsup{)}{}{\wedge}3-1/sinh(x
```

Find the indefinite integral of the hyperbolic cosecant function:

```
int(csch(x), x)
ans =
log(tanh(x/2))
```

Find the Taylor series expansion of $\operatorname{csch}(x)$ around $x=p i * i / 2$:

```
taylor(csch(x), x, pi*i/2)
```

ans $=$
$\left((x-(p i * 1 i) / 2)^{\wedge} 2 * 1 i\right) / 2-((x-(p i * 1 i) / 2) \wedge 4 * 5 i) / 24-1 i$

Rewrite the hyperbolic cosecant function in terms of the exponential function:

```
rewrite(csch(x), 'exp')
ans =
-1/(exp(-x)/2 - exp(x)/2)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth \| sech \| sinh | tanh

Introduced before R2006a

ctranspose'

Symbolic matrix complex conjugate transpose

Syntax

```
A'
ctranspose(A)
```


Description

A' computes the complex conjugate transpose on page 4-297 of A.
ctranspose (A) is equivalent to A^{\prime}.

Examples

Conjugate Transpose of Real Matrix

Create a 2-by-3 matrix, the elements of which represent real numbers.

```
syms x y real
A = [x x x; y y y]
A =
[ x, x, x]
[ y, y, y]
```

Find the complex conjugate transpose of this matrix.
A'
ans $=$
[x, y]
[x, y]
[x, y]

If all elements of a matrix represent real numbers, then its complex conjugate transform equals to its nonconjugate transform.

```
isAlways(A' == A.')
ans =
    3\times2 logical array
        1 1
        1
        1
```


Conjugate Transpose of Complex Matrix

Create a 2-by-2 matrix, the elements of which represent complex numbers.

```
syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]
A =
[ x + y*li, x - y*li]
[ y + x*li, y - x*li]
```

Find the conjugate transpose of this matrix. The complex conjugate transpose operator, A^{\prime}, performs a transpose and negates the sign of the imaginary portion of the complex elements in A.

```
A'
ans =
[ x - y*li, y - x*li]
[ x + y*li, y + x*li]
```

For a matrix of complex numbers with nonzero imaginary parts, the complex conjugate transform is not equal to the nonconjugate transform.

```
isAlways(A' == A.','Unknown','false')
ans =
    2\times2 logical array
        0 0
        0}
```


Input Arguments

A - Input
 number | symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array

Input, specified as a number or a symbolic number, variable, expression, vector, matrix, multidimensional array.

Definitions

Complex Conjugate Transpose

The complex conjugate transpose of a matrix interchanges the row and column index for each element, reflecting the elements across the main diagonal. The operation also negates the imaginary part of any complex numbers.

For example, if $B=A^{\prime}$ and $A(1,2)$ is $1+1 i$, then the element $B(2,1)$ is $1-1 i$.

See Also

ldivide|minus |mldivide |mpower |mrdivide |mtimes | plus | power | rdivide | times|transpose

Introduced before R2006a

cumprod

Symbolic cumulative product

Syntax

$B=$ cumprod(A)
$B=\operatorname{cumprod}(A, d i m)$
$B=$ cumprod(\qquad , direction)

Description

$B=$ cumprod (A) returns an array the same size as A containing the cumulative product.

- If A is a vector, then cumprod (A) returns a vector containing the cumulative product of the elements of A.
- If A is a matrix, then cumprod (A) returns a matrix containing the cumulative products of each column of A.
$B=$ cumprod $(A, d i m)$ returns the cumulative product along dimension dim. For example, if A is a matrix, then cumprod $(A, 2)$ returns the cumulative product of each row.

B = cumprod(\qquad ,direction) specifies the direction using any of the previous syntaxes. For instance, cumprod (A, 2, 'reverse') returns the cumulative product within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Product of Vector

Create a vector and find the cumulative product of its elements.

```
V = 1./factorial(sym([1:5]))
prod_V = cumprod(V)
```

```
V =
[ 1, 1/2, 1/6, 1/24, 1/120]
prod_V =
[ 1, 1/2, 1/12, 1/288, 1/34560]
```


Cumulative Product of Each Column in Symbolic Matrix

Create matrix a 4 -by-4 symbolic matrix X all elements of which equal x .

```
syms x
X = x*ones(4,4)
X =
[ x, x, x, x]
```

Compute the cumulative product of the elements of X. By default, cumprod returns the cumulative product of each column.

```
productX = cumprod(X)
productX =
[ x, x, x, x]
[ x^2, x^2, x^2, x^2]
[ x^3, x^3, x^3, x^3]
[ x^4, x^4, x^4, x^4]
```


Cumulative Product of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix, all elements of which equal x.

```
syms x
X = x*ones(4,4)
X =
[ x, x, x, x]
```

Compute the cumulative product of each row of the matrix X .

```
productX = cumprod(X,2)
productX =
[ x, x^2, x^3, x^4]
```


Reverse Cumulative Product

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

```
syms x
X = x*ones(4,4)
X =
[ x, x, x, x]
```

Calculate the cumulative product along the columns in both directions. Specify the ' reverse' option to work from right to left in each row.

```
columnsDirect = cumprod(X)
columnsReverse = cumprod(X,'reverse')
columnsDirect =
[ x, x, x, x]
[ x^2, x^2, x^2, x^2]
[ x^3, x^3, x^3, x^3]
[ x^4, x^4, x^4, x^4]
columnsReverse =
[ x^4, x^4, x^4, x^4]
[ x^3, x^3, x^3, x^3]
[ x^2, x^2, x^2, x^2]
```

Calculate the cumulative product along the rows in both directions. Specify the ' reverse' option to work from right to left in each row.

```
rowsDirect = cumprod(X,2)
rowsReverse = cumprod(X,2,'reverse')
```

```
rowsDirect =
[ x, x^2, x^3, x^4]
rowsReverse =
[ x^4, x^3, x^2, x]
```


Input Arguments

A - Input array

symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim - Dimension to operate along

positive integer
Dimension to operate along, specified as a positive integer. The default value is 1 .
Consider a two-dimensional input array, A.

- cumprod $(A, 1))$ works on successive elements in the columns of A and returns the cumulative product of each column.
- cumprod (A, 2) works on successive elements in the rows of A and returns the cumulative product of each row.

A

cumprod($A, 1$)

cumprod($\mathrm{A}, 2$)
cumprod returns A if dim is greater than ndims (A).

direction - Direction of cumulation

'forward' (default)|'reverse'

Direction of cumulation, specified as the 'forward' (default) or 'reverse'.

- ' forward ' works from 1 to end of the active dimension.
- 'reverse' works from end to 1 of the active dimension.

Output Arguments

B - Cumulative product array

vector | matrix
Cumulative product array, returned as a vector or matrix of the same size as the input A.

See Also
cumsum | fold | int | symprod | symsum
\section*{Introduced in R2013b}

cumsum

Symbolic cumulative sum

Syntax

$B=\operatorname{cumsum}(A)$
$B=$ cumsum(A,dim)
$B=$ cumsum(\qquad ,direction)

Description

$B=$ cumsum (A) returns an array the same size as A containing the cumulative sum.

- If A is a vector, then cumsum (A) returns a vector containing the cumulative sum of the elements of A.
- If A is a matrix, then cumsum (A) returns a matrix containing the cumulative sums of each column of A.
$B=$ cumsum(A, dim) returns the cumulative sum along dimension dim. For example, if A is a matrix, then cumsum $(A, 2)$ returns the cumulative sum of each row.
$B=$ cumsum (\qquad ,direction) specifies the direction using any of the previous syntaxes. For instance, cumsum ($\mathrm{A}, 2$, 'reverse') returns the cumulative sum within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Sum of Vector

Create a vector and find the cumulative sum of its elements.

```
V = 1./factorial(sym([1:5]))
sum_V = cumsum(V)
```

```
V =
[ 1, 1/2, 1/6, 1/24, 1/120]
sum_V =
[ 1, 3/2, 5/3, 41/24, 103/60]
```


Cumulative Sum of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

```
A = sym(ones(4,4))
A =
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
```

Compute the cumulative sum of elements of A. By default, cumsum returns the cumulative sum of each column.

```
sumA = cumsum(A)
sumA =
[ 1, 1, 1, 1]
[ 2, 2, 2, 2]
[ 3, 3, 3, 3]
[ 4, 4, 4, 4]
```


Cumulative Sum of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

```
A = sym(ones(4,4))
A =
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
```

Compute the cumulative sum of each row of the matrix A.

```
sumA = cumsum(A,2)
```

```
sumA =
[ 1, 2, 3, 4]
[ 1, 2, 3, 4]
[1, 2, 3, 4]
[ 1, 2, 3, 4]
```


Reverse Cumulative Sum

Create matrix a 4-by-4 symbolic matrix, all elements of which equal 1.

```
A = sym(ones(4,4))
A =
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
[ 1, 1, 1, 1]
```

Calculate the cumulative sum along the columns in both directions. Specify the ' reverse' option to work from right to left in each row.

```
columnsDirect = cumsum(A)
columnsReverse = cumsum(A,'reverse')
columnsDirect =
[ 1, 1, 1, 1]
[ 2, 2, 2, 2]
[ 3, 3, 3, 3]
[ 4, 4, 4, 4]
columnsReverse =
[ 4, 4, 4, 4]
[ 3, 3, 3, 3]
[ 2, 2, 2, 2]
[ 1, 1, 1, 1]
```

Calculate the cumulative sum along the rows in both directions. Specify the 'reverse' option to work from right to left in each row.

```
rowsDirect = cumsum(A,2)
rowsReverse = cumsum(A,2,'reverse')
rowsDirect =
[ 1, 2, 3, 4]
```

```
[ 1, 2, 3, 4]
[ 1, 2, 3, 4]
[ 1, 2, 3, 4]
rowsReverse =
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]
[ 4, 3, 2, 1]
```


Input Arguments

A - Input array

symbolic vector | symbolic matrix
Input array, specified as a vector or matrix.

dim - Dimension to operate along

positive integer
Dimension to operate along, specified as a positive integer. The default value is 1 .
Consider a two-dimensional input array, A:

- cumsum $(A, 1)$ works on successive elements in the columns of A and returns the cumulative sum of each column.
- cumsum ($A, 2$) works on successive elements in the rows of A and returns the cumulative sum of each row.

A

cumsum($\mathrm{A}, 1$)

cumsum(A,2)
cumsum returns A if dim is greater than ndims (A).

direction - Direction of cumulation

'forward' (default)|'reverse'

Direction of cumulation, specified as the 'forward' (default) or 'reverse'.

- ' forward ' works from 1 to end of the active dimension.
- 'reverse ' works from end to 1 of the active dimension.

Output Arguments

B - Cumulative sum array

vector | matrix
Cumulative sum array, returned as a vector or matrix of the same size as the input A.

See Also
cumprod | fold | int | symprod | symsum
Introduced in R2013b

curl

Curl of vector field

Syntax

$$
\operatorname{curl}(\mathrm{V}, \mathrm{X})
$$

curl(V)

Description

curl (V, X) returns the curl of the vector field on page 4-310 V with respect to the vector X. The vector field V and the vector X are both three-dimensional.
curl (V) returns the curl of the vector field V with respect to the vector of variables returned by symvar(V,3).

Examples

Compute Curl of Vector Field

Compute the curl of this vector field with respect to vector $X=(x, y, z)$ in Cartesian coordinates.

```
syms x y z
V = [ [x^3* y^2*z, y^3* z^2*x, z^3* *^2*y];
X = [x y z];
curl(V,X)
ans =
    x^2*z^3 - 2*x*y^3*z
    x^3* y^2 - 2* ** 'y**^3
    - 2* *^3* }\mp@subsup{y}{}{*}z+\mp@subsup{y}{}{\wedge}\mp@subsup{3}{}{*}\mp@subsup{z}{}{\wedge}
```


Show Curl of Gradient of Scalar Function is Zero

Compute the curl of the gradient of this scalar function. The curl of the gradient of any scalar function is the vector of 0 s.

```
syms x y z
f = x^2 + y^2 + z^2;
vars = [x y z];
curl(gradient(f,vars),vars)
ans =
    0
0
0
```


Compute Vector Laplacian of Vector Field

The vector Laplacian of a vector field V is defined as follows.

$$
\nabla^{2} V=\nabla(\nabla \cdot V)-\nabla \times(\nabla \times V)
$$

Compute the vector Laplacian of this vector field using the curl, divergence, and gradient functions.

```
syms x y z
V = [ x^ 2*y, y^2*zz, z^2*x];
vars = [x y z];
gradient(divergence(V,vars)) - curl(curl(V,vars),vars)
ans =
    2*y
    2*z
    2*x
```


Input Arguments

v- Input

three-dimensional symbolic vector
Input, specified as a three-dimensional vector of symbolic expressions or symbolic functions.

X - Variables

vector of three variables
Variables, specified as a vector of three variables

Definitions

Curl of a Vector Field

The curl of the vector field $V=\left(V_{1}, V_{2}, V_{3}\right)$ with respect to the vector $X=\left(X_{1}, X_{2}, X_{3}\right)$ in Cartesian coordinates is this vector.

$$
\operatorname{curl}(V)=\nabla \times V=\left(\begin{array}{ll}
\frac{\partial V_{3}}{\partial X_{2}} & -\frac{\partial V_{2}}{\partial X_{3}} \\
\frac{\partial V_{1}}{\partial X_{3}}-\frac{\partial V_{3}}{\partial X_{1}} \\
\frac{\partial V_{2}}{\partial X_{1}}-\frac{\partial V_{1}}{\partial X_{2}}
\end{array}\right)
$$

See Also

diff|divergence|gradient|hessian|jacobian|laplacian| potential| vectorPotential

Introduced in R2012a

daeFunction

Convert system of differential algebraic equations to MATLAB function handle suitable for ode15i

Syntax

```
f = daeFunction(eqs,vars)
f = daeFunction(eqs,vars,p1,...,pN)
f = daeFunction(
```

\qquad

``` , Name, Value)
```


Description

f = daeFunction(eqs,vars) converts a system of symbolic first-order differential algebraic equations (DAEs) to a MATLAB function handle acceptable as an input argument to the numerical MATLAB DAE solver ode15i.
$\mathrm{f}=$ daeFunction(eqs,vars, p1,..., pN) lets you specify the symbolic parameters of the system as $\mathrm{p} 1, \ldots, \mathrm{pN}$.
$\mathrm{f}=$ daeFunction(\qquad ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Convert DAE System to Function Handle

Create the system of differential algebraic equations. Here, the symbolic functions $x 1(t)$ and $\times 2(t)$ represent the state variables of the system. The system also contains constant symbolic parameters a, b, and the parameter function $r(t)$. These parameters do not represent state variables. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
    x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];
```

Use daeFunction to generate a MATLAB function handle f depending on the variables $x 1(t), x 2(t)$ and on the parameters $a, b, r(t)$.

```
f = daeFunction(eqs, vars, a, b, r(t))
```

$f=$
function_handle with value:
@(t,in2,in3, param1, param2, param3)[in3(1,:)-param1.*in2(1, :)...
-param2.*in2(2,:).^2;-param3.^2+in2(1,:).^2+in2(2,:).^2]

Specify the parameter values, and create the reduced function handle F as follows.

```
a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);
F = @(t, Y, YP) f(t,Y,YP,a,b,r(t));
```

Specify consistent initial conditions for the DAE system.

```
t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0= [a*y0(1) + b*y0(2)^2; 1.234];
```

Now, use ode15i to solve the system of equations.

```
ode15i(F, [t0, 1], y0, yp0)
```


Write Function to File with Comments

Write the generated function handle to a file by specifying the File option. When writing to a file, daeFunction optimizes the code using intermediate variables named t0, t1, Include comments in the file using the Comments option.

Write the generated function handle to the file myfile.

```
syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
    x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];
daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile')
```

```
function eqs = myfile(t,in2,in3,param1,param2,param3)
%MYFILE
% EQS = MYFILE(T,IN2,IN3,PARAM1,PARAM2,PARAM3)
% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00
YP1 = in3(1,:);
x1 = in2(1,:);
x2 = in2(2,:);
t2 = x2.^2;
eqs = [YP1-param2.*t2-param1.*x1;t2-param3.^2+x1.^2];
Include the comment Version: 1.1.
daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile',...
                            'Comments','Version: 1.1');
function eqs = myfile(t,in2,in3,param4,param5,param6)
%Version: 1.1
YP3 = in3(1,:);
```

- "Solve Differential Algebraic Equations (DAEs)" on page 2-198

Input Arguments

eqs - System of first-order DAEs

vector of symbolic equations | vector of symbolic expressions
System of first-order DAEs, specified as a vector of symbolic equations or expressions. Here, expressions represent equations with zero right side.

vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $x(t)$.
Example: [$\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$] or [$\mathrm{x}(\mathrm{t}) ; \mathrm{y}(\mathrm{t})$]

p1, ..., pN - Parameters of system

symbolic variables | symbolic functions | symbolic function calls | symbolic vector | symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls, such as $f(t)$. You can also specify parameters of the system as a vector or matrix of symbolic variables, functions, or function calls. If eqs contains symbolic parameters other than the variables specified in vars, you must specify these additional parameters as p1,..., pN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: daeFunction(eqns,vars,'File','myfile')

Comments - Comments to include in file header

character vector | cell array of character vectors \mid string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector.

File - Path to file containing generated code
 character vector

Path to the file containing generated code, specified as a character vector. The generated file accepts arguments of type double, and can be used without Symbolic Math Toolbox. If the value is an empty character vector, odeFunction generates an anonymous function. If the character vector does not end in .m, the function appends .m.

By default, daeFunction with the File argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32. To disable code optimization, use the Optimize argument.

Optimize - Flag preventing optimization of code written to function file true (default) | false

Flag preventing optimization of code written to a function file, specified as false or true.

By default, daeFunction with the File argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example $t 32$.
daeFunction without the File argument (or with a file path specified by an empty character vector) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting Optimize to true, then daeFunction throws an error.

Sparse - Flag that switches between sparse and dense matrix generation false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or false. When you specify 'Sparse', true, the generated function represents symbolic matrices by sparse numeric matrices. Use 'Sparse' , true when you convert symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices.

Output Arguments

f - Function handle that can serve as input argument to odel5i
 MATLAB function handle

Function handle that can serve as input argument to ode15i, returned as a MATLAB function handle.

See Also

decic|findDecoupledBlocks |incidenceMatrix|isLowIndexDAE | massMatrixForm|matlabFunction |ode15i| odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder|reduceRedundancies

Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

dawson

Dawson integral

Syntax

dawson(X)

Description

dawson (X) represents the Dawson integral on page 4-321.

Examples

Dawson Integral for Numeric and Symbolic Arguments

Depending on its arguments, dawson returns floating-point or exact symbolic results.
Compute the Dawson integrals for these numbers. Because these numbers are not symbolic objects, dawson returns floating-point results.

```
A = dawson([-Inf, -3/2, -1, 0, 2, Inf])
A =
```

```
    0
```

Compute the Dawson integrals for the numbers converted to symbolic objects. For many symbolic (exact) numbers, dawson returns unresolved symbolic calls.

```
symA = dawson(sym([-Inf, -3/2, -1, 0, 2, Inf]))
symA =
[ 0, -dawson(3/2), -dawson(1), 0, dawson(2), 0]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

```
ans =
[ 0,...
-0.42824907108539862547719010515175,...
-0.53807950691276841913638742040756,...
0,...
0.30134038892379196603466443928642,...
0]
```


Plot the Dawson Integral

Plot the Dawson integral on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(dawson(x), [-10, 10])
grid on

Handle Expressions Containing Dawson Integral

Many functions, such as diff and limit, can handle expressions containing dawson.
Find the first and second derivatives of the Dawson integral:

```
syms x
diff(dawson(x), x)
diff(dawson(x), x, x)
ans =
1 - 2*x*dawson(x)
```

```
ans =
2*x*(2*x*dawson(x) - 1) - 2*dawson(x)
```

Find the limit of this expression involving dawson:
limit(x*dawson(x), Inf)
ans $=$
1/2

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Dawson Integral

The Dawson integral, also called the Dawson function, is defined as follows:

$$
\operatorname{dawson}(x)=D(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

Symbolic Math Toolbox uses this definition to implement dawson.
The alternative definition of the Dawson integral is

$$
D(x)=e^{x^{2}} \int_{0}^{x} e^{-t^{2}} d t
$$

Tips

- dawson (0) returns 0 .
- dawson(Inf) returns 0 .
- dawson(-Inf) returns 0 .

See Also
 erf|erfc

Introduced in R2014a

decic

Find consistent initial conditions for first-order implicit ODE system with algebraic constraints

Syntax

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est, options)

Description

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est, options) finds consistent initial conditions for the system of first-order implicit ordinary differential equations with algebraic constraints returned by the reduceDAEToODE function.

The call [eqs,constraintEqs] = reduceDAEToODE(DA_eqs,vars) reduces the system of differential algebraic equations DA_eqs to the system of implicit ODEs eqs. It also returns constraint equations encountered during system reduction. For the variables of this ODE system and their derivatives, decic finds consistent initial conditions y0, yp0 at the time t 0 .

Substituting the numerical values y0, yp0 into the differential equations subs(eqs, [t; vars(t); diff(vars(t))], [t0; y0; yp0]) and the constraint equations subs(constr, [t; vars(t); diff(vars(t))], [t0; y0; yp0]) produces zero vectors. Here, vars must be a column vector.
y0_est specifies numerical estimates for the values of the variables vars at the time $t 0$, and fixedVars indicates the values in y0_est that must not change during the numerical search. The optional argument yp0_est lets you specify numerical estimates for the values of the derivatives of the variables vars at the time t0.

Examples

Find Consistent Initial Conditions for ODE System

Reduce the DAE system to a system of implicit ODEs. Then, find consistent initial conditions for the variables of the resulting ODE system and their first derivatives.

Create the following differential algebraic system.

```
syms x(t) y(t)
DA_eqs = [diff(x(t),t) == cos(t) + y(t),...
    x(t)^2 + y(t)^2 == 1];
vars = [x(t); y(t)];
```

Use reduceDAEToODE to convert this system to a system of implicit ODEs.

```
[eqs, constraintEqs] = reduceDAEToODE(DA_eqs, vars)
```

eqs =

```
    diff(x(t), t) - y(t) - cos(t)
    - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t)
```

constraintEqs =
1 - $y(t)^{\wedge} 2-x(t)^{\wedge} 2$

Create an option set that specifies numerical tolerances for the numerical search.

```
options = odeset('RelTol', 10.0^(-7), 'AbsTol', 10.0^(-7));
```

Fix values t0 $=0$ for the time and numerical estimates for consistent values of the variables and their derivatives.

```
t0 = 0;
y0_est = [0.1, 0.9];
yp0_est = [0.0, 0.0];
```

You can treat the constraint as an algebraic equation for the variable x with the fixed parameter y. For this, set fixedVars = [0 1]. Alternatively, you can treat it as an algebraic equation for the variable y with the fixed parameter x. For this, set fixedVars = [10].

First, set the initial value $x(t 0)=y 0 _e s t(1)=0.1$.

```
fixedVars = [1 0];
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)
y0 =
    0.1000
    0.9950
yp0 =
    1.9950
    -0.2005
Now, change fixedVars to [0 1]. This fixes \(y(t 0)=y 0 \_e s t(2)=0.9\).
fixedVars = [0 1];
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)
y0 =
    -0.4359
    0.9000
yp0 =
    1.9000
    0.9202
```

Verify that these initial values are consistent initial values satisfying the equations and the constraints.

```
subs(eqs, [t; vars; diff(vars,t)], [t0; y0; yp0])
ans =
    0
    0
subs(constraintEqs, [t; vars; diff(vars,t)], [t0; y0; yp0])
ans =
0
```


Input Arguments

eqs - System of implicit ordinary differential equations

vector of symbolic equations | vector of symbolic expressions

System of implicit ordinary differential equations, specified as a vector of symbolic equations or expressions. Here, expressions represent equations with zero right side.

Typically, you use expressions returned by reduceDAEToODE.

vars - State variables of original DAE system
 vector of symbolic functions | vector of symbolic function calls

State variables of original DAE system, specified as a vector of symbolic functions or function calls, such as $x(t)$.
Example: $[x(t), y(t)]$ or $[x(t) ; y(t)]$

constraintEqs - Constraint equations found by reduceDAETOODE during system reduction

vector of symbolic equations | vector of symbolic expressions
Constraint equations encountered during system reduction, specified as a vector of symbolic equations or expressions. These expressions or equations depend on the variables vars, but not on their derivatives.

Typically, you use constraint equations returned by reduceDAEToODE.

t0 - Initial time

number
Initial time, specified as a number.

y0_est - Estimates for values of variables vars at initial time t0 numeric vector

Estimates for the values of the variables vars at the initial time t0, specified as a numeric vector.

fixedVars - Input vector indicating which elements of y0_est are fixed values vector with elements 0 or 1

Input vector indicating which elements of y0_est are fixed values, specified as a vector with 0 s or 1 s . Fixed values of y 0 _est correspond to values 1 in fixedVars. These values are not modified during the numerical search. The zero entries in fixedVars correspond to those variables in y 0 _est for which decic solves the constraint equations. The number of 0 s must coincide with the number of constraint equations. The Jacobian matrix
of the constraints with respect to the variables vars(fixedVars == 0) must be invertible.

yp0_est - Estimates for values of first derivatives of variables vars at initial time t0

numeric vector
Estimates for the values of the first derivatives of the variables vars at the initial time t0, specified as a numeric vector.

options - Options for numerical search

options structure, returned by odeset
Options for numerical search, specified as an options structure, returned by odeset. For example, you can specify tolerances for the numerical search here.

Output Arguments

y0 - Consistent initial values for variables
numeric column vector
Consistent initial values for variables, returned as a numeric column vector.

yp0 - Consistent initial values for first derivatives of variables

numeric column vector
Consistent initial values for first derivatives of variables, returned as a numeric column vector.

See Also

daeFunction |findDecoupledBlocks|incidenceMatrix|isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex| reduceDAEToODE | reduceDifferentialOrder|reduceRedundancies

Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

derivedUnits

Derived units of unit system

Syntax

derivedUnits(unitSystem)

Description

derivedUnits(unitSystem) returns the derived units of the unit system unitSystem as a vector of symbolic units. You can use the returned units to create new unit systems by using newUnitSystem.

Examples

Derived Units of Unit System

Get the derived units of a unit system by using derivedUnits. Then, modify the derived units and create a new unit system using the modified derived units. Available unit systems include SI, CGS, and US. For all unit systems, see "Unit Systems List" on page 228.

Get the derived units of the SI unit system.

```
dunits = derivedUnits('SI')
dunits =
[ [F], [C], [S], [H], [V], [J], [N], [lx], [lm], [Wb], [W], [Pa],...
    [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]
```

Note Do not define a variable called derivedUnits because the variable will prevent access to the derivedUnits function.

Define derived units that use kilonewton for force and millibar for pressure by modifying dunits using subs.

```
u = symunit;
newUnits = subs(dunits,[u.N u.Pa],[u.kN u.mbar])
newUnits =
[ [F], [C], [S], [H], [V], [J], [kN], [lx], [lm], [Wb], [W], [mbar],...
    [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]
```

Define the new unit system by using newUnitSystem. Keep the SI base units.

```
bunits = baseUnits('SI');
newUnitSystem('SI_kN_mbar',bunits,newUnits)
ans =
    "SI_kN_mbar"
```

To convert between unit systems, see "Unit Conversions and Unit Systems" on page 2-31.

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

Input Arguments

unitSystem - Name of unit system

string | character vector
Name of the unit system, specified as a string or character vector.

See Also

baseUnits|newUnitSystem| removeUnitSystem|rewrite|symunit| unitSystems

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017b

det

Determinant of symbolic matrix

Syntax

$\operatorname{det}(A)$

Description

$\operatorname{det}(A)$ returns the determinant of the matrix A.

Examples

Compute Determinant of Matrix

Compute the determinant of the following symbolic matrix.

```
syms a b c d
M = [a b; c d];
det(M)
ans =
a*d - b*c
```


Compute Determinant of Matrix with Symbolic Numbers

Compute the determinant of the following matrix containing the symbolic numbers.

```
A = sym([2/3 1/3; 1 1]);
det(A)
```


Input Arguments

A - Input

numeric matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

See Also

eig | rank
Introduced before R2006a

diag

Create diagonal matrix or get diagonals from symbolic matrices

Syntax

$$
\begin{aligned}
& D=\operatorname{diag}(v) \\
& D=\operatorname{diag}(v, k) \\
& x=\operatorname{diag}(A) \\
& x=\operatorname{diag}(A, k)
\end{aligned}
$$

Description

$\mathrm{D}=$ diag(v) returns a square diagonal matrix with vector v as the main diagonal.
$\mathrm{D}=\operatorname{diag}(\mathrm{v}, \mathrm{k})$ places vector v on the kth diagonal. $\mathrm{k}=0$ represents the main diagonal, $\mathrm{k}>0$ is above the main diagonal, and $\mathrm{k}<0$ is below the main diagonal.
$x=\operatorname{diag}(A)$ returns the main diagonal of A.
$x=\operatorname{diag}(A, k)$ returns the k th diagonal of A.

Examples

Create Matrix with Diagonal as Vector

Create a symbolic matrix with the main diagonal specified by the vector v.
syms a b c
$v=[a b c] ;$
diag(v)
ans $=$
[a, 0, 0]
[0, b, 0]
[0, 0, c]

Create Matrix with Subdiagonal as Vector

Create a symbolic matrix with the second diagonal below the main diagonal specified by the vector v .

```
syms a b c
v = [a b c];
diag(v,-2)
ans =
[0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ a, 0, 0, 0, 0]
[ 0, b, 0, 0, 0]
[ 0, 0, c, 0, 0]
```


Extract Diagonal from Matrix

Extract the main diagonal from a square matrix.

```
syms x y z
A = magic(3).*[x, y, z];
diag(A)
ans =
    8*x
    5*y
    2*z
```


Extract Superdiagonal from Matrix

Extract the first diagonal above the main diagonal.

```
syms x y z
A = magic(3).*[x, y, z];
diag(A,1)
```

```
ans =
    y
    7*Z
```


Input Arguments

v - Diagonal elements

symbolic vector
Diagonal elements, specified as a vector. If v is a vector with N elements, then diag (v, k) is a square matrix of order $\mathrm{N}+\mathrm{abs}(\mathrm{k})$.

A - Input matrix

symbolic matrix
Input matrix, specified as a symbolic matrix.

k - Diagonal number

integer
Diagonal number, specified as an integer. $\mathrm{k}=0$ represents the main diagonal, $\mathrm{k}>0$ is above the main diagonal, and $\mathrm{k}<0$ is below the main diagonal.

Tips

- The trace of a matrix is equal to sum(diag(A)).

See Also

tril|triu
Introduced before R2006a

diff

Differentiate symbolic expression or function

Syntax

```
diff(F)
diff(F,var)
diff(F,n)
diff(F,var,n)
diff(F,var1,...,varN)
```


Description

$\operatorname{diff}(F)$ differentiates F with respect to the variable determined by symvar(F,1).
$\operatorname{diff}(F, v a r)$ differentiates F with respect to the variable var.
$\operatorname{diff}(F, n)$ computes the nth derivative of F with respect to the variable determined by symvar.
$\operatorname{diff}(F, v a r, n)$ computes the nth derivative of F with respect to the variable var.
diff(F, varl, ..., varN) differentiates F with respect to the variables var1,..., varN.

Examples

Differentiate Function

Find the derivative of the function $\sin \left(x^{\wedge} 2\right)$.

```
syms f(x)
f(x) = sin( (x^2);
df = diff(f,x)
```

```
df(x) =
2*x*}\operatorname{cos}(\mp@subsup{x}{}{\wedge}2
```

Find the value of the derivative at $x=2$. Convert the value to double.

```
df2 = df(2)
df2 =
4*\operatorname{cos(4)}
double(df2)
ans =
    -2.6146
```


Differentiation with Respect to Particular Variable

Find the first derivative of this expression:

```
syms x t
diff(sin(x*t^2))
ans =
t^2*}\operatorname{cos}(\mp@subsup{t}{}{\wedge}2*x
```

Because you did not specify the differentiation variable, diff uses the default variable defined by symvar. For this expression, the default variable is x :

```
symvar(sin(x*t^2),1)
ans =
x
```

Now, find the derivative of this expression with respect to the variable t :

```
diff(sin(x*t^2),t)
ans =
2*t*x*}\operatorname{cos}(t^2*x
```


Higher-Order Derivatives of Univariate Expression

Find the 4th, 5th, and 6th derivatives of this expression:

```
syms t
d4 = diff(t^6,4)
d5 = diff(t^6,5)
d6 = diff(t^6,6)
d4 =
360*t^2
d5 =
720*t
d6 =
720
```


Higher-Order Derivatives of Multivariate Expression with Respect to Particular Variable

Find the second derivative of this expression with respect to the variable y :

```
syms x y
diff(x*\operatorname{cos(x*y), y, 2)}
ans =
-x^3*}\operatorname{cos}(x*y
```


Higher-Order Derivatives of Multivariate Expression with Respect to Default Variable

Compute the second derivative of the expression $x * y$. If you do not specify the differentiation variable, diff uses the variable determined by symvar. For this expression, symvar $(x * y, 1)$ returns x. Therefore, diff computes the second derivative of $x^{*} y$ with respect to x.

```
syms x y
diff(x*y, 2)
ans =
0
```

If you use nested diff calls and do not specify the differentiation variable, diff determines the differentiation variable for each call. For example, differentiate the expression $x * y$ by calling the diff function twice:

```
diff(diff(x*y))
ans =
1
```

In the first call, diff differentiate $x^{*} y$ with respect to x, and returns y. In the second call, diff differentiates y with respect to y, and returns 1 .

Thus, $\operatorname{diff}\left(x^{*} y, 2\right)$ is equivalent to $\operatorname{diff}\left(x^{*} y, x, x\right)$, and $\operatorname{diff}\left(\operatorname{diff}\left(x^{*} y\right)\right)$ is equivalent to $\operatorname{diff}(x * y, x, y)$.

Mixed Derivatives

Differentiate this expression with respect to the variables x and y :

```
syms x y
diff(x*sin(x*y), x, y)
ans =
2*x*}\operatorname{cos}(\mp@subsup{x}{}{*}y) - x^2*y*sin(x*y
```

You also can compute mixed higher-order derivatives by providing all differentiation variables:

```
syms x y
diff(x*sin(x*y), x, x, x, y)
ans =
x^2*y^3*}\operatorname{sin}(\mp@subsup{x}{}{*}y) - 6*x*y^2*\operatorname{cos}(x*y) - 6*y*sin(x*y
```


Input Arguments

F - Expression or function to differentiate

symbolic expression | symbolic function | symbolic vector | symbolic matrix
Expression or function to differentiate, specified as a symbolic expression or function or as a vector or matrix of symbolic expressions or functions. If F is a vector or a matrix, diff differentiates each element of F and returns a vector or a matrix of the same size as F.

var - Differentiation variable

symbolic variable

Differentiation variable, specified as a symbolic variable.

var1, . . . varN - Differentiation variables

symbolic variables
Differentiation variables, specified as symbolic variables.

n - Differentiation order

nonnegative integer
Differentiation order, specified as a nonnegative integer.

Tips

- When computing mixed higher-order derivatives, do not use n to specify the differentiation order. Instead, specify all differentiation variables explicitly.
- To improve performance, diff assumes that all mixed derivatives commute. For example,

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(x, y)=\frac{\partial}{\partial y} \frac{\partial}{\partial x} f(x, y)
$$

This assumption suffices for most engineering and scientific problems.

- If you differentiate a multivariate expression or function F without specifying the differentiation variable, then a nested call to diff and diff(F, n) can return different results. This is because in a nested call, each differentiation step determines and uses its own differentiation variable. In calls like $\operatorname{diff}(F, n)$, the differentiation variable is determined once by symvar ($\mathrm{F}, 1$) and used for all differentiation steps.
- If you differentiate an expression or function containing abs or sign, ensure that the arguments are real values. For complex arguments of abs and sign, the diff function formally computes the derivative, but this result is not generally valid because abs and sign are not differentiable over complex numbers.

See Also

curl|divergence|functionalDerivative|gradient|hessian|int|jacobian | laplacian| symvar

Topics

"Differentiation" on page 2-40
"Find Asymptotes, Critical and Inflection Points" on page 2-80

Introduced before R2006a

digits

Change variable precision used

Syntax

digits(d)

d1 = digits
d1 = digits(d)

Description

digits(d) sets the precision used by vpa to d significant decimal digits. The default is 32 digits.
$\mathrm{d} 1=$ digits returns the current precision used by vpa.
$\mathrm{d} 1=$ digits (d) sets the new precision d and returns the old precision in d 1 .

Examples

Increase Precision of Results

By default, MATLAB uses 16 digits of precision. For higher precision, use vpa. The default precision for vpa is 32 digits. Increase precision beyond 32 digits by using digits.

Find pi using vpa, which uses the default 32 digits of precision. Confirm that the current precision is 32 by using digits.
pi32 = vpa(pi)
pi32 =
3.1415926535897932384626433832795
currentPrecision = digits

```
currentPrecision =
    32
```

Save the current value of digits in digits0ld and set the new precision to 100 digits. Find pi using vpa. The result has 100 digits.

```
digitsOld = digits(100);
pi100 = vpa(pi)
pi100 =
3.1415926535897932384626433832795028841971693993751058209...
74944592307816406286208998628034825342117068
```

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does not accept symbolic values, convert symbolic values to double precision by using double.

Lastly, restore the old value of digits for further calculations.

```
digits(digitsOld)
```

For more information, see "Increase Precision of Numeric Calculations" on page 2-117.

Increase Speed by Decreasing Precision

Increase the speed of MATLAB calculations by using vpa with a lower precision. Set the lower precision by using digits.

First, find the time taken to perform an operation on a large input.

```
input = 1:0.01:500;
tic
zeta(input);
toc
Elapsed time is 48.968983 seconds.
```

Now, repeat the operation with a lower precision by using vpa. Lower the precision to 10 digits by using digits. Then, use vpa to reduce the precision of input and perform the same operation. The time taken decreases significantly.

```
digitsOld = digits(10);
vpaInput = vpa(input);
```

```
tic
zeta(vpaInput);
toc
Elapsed time is 31.450342 seconds.
```

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does not accept symbolic values, convert symbolic values to double precision by using double.

Lastly, restore the old value of digits for further calculations.

```
digits(digits0ld)
```

For more information, see "Increase Speed by Reducing Precision" on page 2-124.

Guard Digits

The number of digits that you specify using the vpa function or the digits function is the guaranteed number of digits. Internally, the toolbox can use a few more digits than you specify. These additional digits are called guard digits. For example, set the number of digits to 4 , and then display the floating-point approximation of $1 / 3$ using four digits:

```
old = digits(4);
a = vpa(1/3)
a =
0.3333
```

Now, display a using 20 digits. The result shows that the toolbox internally used more than four digits when computing a. The last digits in the following result are incorrect because of the round-off error:

```
digits(20)
vpa(a)
digits(old)
ans =
0.333333333333303016843
```


Hidden Round-Off Errors

Hidden round-off errors can cause unexpected results. For example, compute the number $1 / 10$ with the default 32 -digit accuracy and with 10-digit accuracy:

```
a = vpa(1/10)
old = digits(10);
b = vpa(1/10)
digits(old)
a =
0.1
b =
0.1
```

Now, compute the difference $\mathrm{a}-\mathrm{b}$. The result is not 0 :
a - b
ans $=$
0.000000000000000000086736173798840354720600815844403

The difference $\mathrm{a}-\mathrm{b}$ is not equal to zero because the toolbox internally boosts the 10 digit number $b=0.1$ to 32 -digit accuracy. This process implies round-off errors. The toolbox actually computes the difference $a-b$ as follows:

```
b = vpa(b)
```

a - b
b $=$
0.09999999999999999991326382620116
ans =
0.000000000000000000086736173798840354720600815844403

Techniques Used to Convert Floating-Point Numbers to Symbolic Objects

Suppose you convert a double number to a symbolic object, and then perform VPA operations on that object. The results can depend on the conversion technique that you used to convert a floating-point number to a symbolic object. The sym function lets you choose the conversion technique by specifying the optional second argument, which can
be 'r', 'f', 'd', or 'e'. The default is 'r'. For example, convert the constant $\Pi=3.141592653589793 \ldots$ to a symbolic object:
$r=\operatorname{sym}(p i)$
$f=\operatorname{sym}(p i, ' f ')$
$d=\operatorname{sym}\left(p i, ' d^{\prime}\right)$
e $=\operatorname{sym}\left(p i, ' e^{\prime}\right)$
$r=$
pi
f =
884279719003555/281474976710656
d $=$
3.1415926535897931159979634685442
e =
pi - (198*eps)/359
Although the toolbox displays these numbers differently on the screen, they are rational approximations of pi. Use vpa to convert these rational approximations of pi back to floating-point values.

Set the number of digits to 4 . Three of the four approximations give the same result.
digits(4)
vpa(r)
vpa(f)
vpa(d)
vpa(e)
ans $=$
3.142
ans $=$
3.142
ans $=$
3.142
ans $=$
3.142 - $0.5515 * e p s$

Now, set the number of digits to 40 . The differences between the symbolic approximations of pi become more visible.

```
digits(40)
```

vpa(r)
vpa(f)
vpa(d)
vpa(e)
ans =
3.141592653589793238462643383279502884197
ans =
3.141592653589793115997963468544185161591
ans =
3.1415926535897931159979634685442
ans $=$
3.141592653589793238462643383279502884197
$0.5515320334261838440111420612813370473538 * e p s$

Input Arguments

d - New accuracy setting

number | symbolic number
New accuracy setting, specified as a number or symbolic number. The setting specifies the number of significant decimal digits to be used for variable-precision calculations. If the value d is not an integer, digits rounds it to the nearest integer.

Output Arguments

d1 - Current accuracy setting

double-precision number
Current accuracy setting, returned as a double-precision number. The setting specifies the number of significant decimal digits currently used for variable-precision calculations.

See Also

double|vpa

Topics

"Increase Precision of Numeric Calculations" on page 2-117
"Recognize and Avoid Round-Off Errors" on page 2-119
"Increase Speed by Reducing Precision" on page 2-124
Introduced before R2006a

dilog

Dilogarithm function

Syntax

dilog(X)

Description

dilog (X) returns the dilogarithm function.

Examples

Dilogarithm Function for Numeric and Symbolic Arguments

Depending on its arguments, dilog returns floating-point or exact symbolic results.
Compute the dilogarithm function for these numbers. Because these numbers are not symbolic objects, dilog returns floating-point results.

```
A = dilog([-1, 0, 1/4, 1/2, 1, 2])
A =
    2.4674-2.1776i 1.6449 + 0.0000i 0.9785 + 0.0000i...
    0.5822 + 0.0000i 0.0000 + 0.0000i -0.8225 + 0.0000i
```

Compute the dilogarithm function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, dilog returns unresolved symbolic calls.

```
symA = dilog(sym([-1, 0, 1/4, 1/2, 1, 2]))
symA =
[ pi^2/4 - pi*log(2)*li, pi^2/6, dilog(1/4), pi^2/12 - log(2)^2/2, 0, -pi^2/12]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 2.467401100272339654708622749969 - 2.1775860903036021305006888982376i,...
1.644934066848226436472415166646,...
0.97846939293030610374306666652456,...
0.58224052646501250590265632015968,...
0,...
-0.82246703342411321823620758332301]
```


Plot Dilogarithm Function

Plot the dilogarithm function on the interval from 0 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(dilog(x), [0, 10])
grid on

Handle Expressions Containing Dilogarithm Function

Many functions, such as diff, int, and limit, can handle expressions containing dilog.

Find the first and second derivatives of the dilogarithm function:

```
syms x
diff(dilog(x), x)
diff(dilog(x), x, x)
ans =
-log(x)/(x - 1)
```

```
ans =
log(x)/(x - 1)^2 - 1/( (x*(x - 1))
```

Find the indefinite integral of the dilogarithm function:

```
int(dilog(x), x)
ans =
x*(dilog(x) + log(x) - 1) - dilog(x)
```

Find the limit of this expression involving dilog:

```
limit(dilog(x)/x, Inf)
```

ans $=$
0

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Dilogarithm Function

There are two common definitions of the dilogarithm function.
The implementation of the dilog function uses the following definition:

$$
\operatorname{dilog}(x)=\int_{1}^{x} \frac{\ln (t)}{1-t} d t
$$

Another common definition of the dilogarithm function is

$$
\operatorname{Li}_{2}(x)=\int_{x}^{0} \frac{\ln (1-t)}{t} d t
$$

Thus, $\operatorname{dilog}(x)=\operatorname{Li}_{2}(1-x)$.

Tips

- dilog(sym(-1)) returns pi^2/4-pi*log(2)*i.
- dilog(sym(0)) returns pi^2/6.
- dilog(sym(1/2)) returns pi^2/12 - $\log (2)^{\wedge} 2 / 2$.
- dilog(sym(1)) returns 0 .
- dilog(sym(2)) returns -pi^2/12.
- dilog(sym(i)) returns pi^2/16 - (pi*log(2)*i)/4 - catalan*i.
- dilog(sym(-i)) returns catalan*i + (pi* $\log (2) * i) / 4+p i \wedge 2 / 16$.
- dilog(sym(1 + i)) returns - catalan*i - pi^2/48.
- dilog(sym(1 - i)) returns catalan*i - pi^2/48.
- dilog(sym(Inf)) returns - Inf.

References

[1] Stegun, I. A. "Miscellaneous Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

log|zeta

Introduced in R2014a

dirac

Dirac delta function

Syntax

$\operatorname{dirac}(x)$
dirac(n,x)

Description

dirac (x) represents the Dirac delta function on page 4-359 of x.
dirac (n, x) represents the nth derivative of the Dirac delta function at x.

Examples

Handle Expressions Involving Dirac and Heaviside Functions

Compute derivatives and integrals of expressions involving the Dirac delta and Heaviside functions.

Find the first and second derivatives of the Heaviside function. The result is the Dirac delta function and its first derivative.

```
syms x
diff(heaviside(x), x)
diff(heaviside(x), x, x)
ans =
dirac(x)
ans =
dirac(1, x)
```

Find the indefinite integral of the Dirac delta function. The results returned by int do not include integration constants.

```
int(dirac(x), x)
ans =
sign(x)/2
```

Find the integral of this expression involving the Dirac delta function.

```
syms a
int(dirac(x - a)*sin(x), x, -Inf, Inf)
ans =
sin(a)
```


Use Assumptions on Variables

dirac takes into account assumptions on variables.

```
syms x real
```

assumeAlso(x ~= 0)
dirac(x)
ans $=$
0

For further computations, clear the assumptions.
syms x clear

Evaluate Dirac delta Function for Symbolic Matrix

Compute the Dirac delta function of x and its first three derivatives.
Use a vector $n=[0,1,2,3]$ to specify the order of derivatives. The dirac function expands the scalar into a vector of the same size as n and computes the result.

```
n = [0, 1, 2, 3];
d = dirac(n, x)
d =
[ dirac(x), dirac(1, x), dirac(2, x), dirac(3, x)]
```

Substitute x with 0 .

```
subs(d, x, 0)
ans =
[ Inf, -Inf, Inf, -Inf]
```


Plot Dirac Delta Function

To handle the infinity at 0 , use numeric values instead of symbolic values. Continue plotting all other symbolic inputs symbolically by using fplot.

Set the Inf value to 1 and plot by using stem.

```
x = -1:0.1:1;
y = dirac(x);
idx = y == Inf; % find Inf
y(idx) = 1; % set Inf to finite value
stem(x,y)
```


Input Arguments

x - Input

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix | multidimensional array

Input, specified as a number, symbolic number, variable, expression, or function, representing a real number. This input can also be a vector, matrix, or multidimensional array of numbers, symbolic numbers, variables, expressions, or functions.

n - Order of derivative

nonnegative number | symbolic variable | symbolic expression | symbolic function | vector | matrix | multidimensional array

Order of derivative, specified as a nonnegative number, or symbolic variable, expression, or function representing a nonnegative number. This input can also be a vector, matrix, or multidimensional array of nonnegative numbers, symbolic numbers, variables, expressions, or functions.

Definitions

Dirac delta Function

The Dirac delta function, $\delta(x)$, has the value 0 for all $x \neq 0$, and ∞ for $\mathrm{x}=0$.
For any smooth function f and a real number a,

$$
\int_{-\infty}^{\infty} \operatorname{dirac}(x-a) f(x)=f(a)
$$

Tips

- For complex values x with nonzero imaginary parts, dirac returns NaN .
- dirac returns floating-point results for numeric arguments that are not symbolic objects.
- dirac acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then dirac expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

See Also

heaviside|kroneckerDelta

Introduced before R2006a

divergence

Divergence of vector field

Syntax

divergence(V,X)

Description

divergence (V, X) returns the divergence of vector field on page $4-361 \mathrm{~V}$ with respect to the vector X in Cartesian coordinates. Vectors V and X must have the same length.

Examples

Find Divergence of Vector Field

Find the divergence of the vector field $V(x, y, z)=\left(x, 2 y^{2}, 3 z^{3}\right)$ with respect to vector $X=(x, y, z)$ in Cartesian coordinates.

```
syms x y z
divergence([x, 2*y^2, 3* z^3], [x, y, z])
ans =
9*z^2 + 4*y + 1
```

Find the divergence of the curl of this vector field. The divergence of the curl of any vector field is 0 .

```
syms x y z
divergence(curl([x, 2*y^2, 3* z^3], [x, y, z]), [x, y, z])
ans =
0
```

Find the divergence of the gradient of this scalar function. The result is the Laplacian of the scalar function.

```
syms x y z
f = x^2 + y^2 + z^2;
divergence(gradient(f, [x, y, z]), [x, y, z])
ans =
6
```


Find Electric Charge Density from Electric Field

Gauss' Law in differential form states that the divergence of electric field is proportional to the electric charge density as

$$
\vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}} .
$$

Find the electric charge density for the electric field $\vec{E}=x^{2} \vec{i}+y^{2} \vec{j}$.

```
syms x y ep0
E = [x^2 y^2];
rho = divergence(E,[x y])*ep0
rho =
ep0*(2*x + 2*y)
```

Visualize the electric field and electric charge density for $-2<x<2$ and $-2<y<2$ with ep0 $=1$. Create a grid of values of x and y using meshgrid. Find the values of electric field and charge density by substituting grid values using subs. To simultaneously substitute the grid values xPlot and yPlot into the charge density rho, use cells arrays as inputs to subs.

```
rho = subs(rho,ep0,1);
v = -2:0.1:2;
[xPlot,yPlot] = meshgrid(v);
Ex = subs(E(1),x,xPlot);
Ey = subs(E(2),y,yPlot);
rhoPlot = double(subs(rho,{x,y},{xPlot,yPlot}));
```

Plot the electric field using quiver. Overlay the charge density using contour. The contour lines indicate the values of the charge density.

```
quiver(xPlot,yPlot,Ex,Ey)
hold on
```

```
contour(xPlot,yPlot,rhoPlot,'ShowText','on')
title('Contour Plot of Charge Density Over Electric Field')
xlabel('x')
ylabel('y')
```

Contour Plot of Charge Density Over Electric Field

Input Arguments

V - Vector field

symbolic expression | symbolic function | vector of symbolic expressions | vector of symbolic functions

Vector field to find divergence of, specified as a symbolic expression or function, or as a vector of symbolic expressions or functions. V must be the same length as X .

X - Variables with respect to which you find the divergence

symbolic variable | vector of symbolic variables
Variables with respect to which you find the divergence, specified as a symbolic variable or a vector of symbolic variables. X must be the same length as V .

Definitions

Divergence of Vector Field

The divergence of the vector field $V=\left(V_{1}, \ldots, V_{n}\right)$ with respect to the vector $X=\left(X_{1}, \ldots, X_{n}\right)$ in Cartesian coordinates is the sum of partial derivatives of V with respect to X_{1}, \ldots, X_{n}

$$
\operatorname{div}(\vec{V})=\nabla \cdot \vec{V}=\sum_{i=1}^{n} \frac{\partial V_{i}}{\partial x_{i}} .
$$

See Also

curl|diff|gradient|hessian|jacobian|laplacian|potential| vectorPotential

Introduced in R2012a

divisors

Divisors of integer or expression

Syntax

divisors(n)
divisors(expr,vars)

Description

divisors(n) finds all nonnegative divisors of an integer n.
divisors(expr,vars) finds the divisors of a polynomial expression expr. Here, vars are polynomial variables.

Examples

Divisors of Integers

Find all nonnegative divisors of these integers.
Find the divisors of integers. You can use double precision numbers or numbers converted to symbolic objects. If you call divisors for a double-precision number, then it returns a vector of double-precision numbers.

```
divisors(42)
ans =
    1
```

Find the divisors of negative integers. divisors returns nonnegative divisors for negative integers.

```
divisors(-42)
```

```
ans =
    1 
```

If you call divisors for a symbolic number, it returns a symbolic vector.
divisors(sym(42))
ans $=$
[1, 2, 3, 6, 7, 14, 21, 42]

The only divisor of 0 is 0 .
divisors(0)
ans $=$
0

Divisors of Univariate Polynomials

Find the divisors of univariate polynomial expressions.
Find the divisors of this univariate polynomial. You can specify the polynomial as a symbolic expression.

```
syms x
divisors(x^4 - 1, x)
ans =
[ 1, x - 1, x + 1, (x - 1)*(x + 1), x^2 + 1, (x^2 + 1)*(x - 1),\ldots.
(\mp@subsup{x}{}{\wedge}2+1)*(x+1),(x^2 + 1)*(x-1)*(x + 1)]
```

You also can use a symbolic function to specify the polynomial.

```
syms f(t)
f(t) = t^5;
divisors(f,t)
ans(t) =
[ 1, t, t^2, t^3, t^4, t^5]
```

When finding the divisors of a polynomial, divisors does not return the divisors of the constant factor.

```
f(t) = 9*t^5;
divisors(f,t)
```

```
ans(t) =
[ 1, t, t^2, t^3, t^4, t^5]
```


Divisors of Multivariate Polynomials

Find the divisors of multivariate polynomial expressions.
Find the divisors of the multivariate polynomial expression. Suppose that u and v are variables, and a is a symbolic parameter. Specify the variables as a symbolic vector.

```
syms a u v
divisors(a*u^2*v^3, [u,v])
ans =
[ 1, u, u^2, v, u*v, u^2*v, v^2, u*v^2, u^2*v^2, v^3, u*v^3, u^2*v^3]
```

Now, suppose that this expression contains only one variable (for example, v), while a and u are symbolic parameters. Here, divisors treats the expression $a^{*} u^{\wedge} 2$ as a constant and ignores it, returning only the divisors of $v^{\wedge} 3$.

```
divisors(a*u^2*v^3, v)
ans =
[ 1, v, v^2, v^3]
```


Input Arguments

\mathbf{n} - Number for which to find divisors

number | symbolic number

Number for which to find the divisors, specified as a number or symbolic number.

expr - Polynomial expression for which to find divisors

symbolic expression | symbolic function
Polynomial expression for which to find divisors, specified as a symbolic expression or symbolic function.

vars - Polynomial variables

symbolic variable | vector of symbolic variables
Polynomial variables, specified as a symbolic variable or a vector of symbolic variables.

Tips

- divisors(0) returns 0.
- divisors(expr, vars) does not return the divisors of the constant factor when finding the divisors of a polynomial.
- If you do not specify polynomial variables, divisors returns as many divisors as it can find, including the divisors of constant symbolic expressions. For example, divisors(sym(pi)^2* $x^{\wedge} 2$) returns [1, pi, pi^2, $x, p i^{*} x, p i^{\wedge} 2^{*} x, x^{\wedge} 2$, pi*x^2, pi^2*x^2] while divisors(sym(pi)^2*x^2, x) returns [1, x, $\left.x^{\wedge} 2\right]$.
- For rational numbers, divisors returns all divisors of the numerator divided by all divisors of the denominator. For example, divisors (sym(9/8)) returns [1, 3, 9, $1 / 2,3 / 2,9 / 2,1 / 4,3 / 4,9 / 4,1 / 8,3 / 8,9 / 8]$.

See Also

coeffs | factor | numden

Introduced in R2014b

double

Convert symbolic values to MATLAB double precision

Syntax

double(s)

Description

double(s) converts the symbolic value s to double precision. Converting symbolic values to double precision is useful when a MATLAB function does not accept symbolic values. For differences between symbolic and double-precision numbers, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

Examples

Convert Symbolic Number to Double Precision

Convert symbolic numbers to double precision by using double. Symbolic numbers are exact while double-precision numbers have round-off errors.

Convert pi and $1 / 3$ from symbolic form to double precision.

```
symN = sym([pi 1/3])
symN =
[ pi, 1/3]
doubleN = double(symN)
doubleN =
    3.1416 0.3333
```

For information on round-off errors, see "Recognize and Avoid Round-Off Errors" on page 2-119.

Convert Variable Precision to Double Precision

Variable-precision numbers created by vpa are symbolic values. When a MATLAB function does not accept symbolic values, convert variable precision to double precision by using double.

Convert pi and 1/3 from variable-precision form to double precision.

```
vpaN = vpa([pi 1/3])
vpaN =
[ 3.1415926535897932384626433832795, 0.33333333333333333333333333333333]
doubleN = double(vpaN)
doubleN =
    3.1416 0.3333
```


Convert Symbolic Matrix to Double-Precision Matrix

Convert the symbolic numbers in matrix symM to double-precision numbers by using double.

```
a = sym(sqrt(2));
b = sym(2/3);
symM = [a b; a*b b/a]
symM =
[ 2^(1/2), 2/3]
[ (2*2^(1/2))/3, 2^(1/2)/3]
doubleM = double(symM)
doubleM =
    1.4142 0.6667
    0.9428 0.4714
```


High-Precision Conversion

When converting symbolic expressions that suffer from internal cancelation or round-off errors, increase the working precision by using digits before converting the number.

Convert a numerically unstable expression Y with double. Then, increase precision to 100 digits by using digits and convert Y again. This high-precision conversion is accurate while the low-precision conversion is not.

```
Y = ((exp(sym(200)) + 1)/(exp(sym(200)) - 1)) - 1;
lowPrecisionY = double(Y)
lowPrecisionY =
    0
digitsOld = digits(100);
highPrecisionY = double(Y)
highPrecisionY =
    2.7678e-87
```

Restore the old precision used by digits for further calculations.

```
digits(digits0ld)
```


Input Arguments

s - Symbolic input

symbolic number | vector of symbolic numbers | matrix of symbolic numbers | multidimensional array of symbolic numbers

Symbolic input, specified as a symbolic number, or a vector, matrix, or multidimensional array of symbolic numbers.

See Also

sym | vpa

Topics

"Choose Symbolic or Numeric Arithmetic" on page 2-115
"Increase Precision of Numeric Calculations" on page 2-117
"Recognize and Avoid Round-Off Errors" on page 2-119
"Increase Speed by Reducing Precision" on page 2-124

Introduced before R2006a

dsolve

Differential equations and systems solver

Note Character vector inputs will be removed in a future release. Instead, use syms to declare variables and replace inputs such as dsolve('Dy = y') with syms $y(t)$; dsolve(diff(y,t) == y).

Syntax

```
S = dsolve(eqn)
S = dsolve(eqn,cond)
S = dsolve(eqn,cond,Name,Value)
[y1,...,yN] = dsolve(
```

\qquad

``` )
```


Description

$S=d s o l v e(e q n)$ solves the differential equation eqn, where eqn is a symbolic equation. Use diff and $==$ to represent differential equations. For example, $\operatorname{diff}(y, x)$ $==y$ represents the equation $d y / d x=y$. Solve a system of differential equations by specifying eqn as a vector of those equations.
$S=$ dsolve(eqn, cond) solves eqn with the initial or boundary condition cond.
S = dsolve(eqn, cond, Name, Value) uses additional options specified by one or more Name, Value pair arguments.
$[y 1, \ldots, y N]=$ dsolve (__) assigns the solutions to the variables $y 1, \ldots, y N$.

Examples

Solve Differential Equation

Specify a differential equation by using == and represent differentiation by using the diff function. Then, solve the equation by using dsolve.

Solve the equation $\frac{d y}{d t}=a y$.
syms a y(t)
eqn $=\operatorname{diff}(y, t)==a * y$;
dsolve(eqn)
ans =
C2* $\exp (a * t)$
C2 is a constant. To eliminate constants, see "Solve Differential Equation with Condition" on page 4-374. For a full workflow, see "Solving Partial Differential Equations". For more examples, see "Solve Differential Equation" on page 4-374.

Solve Higher-Order Differential Equation

Specify the second-order derivative of a function y by using $\operatorname{diff}(y, t, 2)$ or $\operatorname{diff}(y, t, t)$. Similarly, specify the n-th order derivative by using $\operatorname{diff}(y, t, n)$.

Solve the equation $\frac{d^{2} y}{d t^{2}}=a y$.
syms $y(t) a$
eqn $=\operatorname{diff}(y, t, 2)=a^{*} y$;
$y S o l(t)=$ dsolve(eqn)
$y S o l(t)=$
C2* $\exp \left(-a^{\wedge}(1 / 2) * t\right)+C 3 * \exp \left(a^{\wedge}(1 / 2) * t\right)$

Solve Differential Equation with Condition

Specify conditions as the second input to dsolve by using the ==operator. Specifying conditions eliminates arbitrary constants, such as C1, C2,. . . from the solution.

Solve the equation $\frac{d y}{d t}=a y$ with the condition $y(0)=5$.

syms $y(t) a$

eqn $=\operatorname{diff}(y, t)==a * y$;
cond $=y(0)==5$;
$y S o l(t)=$ dsolve(eqn, cond)
$y S o l(t)=$
5*exp (a*t)

Solve the second-order differential equation $\frac{d^{2} y}{d t^{2}}=a^{2} y$ with two conditions, $y(0)=b$ and $y^{\prime}(0)=1$. Create the second condition by assigning $\operatorname{diff}(\mathrm{y}, \mathrm{t})$ to Dy and then using Dy(0) == 1 .

```
syms y(t) a b
eqn = diff(y,t,2) == a^2*y;
Dy = diff(y,t);
cond = [y(0)==b, Dy(0)==1];
ySol(t) = dsolve(eqn,cond)
ySol(t) =
(exp(a*t)*(a*b + 1))/(2*a) + (exp(-a*t)*(a*b - 1))/(2*a)
```

Since two conditions are specified here, constants are eliminated from the solution of the second-order equation. In general, to eliminate constants from the solution, the number of conditions must equal the order of the equation.

Solve System of Differential Equations

Solve a system of differential equations by specifying the equations as a vector. dsolve returns a structure containing the solutions.

Solve the system of equations

$$
\begin{aligned}
& \frac{d y}{d t}=z \\
& \frac{d z}{d t}=-y .
\end{aligned}
$$

```
syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == - y];
sol = dsolve(eqns)
sol =
    struct with fields:
z: [1\times1 sym]
y: [1\times1 sym]
```

Access the solutions by addressing the elements of the structure.

```
soly(t) = sol.y
soly(t) =
C2*}\operatorname{cos(t) + C1*sin(t)
solz(t) = sol.z
solz(t) =
C1*cos(t) - C2*sin(t)
```


Assign Outputs to Functions or Variables

When solving for multiple functions, dsolve returns a structure by default. Alternatively, you can directly assign solutions to functions or variables by specifying the outputs explicitly as a vector. dsolve sorts outputs in alphabetical order using symvar.

Solve a system of differential equations and assign the outputs to functions.

```
syms y(t) z(t)
[ySol(t) zSol(t)] = dsolve(eqns)
ySol(t) =
C2*cos(t) + C1*sin(t)
zSol(t) =
C1*\operatorname{cos(t) - C2*sin(t)}
```

eqns $=[\operatorname{diff}(y, t)==z, \operatorname{diff}(z, t)==-y] ;$

When No Solutions Are Found

If dsolve cannot solve your equation, then try solving the equation numerically. See "Solve Differential Equation Numerically" on page 2-152.

```
syms y(x)
eqn = diff(y, 2) == (1 - y^2)*diff(y) - y;
dsolve(eqn)
```

```
Warning: Unable to find explicit solution.
```

Warning: Unable to find explicit solution.
> In dsolve (line 201)
> In dsolve (line 201)
ans =
ans =
[empty sym]

```
[ empty sym ]
```


Include Special Cases by Turning Off Internal Simplifications

By default, dsolve applies simplifications that are not generally correct, but produce simpler solutions. For details, see "Algorithms" on page 4-380. Instead, include these special cases by turning off these simplifications.

Solve $\frac{d y}{d t}=\frac{a}{\sqrt{x}}+y$ where $y(a)=1$ with and without simplifications. Turn off simpliffltations' by setting 'IgnoreAnalyticConstraints' to false.

```
syms a y(t)
eqn = diff(y) == a/sqrt(y) + y;
cond = y(a) == 1;
withSimplifications = dsolve(eqn, cond)
withSimplifications =
(exp((3*t)/2 - (3*a)/2 + log(a + 1)) - a)^(2/3)
withoutSimplifications = dsolve(eqn, cond, 'IgnoreAnalyticConstraints', false)
withoutSimplifications =
piecewise(pi/2 < angle(-a), {piecewise(in(C11, 'integer'),...
    (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C11*2i))^(2/3))},...
    angle(-a) <= -pi/2, {piecewise(in(C12, 'integer'),...
    (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C12*2i))^(2/3))},...
    angle(-a) in Dom::Interval(-pi/2, [pi/2]), {piecewise(in(C13, 'integer'),...
    (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C13*2i))^(2/3))})
```

withSimplifications is easy to use but incomplete, while withoutSimplifications includes special cases but is not easy to use.

Further, for certain equations, dsolve cannot find an explicit solution if you set 'IgnoreAnalyticConstraints' to false.

Input Arguments

eqn - Differential equation or system of equations

symbolic equation | vector of symbolic equations
Differential equation or system of equations, specified as a symbolic equation or a vector of symbolic equations.

Specify a differential equation by using the $==$ operator. In the equation, represent differentiation by using diff. For example, $\operatorname{diff}(y, x)$ differentiates the symbolic function $y(x)$ with respect to x. Create the symbolic function $y(x)$ by using syms as syms $y(x)$. Thus, to solve $d^{2} y(x) / d x^{2}=x^{*} y(x)$, enter:

```
syms y(x)
dsolve(diff(y,x,2) == x*y)
```

Specify a system of differential equations by using a vector of equations, such as dsolve([diff(y,t) == z, diff(z,t) == -y]).

cond - Initial or boundary condition

symbolic equation | vector of symbolic equations
Initial or boundary condition, specified as a symbolic equation or vector of symbolic equations.

When a condition contains a derivative, represent the derivative with diff and assign the diff call to a variable. Then create conditions by using that variable. For an example, see "Solve Differential Equation with Condition" on page 4-374.

Specify multiple conditions by using a vector of equations. If the number of conditions is less than the number of dependent variables, the solutions contain arbitrary constants C1, C2,

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'IgnoreAnalyticConstraints',false does not apply internal simplifications.

IgnoreAnalyticConstraints - Use internal simplifications true (default) | false

Use internal simplifications, specified as true or false.
By default, the solver applies simplifications while solving the differential equation. These simplifications might not be generally valid. Therefore, by default, the solver does not guarantee the completeness of results. For details, see "Algorithms" on page 4-380. To solve ordinary differential equations without these simplifications, set 'IgnoreAnalyticConstraints' to false. Results obtained with 'IgnoreAnalyticConstraints' set to false are correct for all values of the arguments.

If you do not set 'IgnoreAnalyticConstraints' to false, always verify results returned by the dsolve command.

MaxDegree - Maximum degree of polynomial equation for which solver uses explicit formulas

2 (default) | positive integer smaller than 5
Maximum degree of polynomial equations for which solver uses explicit formulas, specified as a positive integer smaller than 5 . dsolve does not use explicit formulas when solving polynomial equations of degrees larger than MaxDegree.

Output Arguments

S - Solutions of differential equation

symbolic expression | vector of symbolic expressions
Solutions of differential equation, returned as a symbolic expression or a vector of symbolic expressions. The size of S is the number of solutions.

$y 1, \ldots, y N-$ Variables storing solutions of differential equation vector of symbolic variables

Variables storing solutions of differential equation, returned as a vector of symbolic variables. The number of output variables must equal the number of dependent variables in a system. dsolve sorts the dependent variables alphabetically, and then assigns the solutions for the variables to output variables or symbolic arrays.

Tips

- If dsolve cannot find an explicit or implicit solution, then it issues a warning and returns the empty sym. In this case, try to find a numeric solution using the MATLAB ode23 or ode45 function. Sometimes, the output is an equivalent lower-order differential equation or an integral.
- If dsolve cannot find a closed-form (explicit) solution, it attempts to find an implicit solution. When dsolve returns an implicit solution, it issues this warning:

Warning: Explicit solution could not be found; implicit solution returned.

- dsolve does not return complete solutions even if 'IgnoreAnalyticConstraints' is false.

Algorithms

If you do not set 'IgnoreAnalyticConstraints' to false, then dsolve applies these rules while solving the equation:

- $\log (a)+\log (b)=\log (a \cdot b)$ for all values of a and b. In particular, the following equality is applied for all values of a, b, and c :

$$
(a \cdot b)^{c}=a^{c} \cdot b^{c} .
$$

- $\log \left(a^{b}\right)=b \cdot \log (a)$ for all values of a and b. In particular, the following equality is applied for all values of a, b, and c :

$$
\left(a^{b}\right)^{c}=a^{b \cdot c} .
$$

- If f and g are standard mathematical functions and $f(g(x))=x$ for all small positive numbers, $f(g(x))=x$ is assumed to be valid for all complex x. In particular:
- $\log \left(e^{x}\right)=x$
- $\operatorname{asin}(\sin (x))=x, \operatorname{acos}(\cos (x))=x, \operatorname{atan}(\tan (x))=x$
- $\operatorname{asinh}(\sinh (x))=x, \operatorname{acosh}(\cosh (x))=x, \operatorname{atanh}(\tanh (x))=x$
- $\mathrm{W}_{k}\left(x \cdot e^{x}\right)=x$ for all values of k
- The solver can multiply both sides of an equation by any expression except 0 .
- The solutions of polynomial equations must be complete.

See Also

functionalDerivative|linsolve|ode23|ode45|odeToVectorField| solve| syms | vpasolve

Topics

"Solve Differential Equation" on page 2-187
"Solve a System of Differential Equations" on page 2-192
Introduced before R2006a

ei

One-argument exponential integral function

Syntax

ei(x)

Description

ei (x) returns the one-argument exponential integral defined as

$$
\mathrm{ei}(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t
$$

Examples

Exponential Integral for Floating-Point and Symbolic Numbers

Compute exponential integrals for numeric inputs. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ei(-2), ei(-1/2), ei(1), ei(sqrt(2))]
s =
    -0.0489 -0.5598 1.8951 3.0485
```

Compute exponential integrals for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ei returns unresolved symbolic calls.

```
s = [ei(sym(-2)), ei(sym(-1/2)), ei(sym(1)), ei(sqrt(sym(2)))]
s =
[ ei(-2), ei(-1/2), ei(1), ei(2^(1/2))]
```

Use vpa to approximate this result with 10-digit accuracy.

```
vpa(s, 10)
ans =
[ -0.04890051071, -0.5597735948, 1.895117816, 3.048462479]
```


Branch Cut at Negative Real Axis

The negative real axis is a branch cut. The exponential integral has a jump of height $2 \pi \mathrm{i}$ when crossing this cut. Compute the exponential integrals at -1 , above -1, and below - 1 to demonstrate this.

```
[ei(-1), ei(-1 + 10^(-10)*i), ei(-1 - 10^(-10)*i)]
ans =
    -0.2194 + 0.0000i -0.2194 + 3.1416i -0.2194 - 3.1416i
```


Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

```
syms x
diff(ei(x), x)
diff(ei(x), x, 2)
diff(ei(x), x, 3)
ans =
exp(x)/x
ans =
exp(x)/x - exp(x)/\mp@subsup{x}{}{\wedge}2
ans =
exp(x)/x - (2*exp(x))/\mp@subsup{x}{}{\wedge}2 + (2*exp(x))/\mp@subsup{x}{}{\wedge}3
```


Limits of Exponential Integral

Compute the limits of a one-argument exponential integral.
syms x
limit(ei(2*x^2/(1+x)), x, -Inf)

```
limit(ei(2*x^2/(1+x)), x, 0)
limit(ei(2*x^2/(1+x)), x, Inf)
ans =
0
ans =
-Inf
ans =
Inf
```


Input Arguments

x - Input

floating-point number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point number or symbolic number, variable, expression, function, vector, or matrix.

Tips

- The one-argument exponential integral is singular at $x=0$. The toolbox uses this special value: ei (0) = - Inf.

Algorithms

The relation between ei and expint is

```
ei(x) = -expint(1,-x) + (ln(x)-ln(1/x))/2 - ln(-x)
```

Both functions ei (x) and expint $(1, x)$ have a logarithmic singularity at the origin and a branch cut along the negative real axis. The ei function is not continuous when approached from above or below this branch cut.

References

[1] Gautschi, W., and W. F. Gahill "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

expint| expint|int|vpa

Introduced in R2013a

eig

Eigenvalues and eigenvectors of symbolic matrix

Syntax

```
lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))
```


Description

lambda $=$ eig(A) returns a symbolic vector containing the eigenvalues of the square symbolic matrix A.
$[V, D]=\operatorname{eig}(A)$ returns matrices V and D. The columns of V present eigenvectors of A. The diagonal matrix D contains eigenvalues. If the resulting V has the same size as A, the matrix A has a full set of linearly independent eigenvectors that satisfy $A * V=V * D$.
$[V, D, P]=\operatorname{eig}(A)$ returns a vector of indices P. The length of P equals to the total number of linearly independent eigenvectors, so that $A * V=V * D(P, P)$.
lambda $=$ eig(vpa(A)) returns numeric eigenvalues using variable-precision arithmetic.
$[V, D]=\operatorname{eig}(\operatorname{vpa}(A))$ also returns numeric eigenvectors.

Examples

Compute Eigenvalues

Compute eigenvalues for the magic square of order 5.

```
M = sym(magic(5));
eig(M)
ans =65
    (625/2 - (5*3145^(1/2))/2)^(1/2)
    ((5*3145^(1/2))/2 + 625/2)^(1/2)
-(625/2 - (5*3145^(1/2))/2)^(1/2)
-((5*3145^(1/2))/2 + 625/2)^(1/2)
```


Compute Numeric Eigenvalues to High-Precision

Compute numeric eigenvalues for the magic square of order 5 using variable-precision arithmetic.

```
M = magic(sym(5));
eig(vpa(M))
ans =
65.0
21.27676547147379553062642669797423
13.12628093070921880252564308594914
    -13.126280930709218802525643085949
    -21.276765471473795530626426697974
```


Compute Eigenvalues and Eigenvectors

Compute the eigenvalues and eigenvectors for one of the MATLAB test matrices.

```
A = sym(gallery(5))
A =
\begin{tabular}{|c|c|c|c|c|}
\hline -9 & 11, & -2 & 63, & -25 \\
\hline 70, & -69, & 141, & -421, & 1684 \\
\hline -575, & 575, & -1149, & 3451, & -13801 \\
\hline 3891, & 5891, & 7782, & 23345, & 93365 \\
\hline 102 & , & 204 & 614, & 245 \\
\hline
\end{tabular}
[v, lambda] = eig(A)
v =
    0
```

```
    21/256
    71/128
    973/256
        l
lambda =
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
[ 0, 0, 0, 0, 0]
```


See Also

charpoly|jordan | svd | vpa

Topics

"Eigenvalues" on page 2-137

Introduced before R2006a

eliminate

Eliminate variables from equations

Syntax
 eliminate(eqns,vars)

Description

eliminate(eqns, vars) eliminates the variables vars from the equations eqns.

Examples

Eliminate Variables from Equations

Eliminate the variable x from the equations below. The output is the left side of an equation with the right side 0 .

```
syms x y
eqns = [2*x+y == 5, y-x == 1];
eliminate(eqns,x)
ans =
3*y - 7
```

Eliminate the variables x and y from the equations below.

```
syms z
eqns = [x^2 + y-z^2 == 2,
    x - z == y,
    x^2 + y^2-z == 4];
eliminate(eqns,[x y])
```

```
ans =
5*z^4 - 11*z^2 - 18*z - 8
```


Input Arguments

eqns - Equations

vector of symbolic equations
Equations, specified as a vector of symbolic equations.
vars - Variables to eliminate
vector of symbolic variables
Variables to eliminate, specified as a vector of symbolic variables.

See Also
 gbasis|solve
 Introduced in R2018a

ellipke

Complete elliptic integrals of the first and second kinds

Syntax

$[K, E]=$ ellipke(m)

Description

$[K, E]=$ ellipke(m) returns the complete elliptic integrals of the first on page 4-394 and second kinds on page 4-394.

Examples

Compute Complete Elliptic Integrals of First and Second Kind

Compute the complete elliptic integrals of the first and second kinds for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[K0, E0] = ellipke(0)
[K05, E05] = ellipke(1/2)
K0 =
1.5708

E0 =
1.5708

K05 =
1.8541

E05 =
1.3506

Compute the complete elliptic integrals for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipke returns results using the ellipticK and ellipticE functions.
[K0, E0] = ellipke(sym(0))
[K05, E05] = ellipke(sym(1/2))
K0 =
pi/2
E0 =
pi/2
K05 =
ellipticK(1/2)
E05 =
ellipticE(1/2)
Use vpa to approximate K05 and E05 with floating-point numbers:

```
vpa([K05, E05], 10)
```

ans $=$
[1.854074677, 1.350643881]

Compute Integrals When Input is Not Between 0 and 1

If the argument does not belong to the range from 0 to 1 , then convert that argument to a symbolic object before using ellipke:

```
[K, E] = ellipke(sym(pi/2))
K =
ellipticK(pi/2)
E =
ellipticE(pi/2)
```

Alternatively, use ellipticK and ellipticE to compute the integrals of the first and the second kinds separately:

K = ellipticK(sym(pi/2))
E = ellipticE(sym(pi/2))

```
K =
ellipticK(pi/2)
E =
ellipticE(pi/2)
```


Compute Integrals for Matrix Input

Call ellipke for this symbolic matrix. When the input argument is a matrix, ellipke computes the complete elliptic integrals of the first and second kinds for each element.

```
[K, E] = ellipke(sym([-1 0; 1/2 1]))
K =
[ ellipticK(-1), pi/2]
[ ellipticK(1/2), Inf]
E =
[ ellipticE(-1), pi/2]
[ ellipticE(1/2), 1]
```


Input Arguments

```
m - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression
```

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Output Arguments

K - Complete elliptic integral of the first kind

symbolic expression
Complete elliptic integral of the first kind, returned as a symbolic expression.

E - Complete elliptic integral of the second kind

symbolic expression

Complete elliptic integral of the second kind, returned as a symbolic expression.

Definitions

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

$$
K(m)=F\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

$$
E(m)=E\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- Calling ellipke for numbers that are not symbolic objects invokes the MATLAB ellipke function. This function accepts only $0<=x<=1$. To compute the complete elliptic integrals of the first and second kinds for the values out of this range, use sym to convert the numbers to symbolic objects, and then call ellipke for those symbolic objects. Alternatively, use the ellipticK and ellipticE functions to compute the integrals separately.
- For most symbolic (exact) numbers, ellipke returns results using the ellipticK and ellipticE functions. You can approximate such results with floating-point numbers using vpa.
- If m is a vector or a matrix, then [K, E] = ellipke(m) returns the complete elliptic integrals of the first and second kinds, evaluated for each element of m.

Alternatives

You can use ellipticK and ellipticE to compute elliptic integrals of the first and second kinds separately.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
ellipke|ellipticE|ellipticK|vpa
Introduced in R2013a

ellipticCE

Complementary complete elliptic integral of the second kind

Syntax

ellipticCE(m)

Description

ellipticCE(m) returns the complementary complete elliptic integral of the second kind on page 4-399.

Examples

Find Complementary Complete Elliptic Integral of the Second Kind

Compute the complementary complete elliptic integrals of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticCE(0), ellipticCE(pi/4),...
    ellipticCE(1), ellipticCE(pi/2)]
s =
    1.0000 1.4828 1.5708 1.7753
```

Compute the complementary complete elliptic integrals of the second kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCE returns unresolved symbolic calls.

```
s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),...
    ellipticCE(sym(1)), ellipticCE(sym(pi/2))]
s =
[ 1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]
```

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
ans =
[ 1.0, 1.482786927, 1.570796327, 1.775344699]
```


Find Elliptic Integral for Matrix Input

Call ellipticCE for this symbolic matrix. When the input argument is a matrix, ellipticCE computes the complementary complete elliptic integral of the second kind for each element.

```
ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))
ans =
[ ellipticCE(pi/6), ellipticCE(pi/4)]
[ ellipticCE(pi/3), ellipticCE(pi/2)]
```


Differentiate Complementary Complete Elliptic Integral of the Second Kind

Differentiate these expressions involving the complementary complete elliptic integral of the second kind:

```
syms m
diff(ellipticCE(m))
diff(ellipticCE(m^2), m, 2)
ans =
ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2)
ans =
(2*ellipticCE(m^2))/(2*m^2 - 2) -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
2*m*(((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1)))/(2*m^2 - 2) +...
(2*m*(ellipticCE(m^2)/(2*m^2 - 2)
ellipticCK(m^2)/(2*m^2 - 2)))/(2*m^2 - 2) -...
(4*m*ellipticCE(m^2))/(2*m^2 - 2)^2 +...
(4*m*ellipticCK(m^2))/(2*m^2 - 2)^2)
```

Here, ellipticCK represents the complementary complete elliptic integral of the first kind.

Plot Complementary Complete Elliptic Integral of Second Kind

Plot the complementary complete elliptic integral of the second kind. Prior to R2016a, use ezplot instead of fplot.
syms m
fplot(ellipticCE(m))
title('Complementary complete elliptic integral of the second kind') ylabel('ellipticCE(m)')
grid on

Complementary complete elliptic integral of the second kind

Input Arguments

m - Input
 number \| vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Complementary Complete Elliptic Integral of the Second Kind

The complementary complete elliptic integral of the second kind is defined as $E^{\prime}(m)=E(1-m)$, where $E(m)$ is the complete elliptic integral of the second kind:

$$
E(m)=E\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticCE returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticCE returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- If m is a vector or a matrix, then ellipticCE(m) returns the complementary complete elliptic integral of the second kind, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCK|ellipticCPi|ellipticE|ellipticF|ellipticK| ellipticPi|vpa

Introduced in R2013a

ellipticCK

Complementary complete elliptic integral of the first kind

Syntax

ellipticCK(m)

Description

ellipticCK (m) returns the complementary complete elliptic integral of the first kind on page 4-404.

Examples

Find Complementary Complete Elliptic Integral of First Kind

Compute the complementary complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]
S =
    1.8541 1.6671 1.5708 NaN
```

Compute the complete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCK returns unresolved symbolic calls.

```
s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),...
ellipticCK(sym(1)), ellipticCK(sym(inf))]
s =
[ ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]
```

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
ans =
[ 1.854074677, 1.667061338, 1.570796327, NaN]
```


Differentiate Complementary Complete Elliptic Integral of First Kind

Differentiate these expressions involving the complementary complete elliptic integral of the first kind:

```
syms m
diff(ellipticCK(m))
diff(ellipticCK(m^2), m, 2)
ans =
ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2)
ans =
(2*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -...
(2*ellipticCE(m^2))/(m^2 - 1)^2
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
(8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +...
(2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m^2*(m^2 - 1))
```

Here, ellipticCE represents the complementary complete elliptic integral of the second kind.

Find Elliptic Integral for Matrix Input

Call ellipticCK for this symbolic matrix. When the input argument is a matrix, ellipticCK computes the complementary complete elliptic integral of the first kind for each element.

```
ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))
ans =
[ ellipticCK(pi/6), ellipticCK(pi/4)]
[ ellipticCK(pi/3), ellipticCK(pi/2)]
```


Plot Complementary Complete Elliptic Integral of First Kind

Plot complementary complete elliptic integral of first kind. Prior to R2016a, use ezplot instead of fplot.
syms m
fplot(ellipticCK(m), [0.1, 5])
title('Complementary complete elliptic integral of the first kind') ylabel('ellipticCK(m)')
grid on
hold off

Complementary complete elliptic integral of the first kind

Input Arguments

m - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Complementary Complete Elliptic Integral of the First Kind

The complementary complete elliptic integral of the first kind is defined as $K^{\prime}(m)=K(1-$ m), where $K(m)$ is the complete elliptic integral of the first kind:

$$
K(m)=F\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticK returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticCK returns unresolved symbolic calls. You can approximate such results with floating-point numbers using the vpa function.
- If m is a vector or a matrix, then ellipticCK (m) returns the complementary complete elliptic integral of the first kind, evaluated for each element of m.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCE|ellipticCPi|ellipticE|ellipticF|ellipticK| ellipticPi|vpa

Introduced in R2013a

ellipticCPi

Complementary complete elliptic integral of the third kind

Syntax

ellipticCPi(n,m)

Description

ellipticCPi (n, m) returns the complementary complete elliptic integral of the third kind on page 4-408.

Examples

Compute Complementary Complete Elliptic Integrals of Third Kind

Compute the complementary complete elliptic integrals of the third kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticCPi(-1, 1/3), ellipticCPi(0, 1/2),...
    ellipticCPi(9/10, 1), ellipticCPi(-1, 0)]
S =
    1.3703 1.8541 4.9673 Inf
```

Compute the complementary complete elliptic integrals of the third kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCPi returns unresolved symbolic calls.

```
s = [ellipticCPi(-1, sym(1/3)), ellipticCPi(sym(0), 1/2),...
    ellipticCPi(sym(9/10), 1), ellipticCPi(-1, sym(0))]
s =
[ ellipticCPi(-1, 1/3), ellipticCK(1/2), (pi*10^(1/2))/2, Inf]
```

Here, ellipticCK represents the complementary complete elliptic integrals of the first kind.

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
ans =
[ 1.370337322, 1.854074677, 4.967294133, Inf]
```


Differentiate Complementary Complete Elliptic Integrals of Third Kind

Differentiate these expressions involving the complementary complete elliptic integral of the third kind:

```
syms n m
diff(ellipticCPi(n, m), n)
diff(ellipticCPi(n, m), m)
ans =
ellipticCK(m)/(2*n*(n - 1)) -...
ellipticCE(m)/(2*(n - 1)*(m + n - 1)) -...
(ellipticCPi(n, m)*(n^2 + m - 1))/(2*n*(n - 1)*(m + n - 1))
ans =
ellipticCE(m)/(2*m*(m + n - l)) - ellipticCPi(n, m)/(2*(m + n - 1))
```

Here, ellipticCK and ellipticCE represent the complementary complete elliptic integrals of the first and second kinds.

Input Arguments

n - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

m - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Complementary Complete Elliptic Integral of the Third Kind

The complementary complete elliptic integral of the third kind is defined as $\Pi^{\prime}(m)=\Pi(n, 1-m)$, where $\Pi(n, m)$ is the complete elliptic integral of the third kind:

$$
\Pi(n, m)=\Pi\left(n ; \left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \frac{1}{\left(1-n \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticCPi returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticCPi returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then ellipticCPi expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCE|ellipticCK|ellipticE|ellipticF|ellipticK| ellipticPi|vpa

Introduced in R2013a

ellipticE

Complete and incomplete elliptic integrals of the second kind

Syntax

ellipticE(m)
ellipticE(phi,m)

Description

ellipticE(m) returns the complete elliptic integral of the second kind on page 4-413.
ellipticE(phi,m) returns the incomplete elliptic integral of the second kind on page 4-413.

Examples

Find Complete Elliptic Integrals of Second Kind

Compute the complete elliptic integrals of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticE(-10.5), ellipticE(-pi/4),...
    ellipticE(0), ellipticE(1)]
s =
    3.7096 1.8443 1.5708 1.0000
```

Compute the complete elliptic integral of the second kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticE returns unresolved symbolic calls.

```
s = [ellipticE(sym(-10.5)), ellipticE(sym(-pi/4)),...
    ellipticE(sym(0)), ellipticE(sym(1))]
```

```
S =
[ ellipticE(-21/2), ellipticE(-pi/4), pi/2, 1]
```

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
```

ans =
[3.70961391, 1.844349247, 1.570796327, 1.0]

Differentiate Elliptic Integrals of Second Kind

Differentiate these expressions involving elliptic integrals of the second kind. elliptick and ellipticF represent the complete and incomplete elliptic integrals of the first kind, respectively.

```
syms m
diff(ellipticE(pi/3, m))
diff(ellipticE(m^2), m, 2)
ans =
ellipticE(pi/3, m)/(2*m) - ellipticF(pi/3, m)/(2*m)
ans =
2*m*((ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2))/m - ellipticE(m^2)/m^3 +...
ellipticK(m^2)/m^3 + (ellipticK(m^2)/m +...
ellipticE(m^2)/(m*(m^2 - 1)))/(2*m^2)) +...
ellipticE(m^2)/m^2 - ellipticK(m^2)/m^2
```


Elliptic Integral for Matrix Input

Call ellipticE for this symbolic matrix. When the input argument is a matrix, ellipticE computes the complete elliptic integral of the second kind for each element.
ellipticE(sym([1/3 1; 1/2 0]))
ans $=$
[ellipticE(1/3), 1]
[ellipticE(1/2), pi/2]

Plot Complete and Incomplete Elliptic Integrals of Second Kind

Plot the incomplete elliptic integrals ellipticE(phi,m) for phi = pi/4 and phi = pi/3. Also plot the complete elliptic integral ellipticE(m). Prior to R2016a, use ezplot instead of fplot.
syms m
fplot([ellipticE(pi/4, m) ellipticE(pi/3, m) ellipticE(m)])
title('Elliptic integrals of the second kind')
legend('E(\pi/4|m)', 'E(\pi/3|m)', 'E(m)', 'Location', 'Best') grid on

Elliptic integrals of the second kind

Input Arguments

m - Input

number \| vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

phi - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Incomplete Elliptic Integral of the Second Kind

The incomplete elliptic integral of the second kind is defined as follows:

$$
E(\varphi \mid m)=\int_{0}^{\varphi} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Complete Elliptic Integral of the Second Kind

The complete elliptic integral of the second kind is defined as follows:

$$
E(m)=E\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticE returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticE returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- If m is a vector or a matrix, then ellipticE(m) returns the complete elliptic integral of the second kind, evaluated for each element of m.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then ellipticE expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
- ellipticE(pi/2, m) = ellipticE(m).

Alternatives

You can use ellipke to compute elliptic integrals of the first and second kinds in one function call.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCE|ellipticCK|ellipticCPi|ellipticF|ellipticK| ellipticPi|vpa

Introduced in R2013a

ellipticF

Incomplete elliptic integral of the first kind

Syntax

ellipticF(phi,m)

Description

ellipticF(phi,m) returns the incomplete elliptic integral of the first kind on page 4418.

Examples

Find Incomplete Elliptic Integrals of First Kind

Compute the incomplete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticF(pi/3, -10.5), ellipticF(pi/4, -pi),...
    ellipticF(1, -1), ellipticF(pi/2, 0)]
s =
    0.6184 0.6486 0.8964 1.5708
```

Compute the incomplete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticF returns unresolved symbolic calls.

```
s = [ellipticF(sym(pi/3), -10.5), ellipticF(sym(pi/4), -pi),...
ellipticF(sym(1), -1), ellipticF(pi/6, sym(0))]
s =
[ ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi), ellipticF(1, -1), pi/6]
```

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
ans =
[ 0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]
```


Differentiate Incomplete Elliptic Integrals of First Kind

Differentiate this expression involving the incomplete elliptic integral of the first kind. ellipticE represents the incomplete elliptic integral of the second kind.

```
syms m
diff(ellipticF(pi/4, m))
ans =
1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m) -...
ellipticE(pi/4, m)/(2*m*(m - 1))
```


Plot Incomplete and Complete Elliptic Integrals

Plot the incomplete elliptic integrals ellipticF(phi,m) for phi = pi/4 and phi = pi/3. Also plot the complete elliptic integral ellipticK(m). Prior to R2016a, use ezplot instead of fplot.

syms m

fplot([ellipticF(pi/4, m) ellipticF(pi/3, m) ellipticK(m)]) grid on

```
title('Elliptic integrals of the first kind')
legend('F(\pi/4,m)', 'F(\pi/3,m)', 'K(m)', 'Location', 'Best')
```


Elliptic integrals of the first kind

Input Arguments

m - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

phi - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Incomplete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

$$
F(\varphi \mid m)=\int_{0}^{\varphi} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticF returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticF returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, ellipticF expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
- ellipticF(pi/2, m) = ellipticK(m).

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCE|ellipticCK|ellipticCPi|ellipticE|ellipticK| ellipticPi|vpa

Introduced in R2013a

ellipticK

Complete elliptic integral of the first kind

Syntax

ellipticK(m)

Description

ellipticK(m) returns the complete elliptic integral of the first kind on page 4-423.

Examples

Find Complete Elliptic Integrals of First Kind

Compute the complete elliptic integrals of the first kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1), ellipticK(-5.5)]
s =
    1.8541 2.2253 Inf 0.9325
```

Compute the complete elliptic integrals of the first kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticK returns unresolved symbolic calls.

```
s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),...
    ellipticK(sym(1)), ellipticK(sym(-5.5))]
s =
[ ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]
```

Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
```

```
ans =
[ 1.854074677, 2.225253684, Inf, 0.9324665884]
```


Differentiate Complete Elliptic Integral of First Kind

Differentiate these expressions involving the complete elliptic integral of the first kind. ellipticE represents the complete elliptic integral of the second kind.

```
syms m
diff(ellipticK(m))
diff(ellipticK(m^2), m, 2)
ans =
- ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1))
```

ans =
$\left(2 * e l l i p t i c E\left(m^{\wedge} 2\right)\right) /\left(m^{\wedge} 2-1\right)^{\wedge} 2-\left(2 *\left(e l l i p t i c E\left(m^{\wedge} 2\right) /\left(2 * m^{\wedge} 2\right)\right.\right.$
ellipticK (m^2)/(2* $\left.\left.m^{\wedge} 2\right)\right)$)/(m^2 - 1) + ellipticK (m^2)/m^2 +...
(ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +...
ellipticE(m^2)/(m^2*(m^2 - 1))

Elliptic Integral for Matrix Input

Call ellipticK for this symbolic matrix. When the input argument is a matrix, ellipticK computes the complete elliptic integral of the first kind for each element.

```
ellipticK(sym([-2*pi -4; 0 1]))
```

ans $=$

```
[ ellipticK(-2*pi), ellipticK(-4)]
[ pi/2, Inf]
```


Plot Complete Elliptic Integral of First Kind

Plot the complete elliptic integral of the first kind. Prior to R2016a, use ezplot instead of fplot.

```
syms m
fplot(ellipticK(m))
title('Complete elliptic integral of the first kind')
ylabel('ellipticK(m)')
grid on
```


Input Arguments

m - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Complete Elliptic Integral of the First Kind

The complete elliptic integral of the first kind is defined as follows:

$$
K(m)=F\left(\left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticK returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticK returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- If m is a vector or a matrix, then ellipticK (m) returns the complete elliptic integral of the first kind, evaluated for each element of m.

Alternatives

You can use ellipke to compute elliptic integrals of the first and second kinds in one function call.

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
ellipke|ellipticCE|ellipticCK|ellipticCPi|ellipticE|ellipticF| ellipticPi|vpa
Introduced in R2013a

ellipticNome

Elliptic nome function

Syntax

ellipticNome(m)

Description

ellipticNome(m) returns the "Elliptic Nome" on page 4-429 of m. If m is an array, then ellipticNome acts element-wise.

Examples

Calculate Elliptic Nome for Numeric Inputs

```
ellipticNome(1.3)
```

ans $=$
0.0881 - 0.2012i

Call ellipticNome on array inputs. ellipticNome acts element-wise when m is an array.

```
ellipticNome([2 1 -3/2])
```

ans $=$

```
    0.0000 - 0.2079i 1.0000 + 0.0000i -0.0570 + 0.0000i
```


Calculate Elliptic Nome for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the elliptic nome. For symbolic input where $m=0,1 / 2$, or 1 , ellipticNome returns exact symbolic output.

```
ellipticNome([0 1/2 1])
ans =
    0.0432 1.0000
```

Show that for any other symbolic values of m, ellipticNome returns an unevaluated function call.

```
ellipticNome(sym(2))
```

ans =
ellipticNome(2)

Find Elliptic Nome for Symbolic Variables or Expressions

For symbolic variables or expressions, ellipticNome returns the unevaluated function call.

```
syms x
f = ellipticNome(x)
f =
ellipticNome(x)
```

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, x, 5)
f =
ellipticNome(5)
fVal = double(f)
fVal =
    -0.1008 - 0.1992i
```

Calculate f to higher precision using vpa.
fVal = vpa(f)

```
fVal =
- 0.10080189716733475056506021415746 - 0.19922973618609837873340100821425i
```


Plot Elliptic Nome

Plot the real and imaginary values of the elliptic nome using fcontour. Fill plot contours by setting Fill to on.
syms m
$\mathrm{f}=\mathrm{ellipticNome(m);}$
subplot $(2,2,1)$
fcontour(real(f),'Fill','on')
title('Real Values of Elliptic Nome')
xlabel('m')
subplot (2,2,2)
fcontour(imag(f), 'Fill','on')
title('Imaginary Values of Elliptic Nome')
xlabel('m')

Input Arguments

m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Elliptic Nome

The elliptic nome is
$q(m)=e^{-\frac{\pi K^{\prime}(m)}{K(m)}}$
where K is the complete elliptic integral of the first kind, implemented as ellipticK.
$|q(m)| \leq 1$ holds for all $m \in \mathbb{C}$.

See Also

ellipticK|jacobiAM|jacobiCD|jacobiCN|jacobiCS|jacobiDC| jacobiDN| jacobiDS|jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN

Introduced in R2017b

ellipticPi

Complete and incomplete elliptic integrals of the third kind

Syntax

ellipticPi(n,m)
ellipticPi(n, phi,m)

Description

ellipticPi (n, m) returns the complete elliptic integral of the third kind on page 4-432.
ellipticPi(n, phi,m) returns the incomplete elliptic integral of the third kind on page 4-432.

Examples

Compute the Incomplete Elliptic Integrals of Third Kind

Compute the incomplete elliptic integrals of the third kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
ellipticPi(-1, 0, 1), ellipticPi(2, pi/6, 2)]
s =
    0.5877 1.2850 0 0.7507
```

Compute the incomplete elliptic integrals of the third kind for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticPi returns unresolved symbolic calls.

```
s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3), pi/3, 1/2),...
ellipticPi(-1, sym(0), 1), ellipticPi(2, pi/6, sym(2))]
```

```
S =
[ ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]
```

Here, ellipticE represents the incomplete elliptic integral of the second kind.
Use vpa to approximate this result with floating-point numbers:

```
vpa(s, 10)
ans =
[ 0.5876852228, 1.285032276, 0, 0.7507322117]
```


Differentiate Incomplete Elliptic Integrals of Third Kind

Differentiate these expressions involving the complete elliptic integral of the third kind:

```
syms n m
diff(ellipticPi(n, m), n)
diff(ellipticPi(n, m), m)
ans =
ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -...
(ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1))
ans =
- ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m - n)*(m - 1))
```

Here, ellipticK and ellipticE represent the complete elliptic integrals of the first and second kinds.

Compute Integrals for Matrix Input

Call ellipticPi for the scalar and the matrix. When one input argument is a matrix, ellipticPi expands the scalar argument to a matrix of the same size with all its elements equal to the scalar.

```
ellipticPi(sym(0), sym([1/3 1; 1/2 0]))
ans =
[ ellipticK(1/3), Inf]
[ ellipticK(1/2), pi/2]
```

Here, ellipticK represents the complete elliptic integral of the first kind.

Input Arguments

n - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

m - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

phi - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Incomplete Elliptic Integral of the Third Kind

The incomplete elliptic integral of the third kind is defined as follows:

$$
\Pi(n ; \varphi \mid m)=\int_{0}^{\varphi} \frac{1}{\left(1-n \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Complete Elliptic Integral of the Third Kind

The complete elliptic integral of the third kind is defined as follows:

$$
\Pi(n, m)=\Pi\left(n ; \left.\frac{\pi}{2} \right\rvert\, m\right)=\int_{0}^{\pi / 2} \frac{1}{\left(1-n \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} d \theta
$$

Note that some definitions use the elliptical modulus k or the modular angle α instead of the parameter m. They are related as $m=k^{2}=\sin ^{2} \alpha$.

Tips

- ellipticPi returns floating-point results for numeric arguments that are not symbolic objects.
- For most symbolic (exact) numbers, ellipticPi returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then ellipticPi expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.
- ellipticPi(n, pi/2, m) = ellipticPi(n, m).

References

[1] Milne-Thomson, L. M. "Elliptic Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

ellipke|ellipticCE|ellipticCK|ellipticCPi|ellipticE|ellipticF| ellipticK|vpa

Introduced in R2013a

eq

Define symbolic equation

Syntax

$A=B$
eq(A,B)

Description

$A==B$ defines a symbolic equation. Use the equation as input to functions such as solve, assume, ezplot, and subs.
$\mathrm{eq}(A, B)$ is equivalent to $A=B$.

Examples

Define and Solve Equation

Solve this trigonometric equation. Define the equation by using the $==$ operator.

```
syms x
eqn = sin(x) == cos(x);
solve(eqn,x)
ans =
pi/4
```


Plot Symbolic Equation

Plot the equation $\sin \left(x^{2}\right)=\sin \left(y^{2}\right)$ by using fimplicit. Define the equation by using the $==$ operator.

```
syms x y
eqn = sin(x^2) == sin(y^2);
fimplicit(eqn)
```


Test Equality of Symbolic Expressions

Test the equality of two symbolic expressions by using isAlways.

```
syms x
eqn = x+1 == x+1;
isAlways(eqn)
```

```
ans =
    logical
        1
eqn = sin(x)/cos(x) == tan(x);
isAlways(eqn)
ans =
    logical
    1
```


Test Equality of Symbolic Matrices

Check the equality of two symbolic matrices.

```
A = sym(hilb(3));
B = sym([1 1/2 5; 1/2 2 1/4; 1/3 1/8 1/5]);
isAlways(A == B)
ans =
    3\times3 logical array
        1 1 0
        1 0 1
        1 0 1
```

If you compare a matrix and a scalar, then == expands the scalar into a matrix of the same dimensions as the input matrix.

```
A = sym(hilb(3));
B = sym(1/2);
isAlways(A == B)
ans =
    3\times3 logical array
        0 1 0
        1 0 0
        0 0 0
```

- "Solve Equations" on page 1-15
- "Set Assumptions" on page 1-28

Input Arguments

A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Tips

- Calling $==$ or eq for non-symbolic A and B invokes the MATLAB eq function. This function returns a logical array with elements set to logical 1 (true) where A and B are equal; otherwise, it returns logical 0 (false).
- If both A and B are arrays, then these arrays must have the same dimensions. $A=B$ returns an array of equations $A(i, j, \ldots)==B(i, j, \ldots)$

See Also

ge|gt|isAlways|le|lt|ne|solve

Topics

"Solve Equations" on page 1-15
"Set Assumptions" on page 1-28

Introduced in R2012a

equationsToMatrix

Convert linear equations to matrix form

Syntax

[A,b] = equationsToMatrix(eqns)
[A,b] = equationsToMatrix(eqns,vars)
A = equationsToMatrix(

Description

$[A, b]=$ equationsToMatrix(eqns) converts equations eqns to matrix form. eqns must be a linear system of equations in all variables that symvar finds in eqns.
$[A, b]=$ equationsToMatrix(eqns,vars) converts eqns to matrix form, where eqns must be linear in vars.

A = equationsToMatrix (__) returns only the coefficient matrix of the system of equations.

Examples

Convert Linear Equations to Matrix Form

Convert a system of linear equations to matrix form. equationsToMatrix automatically detects the variables in the equations by using symvar.

```
syms x y z
eqns = [x+y-2*z == 0,
    x+y+z == 1,
    2*y-z == -5];
[A,b] = equationsToMatrix(eqns)
A =
[ 1, 1, -2]
```

```
[ 1, 1, 1]
[ 0, 2, -1]
b =
    0
    1
    -5
```


Specify Variables in Equations

Convert a linear system of equations to the matrix form by specifying independent variables. This is useful when the equation are only linear in some variables.

For this system, specify the variables as [$s t$] because the system is not linear in r.

```
syms r s t
eqns = [s-2*t+r^2 == -1
    3*s-t == 10];
vars = [s t];
[A,b] = equationsToMatrix(eqns,vars)
A =
[ 1, -2]
[ 3, -1]
b =
    - r^2 - 1
        10
```


Return Only Coefficient Matrix of Equations

Return only the coefficient matrix of the equations by specifying a single output argument.

```
syms x y z
eqns = [x + y - 2*z == 0,
    x + y + z == 1,
        2*y - z == -5];
vars = [x y z];
A = equationsToMatrix(eqns,vars)
```

A $=$
[1, 1, -2]
$[1,1,1]$
[0, 2, -1]

- "Solve System of Linear Equations" on page 2-173

Input Arguments

eqns - Linear equations

vector of symbolic equations or expressions
Linear equations, specified as a vector of symbolic equations or expressions. Symbolic equations are defined by using the $==$ operator, such as $x+y==1$. For symbolic expressions, equationsToMatrix assumes that the right side is 0 .

Equations must be linear in terms of vars.

vars - Independent variables

vector of symbolic variables (default)
Independent variables in eqns, specified as a vector of symbolic variables.

Output Arguments

A - Coefficient matrix

symbolic matrix
Coefficient matrix of the system of linear equations, specified as a symbolic matrix.

b - Right sides of equations

symbolic matrix
Vector containing the right sides of equations, specified as a symbolic matrix.

Definitions

Matrix Representation of System of Linear Equations

A system of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

can be represented as the matrix equation $A \cdot \vec{x}=\vec{b}$. Here, A is the coefficient matrix.

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

\vec{b} is the vector containing the right sides of equations.

$$
\vec{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

See Also

linsolve|odeToVectorField| solve|symvar

Topics

"Solve System of Linear Equations" on page 2-173

Introduced in R2012b

erf

Error function

Syntax

$\operatorname{erf}(X)$

Description

$\operatorname{erf}(X)$ represents the error function on page $4-446$ of X. If X is a vector or a matrix, $\operatorname{erf}(X)$ computes the error function of each element of X.

Examples

Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erf can return floating-point or exact symbolic results.
Compute the error function for these numbers. Because these numbers are not symbolic objects, you get the floating-point results:

```
A = [erf(1/2), erf(1.41), erf(sqrt(2))]
A =
    0.5205 0.9539 0.9545
```

Compute the error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erf returns unresolved symbolic calls:

```
symA = [erf(sym(1/2)), erf(sym(1.41)), erf(sqrt(sym(2)))]
symA =
[ erf(1/2), erf(141/100), erf(2^(1/2))]
```

Use vpa to approximate symbolic results with the required number of digits:

```
d = digits(10);
vpa(symA)
digits(d)
ans =
[ 0.5204998778, 0.9538524394, 0.9544997361]
```


Error Function for Variables and Expressions

For most symbolic variables and expressions, erf returns unresolved symbolic calls.
Compute the error function for x and $\sin (x)+x^{*} \exp (x)$:
syms x
$\mathrm{f}=\sin (\mathrm{x})+\mathrm{x}^{*} \exp (\mathrm{x})$;
erf(x)
erf(f)
ans =
erf(x)
ans $=$
$\operatorname{erf}\left(\sin (x)+x^{*} \exp (x)\right)$

Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erf returns the error function for each element of that vector or matrix.

Compute the error function for elements of matrix M and vector V :

```
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erf(M)
erf(V)
ans =
[ 0, 1]
[ erf(1/3), -1]
ans =
    erf(1)
    -Inf*li
```


Special Values of Error Function

erf returns special values for particular parameters.
Compute the error function for $x=0, x=\infty$, and $x=-\infty$. Use sym to convert 0 and infinities to symbolic objects. The error function has special values for these parameters:

```
[erf(sym(0)), erf(sym(Inf)), erf(sym(-Inf))]
ans =
[ 0, 1, -1]
```

Compute the error function for complex infinities. Use sym to convert complex infinities to symbolic objects:

```
[erf(sym(i*Inf)), erf(sym(-i*Inf))]
ans =
[ Inf*1i, -Inf*1i]
```


Handling Expressions That Contain Error Function

Many functions, such as diff and int, can handle expressions containing erf.
Compute the first and second derivatives of the error function:

```
syms x
diff(erf(x), x)
diff(erf(x), x, 2)
ans =
(2*exp(-x^2))/pi^(1/2)
ans =
-(4*x*exp(-x^2))/pi^(1/2)
```

Compute the integrals of these expressions:

```
int(erf(x), x)
int(erf(log(x)), x)
ans =
exp(-x^2)/pi^(1/2) + x*erf(x)
```

```
ans =
x*erf(log(x)) - int((2*exp(-log(x)^2))/pi^(1/2), x)
```


Plot Error Function

Plot the error function on the interval from -5 to 5. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(erf(x),[-5,5])
grid on

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Error Function

The following integral defines the error function:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Tips

- Calling erf for a number that is not a symbolic object invokes the MATLAB erf function. This function accepts real arguments only. If you want to compute the error function for a complex number, use sym to convert that number to a symbolic object, and then call erf for that symbolic object.
- For most symbolic (exact) numbers, erf returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values x, the toolbox applies these simplification rules:

- erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) = erfcinv(erfc(x)) $=x$
- $\operatorname{erfinv}(-\operatorname{erf}(x))=\operatorname{erfinv}(\operatorname{erfc}(x)-1)=\operatorname{erfcinv}(1+\operatorname{erf}(x))=$ erfcinv(2 - erfc(x)) $=-x$

For any value x , the system applies these simplification rules:

- erfcinv(x) = erfinv(1 - x)
- erfinv(-x) = -erfinv(x)
- $\operatorname{erfcinv}(2-x)=-\operatorname{erfcinv}(x)$
- erf(erfinv(x)) $=\operatorname{erfc}(\operatorname{erfcinv}(x))=x$
- erf(erfcinv(x)) = erfc(erfinv(x)) = $1-x$

References

[1] Gautschi, W. "Error Function and Fresnel Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

erfc|erfcinv|erfi|erfinv

Introduced before R2006a

erfc

Complementary error function

Syntax

erfc (X)
$\operatorname{erfc}(\mathrm{K}, \mathrm{X})$

Description

$\operatorname{erfc}(X)$ represents the complementary error function on page 4-453 of X, that is,erfc (X) = 1 - erf(X).
erfc (K, X) represents the iterated integral of the complementary error function on page $4-453$ of X, that is, $\operatorname{erfc}(K, X)=\operatorname{int}(\operatorname{erfc}(K-1, y), y, X, i n f)$.

Examples

Complementary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfc can return floating-point or exact symbolic results.
Compute the complementary error function for these numbers. Because these numbers are not symbolic objects, you get the floating-point results:

```
A = [erfc(1/2), erfc(1.41), erfc(sqrt(2))]
A =
    0.4795 0.0461 0.0455
```

Compute the complementary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfc returns unresolved symbolic calls:

```
symA = [erfc(sym(1/2)), erfc(sym(1.41)), erfc(sqrt(sym(2)))]
```

```
symA =
[ \operatorname{erfc}(1/2), erfc(141/100), erfc(2^(1/2))]
```

Use vpa to approximate symbolic results with the required number of digits:

```
d = digits(10);
vpa(symA)
digits(d)
ans =
[ 0.4795001222, 0.04614756064, 0.0455002639]
```


Error Function for Variables and Expressions

For most symbolic variables and expressions, erfc returns unresolved symbolic calls.
Compute the complementary error function for x and $\sin (x)+x^{*} \exp (x)$:

```
syms x
f = sin(x) + x*exp(x);
erfc(x)
erfc(f)
ans =
erfc(x)
ans =
erfc(sin(x) + x*exp(x))
```


Complementary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfc returns the complementary error function for each element of that vector or matrix.

Compute the complementary error function for elements of matrix M and vector V :

```
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfc(M)
erfc(V)
ans =
[ 1, 0]
[ erfc(1/3), 2]
```

```
ans =
    erfc(1)
    1 + Inf*1i
```

Compute the iterated integral of the complementary error function for the elements of V and M, and the integer -1 :

```
erfc(-1, M)
erfc(-1, V)
ans =
[ 2/pi^(1/2), 0]
[ (2*exp(-1/9))/pi^(1/2), 0]
ans =
    (2*exp(-1))/pi^(1/2)
                                    Inf
```


Special Values of Complementary Error Function

erfc returns special values for particular parameters.
Compute the complementary error function for $x=0, x=\infty$, and $x=-\infty$. The complementary error function has special values for these parameters:

```
[erfc(0), erfc(Inf), erfc(-Inf)]
ans =
    1 0 2
```

Compute the complementary error function for complex infinities. Use sym to convert complex infinities to symbolic objects:

```
[erfc(sym(i*Inf)), erfc(sym(-i*Inf))]
ans =
[ 1 - Inf*1i, 1 + Inf*1i]
```


Handling Expressions That Contain Complementary Error Function

Many functions, such as diff and int, can handle expressions containing erfc.

Compute the first and second derivatives of the complementary error function:

```
syms x
diff(erfc(x), x)
diff(erfc(x), x, 2)
ans =
-(2*exp(-x^2))/pi^(1/2)
ans =
(4*x*exp(-x^2))/pi^(1/2)
```

Compute the integrals of these expressions:

```
syms x
int(erfc(-1, x), x)
ans =
erf(x)
int(erfc(x), x)
ans =
x*erfc(x) - exp(-x^2)/pi^(1/2)
int(erfc(2, x), x)
ans =
(x^3*erfc(x))/6 - exp(-x^2)/(6*pi^(1/2)) +...
(x*erfc(x))/4 - (x^2*exp(-x^2))/(6*pi^(1/2))
```


Plot Complementary Error Function

Plot the complementary error function on the interval from -5 to 5. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(erfc(x),[-5,5])
grid on
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

K - Input representing an integer larger than -2

number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input representing an integer larger than -2 , specified as a number, symbolic number, variable, expression, or function. This arguments can also be a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Definitions

Complementary Error Function

The following integral defines the complementary error function:

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t=1-\operatorname{erf}(x)
$$

Here $\operatorname{erf}(x)$ is the error function.

Iterated Integral of Complementary Error Function

The following integral is the iterated integral of the complementary error function:

$$
\operatorname{erfc}(k, x)=\int_{x}^{\infty} \operatorname{erfc}(k-1, y) d y
$$

Here, $\operatorname{erfc}(0, x)=\operatorname{erfc}(x)$.

Tips

- Calling erfc for a number that is not a symbolic object invokes the MATLAB erfc function. This function accepts real arguments only. If you want to compute the complementary error function for a complex number, use sym to convert that number to a symbolic object, and then call erfc for that symbolic object.
- For most symbolic (exact) numbers, erfc returns unresolved symbolic calls. You can approximate such results with floating-point numbers using vpa.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then erfc expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values x, the toolbox applies these simplification rules:

- erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) = erfcinv(erfc(x)) $=x$
- erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) = erfcinv(2 - erfc(x)) = -x

For any value x , the system applies these simplification rules:

- $\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x)$
- $\operatorname{erfinv}(-x)=-e r f i n v(x)$
- $\operatorname{erfcinv}(2-x)=-\operatorname{erfcinv}(x)$
- $\operatorname{erf}(\operatorname{erfinv}(x))=\operatorname{erfc}(\operatorname{erfcinv}(x))=x$
- erf(erfcinv(x)) $=\operatorname{erfc}(\operatorname{erfinv}(x))=1-x$

References

[1] Gautschi, W. "Error Function and Fresnel Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

erf|erfcinv|erfi|erfinv
Introduced in R2011b

erfcinv

Inverse complementary error function

Syntax

erfcinv(X)

Description

erfcinv (X) computes the inverse complementary error function on page 4-459 of X. If X is a vector or a matrix, erfcinv (X) computes the inverse complementary error function of each element of X.

Examples

Inverse Complementary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfcinv can return floating-point or exact symbolic results.
Compute the inverse complementary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```
A = [erfcinv(1/2), erfcinv(1.33), erfcinv(3/2)]
A =
    0.4769 -0.3013 -0.4769
```

Compute the inverse complementary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfcinv returns unresolved symbolic calls:

```
symA = [erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(3/2))]
```

```
symA =
[ -erfcinv(3/2), erfcinv(133/100), erfcinv(3/2)]
```

Use vpa to approximate symbolic results with the required number of digits:

```
d = digits(10);
vpa(symA)
digits(d)
ans =
[ 0.4769362762, -0.3013321461, -0.4769362762]
```


Inverse Complementary Error Function for Variables and Expressions

For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls.
Compute the inverse complementary error function for x and $\sin (x)+x * \exp (x)$. For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls:

```
syms x
f = sin(x) + x*exp(x);
erfcinv(x)
erfcinv(f)
ans =
erfcinv(x)
ans =
erfcinv(sin(x) + x*exp(x))
```


Inverse Complementary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfcinv returns the inverse complementary error function for each element of that vector or matrix.

Compute the inverse complementary error function for elements of matrix M and vector V :

```
M = sym([0 1 + i; 1/3 1]);
V = sym([2; inf]);
erfcinv(M)
erfcinv(V)
```

```
ans =
[rn\mp@code{Inf, NaN]}
ans =
    Inf
    NaN
```


Special Values of Inverse Complementary Error Function

erfcinv returns special values for particular parameters.
Compute the inverse complementary error function for $x=0, x=1$, and $x=2$. The inverse complementary error function has special values for these parameters:

```
[erfcinv(0), erfcinv(1), erfcinv(2)]
ans =
    Inf 0 - Inf
```


Handling Expressions That Contain Inverse Complementary Error Function

Many functions, such as diff and int, can handle expressions containing erfcinv.
Compute the first and second derivatives of the inverse complementary error function:

```
syms x
diff(erfcinv(x), x)
diff(erfcinv(x), x, 2)
ans =
-(pi^(1/2)*exp(erfcinv(x)^2))/2
ans =
(pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2
```

Compute the integral of the inverse complementary error function:

```
int(erfcinv(x), x)
ans =
exp(-erfcinv(x)^2)/pi^(1/2)
```


Plot Inverse Complementary Error Function

Plot the inverse complementary error function on the interval from 0 to 2. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(erfcinv(x), [0,2])
grid on

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Inverse Complementary Error Function

The inverse complementary error function is defined as $\operatorname{erfc}^{-1}(x)$, such that $\operatorname{erfc}\left(\operatorname{erfc}^{-1}(x)\right)=x$. Here

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t=1-\operatorname{erf}(x)
$$

is the complementary error function.

Tips

- Calling erfcinv for a number that is not a symbolic object invokes the MATLAB erfcinv function. This function accepts real arguments only. If you want to compute the inverse complementary error function for a complex number, use sym to convert that number to a symbolic object, and then call erfcinv for that symbolic object.
- If $x<0$ or $x>2$, or if x is complex, then $\operatorname{erfcinv(x)~returns~NaN.~}$

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values x , the toolbox applies these simplification rules:

- erfinv(erf(x)) = erfinv(1 - erfc $(x))=\operatorname{erfcinv(1-\operatorname {erf}(x))=}$ erfcinv(erfc(x)) = x
- $\operatorname{erfinv}(-\operatorname{erf}(x))=\operatorname{erfinv}(\operatorname{erfc}(x)-1)=\operatorname{erfcinv}(1+\operatorname{erf}(x))=$ erfcinv(2 - erfc(x)) $=-x$

For any value x , the toolbox applies these simplification rules:

- erfcinv(x) = erfinv(1 - x)
- erfinv(-x) $=$-erfinv(x)
- $\operatorname{erfcinv}(2-x)=-\operatorname{erfcinv}(x)$
- erf(erfinv(x)) = erfc(erfcinv(x)) $=x$
- erf(erfcinv(x)) $=\operatorname{erfc}(\operatorname{erfinv}(x))=1-x$

References

[1] Gautschi, W. "Error Function and Fresnel Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

erf|erfc|erfi|erfinv
Introduced in R2012a

erfi

Imaginary error function

Syntax

erfi(x)

Description

erfi(x) returns the imaginary error function on page 4-465 of x. If x is a vector or a matrix, erfi (x) returns the imaginary error function of each element of x.

Examples

Imaginary Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfi can return floating-point or exact symbolic results.
Compute the imaginary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [erfi(1/2), erfi(1.41), erfi(sqrt(2))]
s =
    0.6150 3.7382 3.7731
```

Compute the imaginary error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfi returns unresolved symbolic calls.

```
s = [erfi(sym(1/2)), erfi(sym(1.41)), erfi(sqrt(sym(2)))]
s =
[ erfi(1/2), erfi(141/100), erfi(2^(1/2))]
```

Use vpa to approximate this result with the 10-digit accuracy:

```
vpa(s, 10)
ans =
[ 0.6149520947, 3.738199581, 3.773122512]
```


Imaginary Error Function for Variables and Expressions

Compute the imaginary error function for x and $\sin (x)+x^{*} \exp (x)$. For most symbolic variables and expressions, erfi returns unresolved symbolic calls.

```
syms x
f = sin(x) + x*exp(x);
erfi(x)
erfi(f)
ans =
erfi(x)
ans =
erfi(sin(x) + x*exp(x))
```


Imaginary Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfi returns the imaginary error function for each element of that vector or matrix.

Compute the imaginary error function for elements of matrix M and vector V :

```
M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfi(M)
erfi(V)
ans =
[ 0, Inf]
[ erfi(1/3), -Inf]
ans =
    erfi(1)
        -1i
```


Special Values of Imaginary Error Function

Compute the imaginary error function for $x=0, x=\infty$, and $x=-\infty$. Use sym to convert 0 and infinities to symbolic objects. The imaginary error function has special values for these parameters:

```
[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]
ans =
[ 0, Inf, -Inf]
```

Compute the imaginary error function for complex infinities. Use sym to convert complex infinities to symbolic objects:

```
[erfi(sym(i*inf)), erfi(sym(-i*inf))]
ans =
[ 1i, -1i]
```


Handling Expressions That Contain Imaginary Error Function

Many functions, such as diff and int, can handle expressions containing erfi.
Compute the first and second derivatives of the imaginary error function:

```
syms x
diff(erfi(x), x)
diff(erfi(x), x, 2)
ans =
(2*exp(x^2))/pi^(1/2)
ans =
(4*x*exp(x^2))/pi^(1/2)
```

Compute the integrals of these expressions:

```
int(erfi(x), x)
int(erfi(log(x)), x)
ans =
x*erfi(x) - exp(x^2)/pi^(1/2)
ans =
x*erfi(log(x)) - int((2*exp(log(x)^2))/pi^(1/2), x)
```


Plot Imaginary Error Function

Plot the imaginary error function on the interval from - 2 to 2. Before R2016a, use ezplot instead of fplot.
syms x fplot(erfi(x),[-2,2]) grid on

Input Arguments

x - Input

floating-point number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a floating-point or symbolic number, variable, expression, function, vector, or matrix.

Definitions

Imaginary Error Function

The imaginary error function is defined as:

$$
\operatorname{erfi}(x)=-i e r f(i x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{t^{2}} d t
$$

Tips

- erfi returns special values for these parameters:
- erfi(0) $=0$
- erfi(inf) = inf
- erfi(-inf) = -inf
- erfi(i*inf) $=$ i
- erfi(-i*inf) $=-i$

See Also

erf|erfc|erfcinv|erfinv|vpa

Introduced in R2013a

erfinv

Inverse error function

Syntax

erfinv(X)

Description

erfinv(X) computes the inverse error function on page 4-470 of X. If X is a vector or a matrix, erfinv (X) computes the inverse error function of each element of X.

Examples

Inverse Error Function for Floating-Point and Symbolic Numbers

Depending on its arguments, erfinv can return floating-point or exact symbolic results.
Compute the inverse error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```
A = [erfinv(1/2), erfinv(0.33), erfinv(-1/3)]
A =
    0.4769 0.3013 -0.3046
```

Compute the inverse error function for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, erfinv returns unresolved symbolic calls:

```
symA = [erfinv(sym(1)/2), erfinv(sym(0.33)), erfinv(sym(-1)/3)]
symA =
[ erfinv(1/2), erfinv(33/100), -erfinv(1/3)]
```

Use vpa to approximate symbolic results with the required number of digits:

```
d = digits(10);
vpa(symA)
digits(d)
ans =
[ 0.4769362762, 0.3013321461, -0.3045701942]
```


Inverse Error Function for Variables and Expressions

For most symbolic variables and expressions, erfinv returns unresolved symbolic calls.
Compute the inverse error function for x and $\sin (x)+x^{*} \exp (x)$. For most symbolic variables and expressions, erfinv returns unresolved symbolic calls:

```
syms x
f = sin(x) + x*exp(x);
erfinv(x)
erfinv(f)
ans =
erfinv(x)
ans =
erfinv(sin(x) + x*exp(x))
```


Inverse Error Function for Vectors and Matrices

If the input argument is a vector or a matrix, erfinv returns the inverse error function for each element of that vector or matrix.

Compute the inverse error function for elements of matrix M and vector V :

```
M = sym([0 1 + i; 1/3 1]);
V = sym([-1; inf]);
erfinv(M)
erfinv(V)
ans =
[ 0, NaN]
[ erfinv(1/3), Inf]
```


Special Values of Inverse Complementary Error Function

erfinv returns special values for particular parameters.
Compute the inverse error function for $x=-1, x=0$, and $x=1$. The inverse error function has special values for these parameters:

```
[erfinv(-1), erfinv(0), erfinv(1)]
ans =
    -Inf 0 Inf
```

Handling Expressions That Contain Inverse Complementary
Error Function

Many functions, such as diff and int, can handle expressions containing erfinv.
Compute the first and second derivatives of the inverse error function:

```
syms x
diff(erfinv(x), x)
diff(erfinv(x), x, 2)
ans =
(pi^(1/2)*exp(erfinv(x)^2))/2
ans =
(pi*exp(2*erfinv(x)^2)*erfinv(x))/2
```

Compute the integral of the inverse error function:

```
int(erfinv(x), x)
ans =
-exp(-erfinv(x)^2)/pi^(1/2)
```


Plot Inverse Error Function

Plot the inverse error function on the interval from -1 to 1. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(erfinv(x), [-1,1])
grid on

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Inverse Error Function

The inverse error function is defined as $\operatorname{erf}^{-1}(x)$, such that $\operatorname{erf}\left(\operatorname{erf}^{-1}(x)\right)=\operatorname{erf}^{-1}(\operatorname{erf}(x))=x$. Here

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

is the error function.

Tips

- Calling erfinv for a number that is not a symbolic object invokes the MATLAB erfinv function. This function accepts real arguments only. If you want to compute the inverse error function for a complex number, use sym to convert that number to a symbolic object, and then call erfinv for that symbolic object.
- If $x<-1$ or $x>1$, or if x is complex, then erfinv (x) returns NaN.

Algorithms

The toolbox can simplify expressions that contain error functions and their inverses. For real values x, the toolbox applies these simplification rules:
 $\operatorname{erfcinv}(\operatorname{erfc}(x))=x$

- erfinv(-erf(x)) $=\operatorname{erfinv}(\operatorname{erfc}(x)-1)=\operatorname{erfcinv}(1+\operatorname{erf}(x))=$ erfcinv(2 $-\operatorname{erfc}(x))=-x$

For any value x, the toolbox applies these simplification rules:

- erfcinv $(x)=\operatorname{erfinv(1-x)~}$
- erfinv $(-x)=-e r f i n v(x)$
- erfcinv(2 - x) $=$-erfcinv (x)
- $\operatorname{erf}(\operatorname{erfinv}(x))=\operatorname{erfc}(\operatorname{erfcinv}(x))=x$
- erf(erfcinv $(x))=\operatorname{erfc}(\operatorname{erfinv}(x))=1-x$

References

[1] Gautschi, W. "Error Function and Fresnel Integrals." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

erf|erfc|erfcinv|erfi

Introduced in R2012a

euler

Euler numbers and polynomials

Syntax

```
euler(n)
euler(n,x)
```


Description

euler (n) returns the nth Euler number on page 4-476.
euler (n, x) returns the nth Euler polynomial on page 4-476.

Examples

Euler Numbers with Odd and Even Indices

The Euler numbers with even indices alternate the signs. Any Euler number with an odd index is 0 .

Compute the even-indexed Euler numbers with the indices from 0 to 10:
euler(0:2:10)
ans $=$

1	-1	5	$-61 \ldots$
1385	-50521		

Compute the odd-indexed Euler numbers with the indices from 1 to 11:

```
euler(1:2:11)
```

ans $=$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$

Euler Polynomials

For the Euler polynomials, use euler with two input arguments.
Compute the first, second, and third Euler polynomials in variables x, y, and z, respectively:

```
syms x y z
euler(1, x)
euler(2, y)
euler(3, z)
ans =
x - 1/2
ans =
y^2 - y
ans =
z^3 - (3* z^2)/2 + 1/4
```

If the second argument is a number, euler evaluates the polynomial at that number.
Here, the result is a floating-point number because the input arguments are not symbolic numbers:

```
euler(2, 1/3)
ans =
    -0.2222
```

To get the exact symbolic result, convert at least one number to a symbolic object:

```
euler(2, sym(1/3))
```

ans $=$
$-2 / 9$

Plot Euler Polynomials

Plot the first six Euler polynomials. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(euler(0:5, x), [-1 2])
```

```
title('Euler Polynomials')
grid on
```

Euler Polynomials

Handle Expressions Containing Euler Polynomials

Many functions, such as diff and expand, can handle expressions containing euler.
Find the first and second derivatives of the Euler polynomial:

```
syms n x
diff(euler(n,x^2), x)
```

```
ans =
2*n*x*euler(n - 1, x^2)
diff(euler(n,x^2), x, x)
ans =
2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)
```

Expand these expressions containing the Euler polynomials:

```
expand(euler(n, 2 - x))
ans =
2*(1 - x)^n - (-1)^n*euler(n, x)
expand(euler(n, 2*x))
ans =
(2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) -...
(2*2^n*bernoulli(n + 1, x))/(n + 1)
```


Input Arguments

n - Index of the Euler number or polynomial

nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Index of the Euler number or polynomial, specified as a nonnegative integer, symbolic nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or matrix, euler returns Euler numbers or polynomials for each element of n. If one input argument is a scalar and the other one is a vector or a matrix, euler (n, x) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

x - Polynomial variable

symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Polynomial variable, specified as a symbolic variable, expression, function, vector, or matrix. If x is a vector or matrix, euler returns Euler numbers or polynomials for each element of x. When you use the euler function to find Euler polynomials, at least one argument must be a scalar or both arguments must be vectors or matrices of the same
size. If one input argument is a scalar and the other one is a vector or a matrix, euler (n, x) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

Definitions

Euler Polynomials

The Euler polynomials are defined as follows:

$$
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} \operatorname{euler}(n, x) \frac{t^{n}}{n!}
$$

Euler Numbers

The Euler numbers are defined in terms of Euler polynomials as follows:

$$
\operatorname{euler}(n)=2^{n} \operatorname{euler}\left(n, \frac{1}{2}\right)
$$

Tips

- For the other meaning of Euler's number, $e=2.71828 \ldots$, call $\exp (1)$ to return the double-precision representation. For the exact representation of Euler's number e, call exp(sym(1)).
- For the Euler-Mascheroni constant, see eulergamma.

See Also

bernoulli | eulergamma

Introduced in R2014a

eulergamma

Euler-Mascheroni constant

Syntax

eulergamma

Description

eulergamma represents the Euler-Mascheroni constant on page 4-478. To get a floatingpoint approximation with the current precision set by digits, use vpa(eulergamma).

Examples

Represent and Numerically Approximate the Euler-Mascheroni Constant

Represent the Euler-Mascheroni constant using eulergamma, which returns the symbolic form eulergamma.

```
eulergamma
```

ans =
eulergamma

Use eulergamma in symbolic calculations. Numerically approximate your result with vpa.
a = eulergamma;
$g=a^{\wedge} 2+\log (a)$
gVpa $=v p a(g)$
g =
log(eulergamma) + eulergamma^2
gVpa =
-0.21636138917392614801928563244766

Find the double-precision approximation of the Euler-Mascheroni constant using double.

```
double(eulergamma)
```

ans $=$
0.5772

Show Relation of Euler-Mascheroni Constant to Gamma Functions

Show the relations between the Euler-Mascheroni constant γ, digamma function Ψ, and gamma function Γ.

Show that $\gamma=-\Psi(1)$.

```
-psi(sym(1))
ans =
eulergamma
```

Show that $\gamma=-\left.\Gamma^{\prime}(x)\right|_{x=1}$.
syms x
-subs(diff(gamma(x)), x,1)
ans =
eulergamma

Definitions

Euler-Mascheroni Constant

The Euler-Mascheroni constant is defined as follows:

$$
\gamma=\lim _{n \rightarrow \infty}\left(\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right)
$$

Tips

- For the value $e=2.71828 \ldots$, called Euler's number, use \exp (1) to return the doubleprecision representation. For the exact representation of Euler's number e, call $\exp (\operatorname{sym}(1))$.
- For the other meaning of Euler's numbers and for Euler's polynomials, see euler.

See Also

coshint |euler

Introduced in R2014a

evalin

Evaluate MuPAD expressions without specifying their arguments

Syntax

```
result = evalin(symengine,MuPAD_expression)
[result,status] = evalin(symengīne,MuPAD_expression)
```


Description

result = evalin(symengine, MuPAD_expression) evaluates the MuPAD expression MuPAD_expression, and returns result as a symbolic object. If MuPAD_expression throws an error in MuPAD, then this syntax throws an error in MATLAB.
[result,status] = evalin(symengine,MuPAD_expression) lets you catch errors thrown by MuPAD. This syntax returns the error status in status and the error message in result if status is nonzero. If status is 0 , result is a symbolic object; otherwise, it is a character vector.

Examples

Perform MuPAD Command

Compute the discriminant of the following polynomial:

```
evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')
ans =
    b^2 - 4*a*c
```


Return Error Thrown by MuPAD

Try using polylib: : discrim to compute the discriminant of the following nonpolynomial expression:

```
    [result, status] = evalin(symengine,'polylib::discrim(a*x^2+b*x+c*ln(x),x)')
result =
    'Arithmetical expression expected.'
status =
    2
```


Input Arguments

MuPAD_expression - Input

character vector
Character vector containing a MuPAD expression.

Output Arguments

result - Computation result

character vector | symbolic object
Computation result returned as a symbolic object or character vector containing a MuPAD error message.

status - Error status

integer
Error status returned as an integer. If F with the arguments $\mathrm{x} 1, \ldots, \mathrm{xn}$ executes without errors, the error status is 0 .

Tips

- Results returned by evalin can differ from the results that you get using a MuPAD notebook directly. The reason is that evalin sets a lower level of evaluation to achieve better performance.
- evalin does not open a MuPAD notebook, and therefore, you cannot use this function to access MuPAD graphics capabilities.

Alternatives

feval lets you evaluate MuPAD expressions with arguments. When using feval, you must explicitly specify the arguments of the MuPAD expression.

See Also

feval|read| symengine

Topics

"Call Built-In MuPAD Functions from MATLAB" on page 3-59
"Evaluations in Symbolic Computations"
"Level of Evaluation"
Introduced in R2008b

evaluateMuPADNotebook

Evaluate MuPAD notebook

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

evaluateMuPADNotebook(nb)
evaluateMuPADNotebook(nb,'IgnoreErrors',true)

Description

evaluateMuPADNotebook(nb) evaluates the MuPAD notebook with the handle nb and returns logical 1 (true) if evaluation runs without errors. If nb is a vector of notebook handles, then this syntax returns a vector of logical 1 s .
evaluateMuPADNotebook(nb, 'IgnoreErrors', true) does not stop evaluating the notebook when it encounters an error. This syntax skips any input region of a MuPAD notebook that causes errors, and proceeds to the next one. If the evaluation runs without errors, this syntax returns logical 1 (true). Otherwise, it returns logical 0 (false). The error messages appear in the MuPAD notebook only.

By default, evaluateMuPADNotebook uses 'IgnoreErrors', false, and therefore, evaluateMuPADNotebook stops when it encounters an error in a notebook. The error messages appear in the MATLAB Command Window and in the MuPAD notebook.

Examples

Evaluate Particular Notebook

Execute commands in all input regions of a MuPAD notebook. Results of the evaluation appear in the output regions of the notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open this notebook keeping its handle in the variable nb1:

```
nb1 = mupad('myFile1.mn');
```

Evaluate all input regions in this notebook. If all calculations run without an error, then evaluateMuPADNotebook returns logical 1 (true):

```
evaluateMuPADNotebook(nb1)
```

ans =
1

Evaluate Several Notebooks

Use a vector of notebook handles to evaluate several notebooks.
Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
nb3 =
Notebook1
```

```
Evaluate myFile1.mn and myFile2.mn:
evaluateMuPADNotebook([nb1, nb2])
ans =
    1
```


Evaluate All Open Notebooks

Identify and evaluate all open MuPAD notebooks.
Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
nb3 =
Notebook1
```

Get a list of all currently open notebooks:
allNBs = allMuPADNotebooks;
Evaluate all notebooks. If all calculations run without an error, then evaluateMuPADNotebook returns an array of logical 1s (true):
evaluateMuPADNotebook(allNBs)
ans =
1
1
1

Evaluate All Open Notebooks Ignoring Errors

Identify and evaluate all open MuPAD notebooks skipping evaluations that cause errors.
Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
nb3 =
Notebook1
```

Get a list of all currently open notebooks:
allNBs = allMuPADNotebooks;
Evaluate all notebooks using 'IgnoreErrors' , true to skip any calculations that cause errors. If all calculations run without an error, then evaluateMuPADNotebook returns an array of logical 1s (true):

```
evaluateMuPADNotebook(allNBs,'IgnoreErrors',true)
```

```
ans =
```

 1
 1
 1
 Otherwise, it returns logical 0s for notebooks that cause errors (false):

```
ans =
```

 0
 1
 1
 - "Create MuPAD Notebooks" on page 3-3
- "Open MuPAD Notebooks" on page 3-6
- "Save MuPAD Notebooks" on page 3-12
- "Evaluate MuPAD Notebooks from MATLAB" on page 3-13
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
- "Close MuPAD Notebooks from MATLAB" on page 3-17

Input Arguments

nb - Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function. evaluateMuPADNotebook accepts a vector of handles returned by allMuPADNotebooks.

See Also

allMuPADNotebooks |close|getVar|mupad|mupadNotebookTitle|openmn | setVar

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6
"Save MuPAD Notebooks" on page 3-12
"Evaluate MuPAD Notebooks from MATLAB" on page 3-13
"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
"Close MuPAD Notebooks from MATLAB" on page 3-17

Introduced in R2013b

expand

Expand expressions and simplify inputs of functions by using identities

Syntax

expand(S)
expand(S,Name,Value)

Description

expand(S) multiplies all parentheses in S, and simplifies inputs to functions such as $\cos (\mathrm{x}+\mathrm{y})$ by applying standard identities.
expand(S,Name, Value) expands S using additional options specified by one or more Name, Value pair arguments.

Examples

Expand Symbolic Expression

syms x
$p=(x-2)^{*}(x-4)$;
expand(p)
ans $=$
$x^{\wedge} 2-6 * x+8$

Expand Trigonometric Expression

Expand the trigonometric expression $\cos (x+y)$. The cos function input $x+y$ is simplified to x or y by applying standard identities.

```
syms x y
expand(cos(x+y))
ans =
cos(x)*\operatorname{cos}(y) - sin(x)*sin(y)
```


Expand Exponential Expression

Expand $\mathrm{e}^{(a+b)^{2}}$. The \exp function input, $(a+b)^{\wedge} 2$, is simplified by applying standard identities.

```
syms a b
f = exp((a + b)^2);
expand(f)
ans =
exp(a^2)*exp(b^2)*exp(2*a*b)
```


Expand Vector of Expressions

Expand expressions in a vector. The inputs to functions in the expressions are simplified by applying identities.

```
syms t
V = [sin(2*t), cos(2*t)];
expand(V)
ans =
[ 2*}\operatorname{cos(t)*sin(t), 2*}\operatorname{cos(t)^2 - 1]
```


Expand Only Arithmetic and Suppress Expansion of Functions

By default, expand both expands terms raised to powers and simplifies inputs to functions. Expand only terms raised to powers and suppress simplification of input by using ArithmeticOnly.

Expand ($\left.\sin \left(3^{*} x\right)-1\right)^{\wedge} 2$. By default, expand will expand the power ${ }^{\wedge} 2$ and simplify the sin input $3^{*} x$ to x.

```
syms x
f=(sin(3*x) - 1)^2;
expand(f)
ans =
2*}\operatorname{sin}(x)+\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2 - 8*\operatorname{cos}(x\mp@subsup{)}{}{\wedge}2*\operatorname{sin}(x) - 8* cos(x\mp@subsup{)}{}{\wedge}2*\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2..
    + 16*}\operatorname{cos}(x\mp@subsup{)}{}{\wedge}\mp@subsup{4}{}{*}\operatorname{sin}(x\mp@subsup{)}{}{\wedge}2+
```

Suppress simplification of input to functions, such as $\sin \left(3^{*} x\right)$, by setting ArithmeticOnly to true.

```
expand(f, 'ArithmeticOnly', true)
ans =
sin(3*x)^2 - 2*sin(3*x) + 1
```


Simplify Log Input by Removing Constraints

Simplify input of log function calls. By default, expand does not simplify logarithm input because the identities used are not valid for complex values of variables.

```
syms a b c
f = log((a*b/c)^2);
expand(f)
ans =
log((a^2*b^2)/c^2)
```

Apply identities to simplify input of logarithms by setting IgnoreAnalyticConstraints to true.

```
expand(f,'IgnoreAnalyticConstraints',true)
```

```
ans =
    2*log(a) + 2*log(b) - 2*log(c)
```


Input Arguments

S - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.
Example: expand(S, 'ArithmeticOnly',true)

ArithmeticOnly - Expand only algebraic expressions

 false (default)|trueExpand only algebraic expressions, specified as true or false. If the value is true, expand the arithmetic part of an expression without expanding trigonometric, hyperbolic, logarithmic, and special functions. This option does not prevent expansion of powers and roots.

IgnoreAnalyticConstraints - Use convenient identities for simplification false (default) | true

Use convenient identities for simplification, specified as true or false. If the value is true, expand applies identities that are convenient but do not hold for all values of variables. This option can let expand return simpler results. See "Algorithms" on page 4491. Using IgnoreAnalyticConstraints can lead to results that are not equivalent to the initial expression.

Algorithms

When you use IgnoreAnalyticConstraints, expand applies these rules:

- $\log (a)+\log (b)=\log (a \cdot b)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :

$$
(a \cdot b)^{c}=a^{c} \cdot b^{c} .
$$

- $\log \left(a^{b}\right)=b \cdot \log (a)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :

$$
\left(a^{b}\right)^{c}=a^{b \cdot c} .
$$

- If f and g are standard mathematical functions and $f(g(x))=x$ for all small positive numbers, $f(g(x))=x$ is assumed to be valid for all complex x. In particular:
- $\log \left(e^{x}\right)=x$
- $\operatorname{asin}(\sin (x))=x, \operatorname{acos}(\cos (x))=x, \operatorname{atan}(\tan (x))=x$
- $\operatorname{asinh}(\sinh (x))=x, \operatorname{acosh}(\cosh (x))=x, \operatorname{atanh}(\tanh (x))=x$
- $\mathrm{W}_{k}\left(x \cdot e^{x}\right)=x$ for all values of k

See Also
 collect | combine | factor | horner | numden | rewrite | simplify| simplifyFraction

Topics

"Choose Function to Rearrange Expression" on page 2-95

Introduced before R2006a

expint

Exponential integral function

Syntax

expint(x)
expint(n, x)

Description

expint (x) returns the one-argument exponential integral function defined as

$$
\operatorname{expint}(x)=\int_{1}^{\infty} \frac{e^{-x t}}{t} d t
$$

expint (n, x) returns the two-argument exponential integral function defined as

$$
\operatorname{expint}(n, x)=\int_{1}^{\infty} \frac{e^{-x t}}{t^{n}} d t
$$

Examples

One-Argument Exponential Integral for Floating-Point and Symbolic Numbers

Compute the exponential integrals for floating-point numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
s = [expint(1/3), expint(1), expint(-2)]
s =
    0.8289 + 0.0000i 0.2194 + 0.0000i -4.9542 - 3.1416i
```

Compute the exponential integrals for the same numbers converted to symbolic objects. For positive values x, expint (x) returns -ei ($-x$). For negative values x, it returns pi*i - ei(-x).

```
s = [expint(sym(1)/3), expint(sym(1)), expint(sym(-2))]
```

s =
[-ei(-1/3), -ei(-1), - pi*1i - ei(2)]

Use vpa to approximate this result with 10-digit accuracy.

```
vpa(s, 10)
```

ans $=$
[0.8288877453, 0.2193839344, - $4.954234356-3.141592654 i]$

Two-Argument Exponential Integral for Floating-Point and Symbolic Numbers

When computing two-argument exponential integrals, convert the numbers to symbolic objects.

```
s = [expint(2, sym(1)/3), expint(sym(1), Inf), expint(-1, sym(-2))]
s =
[ expint(2, 1/3), 0, -exp(2)/4]
```

Use vpa to approximate this result with 25-digit accuracy.

```
vpa(s, 25)
```

ans =
[$0.4402353954575937050522018,0,-1.847264024732662556807607]$

Two-Argument Exponential Integral with Nonpositive First Argument

Compute two-argument exponential integrals. If n is a nonpositive integer, then $\operatorname{expint}(n, x)$ returns an explicit expression in the form $\exp (-x) * p(1 / x)$, where p is a polynomial of degree 1 - n.

```
syms x
expint(0, x)
```

```
expint(-1, x)
expint(-2, x)
ans =
exp(-x)/x
ans =
exp(-x)*(1/x + 1/x^2)
ans =
exp(-x)*(1/x + 2/\mp@subsup{x}{}{\wedge}2+2/\mp@subsup{x}{}{\wedge}3)
```


Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

```
syms x
diff(expint(x), x)
diff(expint(x), x, 2)
diff(expint(x), x, 3)
ans =
-exp(-x)/x
ans =
exp(-x)/x + exp(-x)/\mp@subsup{x}{}{\wedge}2
ans =
- }\operatorname{exp(-x)/x - (2*exp(-x))/\mp@subsup{x}{}{\wedge}2 - (2*exp(-x))/\mp@subsup{x}{}{\wedge}3
```

Compute the first derivatives of a two-argument exponential integral.

```
syms n x
diff(expint(n, x), x)
diff(expint(n, x), n)
ans =
-expint(n - 1, x)
ans =
- hypergeom([1 - n, 1 - n], [2 - n, 2 - n],...
-x)/(n - 1)^2 - (x^(n - 1)*pi*(psi(n) - ...
log(x) + pi*cot(pi*n)))/(sin(pi*n)*gamma(n))
```


Input Arguments

x - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

n - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix. When you compute the two-argument exponential integral function, at least one argument must be a scalar.

Tips

- Calling expint for numbers that are not symbolic objects invokes the MATLAB expint function. This function accepts one argument only. To compute the twoargument exponential integral, use sym to convert the numbers to symbolic objects, and then call expint for those symbolic objects. You can approximate the results with floating-point numbers using vpa.
- The following values of the exponential integral differ from those returned by the MATLAB expint function: expint(sym(Inf)) = 0, expint(-sym(Inf)) = Inf, expint(sym(NaN)) = NaN.
- For positive x, expint $(x)=-e i(-x)$. For negative x, expint $(x)=-p i * i-$ ei(-x).
- If one input argument is a scalar and the other argument is a vector or a matrix, then expint (n, x) expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

Algorithms

The relation between expint and ei is

```
expint(1,-x) = ei(x) + (ln(x)-\operatorname{ln}(1/x))/2 - ln(-x)
```

Both functions ei (x) and expint $(1, x)$ have a logarithmic singularity at the origin and a branch cut along the negative real axis. The ei function is not continuous when approached from above or below this branch cut.

The expint function is related to the upper incomplete gamma function igamma as $\operatorname{expint}(n, x)=(x \wedge(n-1)) * i g a m m a(1-n, x)$

See Also

ei | expint | vpa

Introduced in R2013a

expm

Matrix exponential

Syntax

$R=\operatorname{expm}(A)$

Description

$R=\operatorname{expm}(A)$ computes the matrix exponential on page 4-499 of the square matrix A.

Examples

Matrix Exponential

Compute the matrix exponential for the 2-by-2 matrix and simplify the result.

```
syms x
A = [0 x; -x 0];
simplify(expm(A))
ans =
[ cos(x), sin(x)]
[ - sin(x), cos(x)]
```


Input Arguments

A - Input matrix
square matrix
Input matrix, specified as a square symbolic matrix.

Output Arguments

R — Resulting matrix
symbolic matrix
Resulting function, returned as a symbolic matrix.

Definitions

Matrix Exponential

The matrix exponential e^{A} of matrix A is

$$
e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}=1+A+\frac{A^{2}}{2}+\ldots
$$

See Also
eig | funm | jordan | logm| sqrtm
Introduced before R2006a

ezcontour

Contour plotter

Note ezcontour is not recommended. Use fcontour instead.

Syntax

```
ezcontour(f)
ezcontour(f,domain)
ezcontour(
```


Description

ezcontour (f) plots the contour lines of $f(x, y)$, where f is a symbolic expression that represents a mathematical function of two variables, such as x and y. ezcontour automatically adds a title and axis labels.

The function f is plotted over the default domain $-2 \Pi<x<2 \Pi,-2 \Pi<y<2 \pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.
ezcontour(f, domain) plots $f(x, y)$ over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min $<x<$ max, $\min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontour(u^2 - v^3,[0,1],[3,6]) plots the contour lines for $u^{2}-v^{3}$ over $0<u<$ $1,3<v<6$.
ezcontour (__, n) plots f over the default domain using an n-by-n grid. The default value for n is 60 .

Examples

Plot Contour Lines of Symbolic Expression

The following mathematical expression defines a function of two variables, x and y.

$$
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}} .
$$

ezcontour requires a sym argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression

```
syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
    - 10*(x/5 - x^3 - y^5)*exp(-x^2- y^2)...
    - 1/3*exp(-(x+1)^2 - y^2);
```

For convenience, this expression is written on three lines.
Pass the sym foezcontour along with a domain ranging from -3 to 3 and specify a computational grid of 49-by-49.

```
ezcontour(f,[-3,3],49)
```


In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the title.

Input Arguments

f - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

domain - Domain to plot over

symbolic vector

Domain to plot over, specified as a symbolic vector. domain is a 4 -by- 1 vector [xmin, $x \max , y m i n, y \max$] or a 2-by-1 vector [min, max] (where, $\min <x<\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically

n - grid points

number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also

contour|fcontour|fmesh|fplot|fplot3|fsurf

Introduced before R2006a

ezcontourf

Filled contour plotter

Note ezcontourf is not recommended. Use fcontour instead.

Syntax

ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(\qquad , n)

Description

ezcontourf(f) plots the contour lines of $f(x, y)$, where f is a sym that represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain $-2 \Pi<x<2 \pi,-2 \pi<y<2 \pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.
ezcontourf automatically adds a title and axis labels.
ezcontourf(f,domain) plots $f(x, y)$ over the specified domain. domain can be either a 4 -by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min $<x<$ $\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontourf($\left.u^{\wedge} 2-v^{\wedge} 3,[0,1],[3,6]\right)$ plots the contour lines for $u^{2}-v^{3}$ over $0<u<$ $1,3<v<6$.
ezcontourf (__ , n) plots f over the default domain using an n-by-n grid. The default value for n is $6 \overline{0}$.

Examples

Plot Filled Contours

The following mathematical expression defines a function of two variables, x and y.

$$
f(x, y)=3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
$$

ezcontourf requires a sym argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the symbolic expression

```
syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
    - 10*(x/5 - x^3 - y^5)*exp(-x^2- y^2)...
    - 1/3*exp(-(x+1)^2 - y^2);
```

For convenience, this expression is written on three lines.
Pass the sym f to ezcontourf along with a domain ranging from -3 to 3 and specify a grid of 49-by-49.

```
ezcontourf(f,[-3,3],49)
```


In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the title.

Input Arguments

f - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

domain - Domain to plot over

symbolic vector

Domain to plot over, specified as a symbolic vector. domain is a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, $\min <x<\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically

n - grid points

number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also

contour|fcontour|fmesh|fplot|fplot3|fsurf

Introduced before R2006a

ezmesh

3-D mesh plotter

Note ezmesh is not recommended. Use fmesh instead.

Syntax

```
ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,domain)
ezmesh(
```

\qquad

``` , n)
ezmesh(
``` \(\qquad\)
``` , 'circ')
```


Description

ezmesh(f) creates a graph of $f(x, y)$, where f is a symbolic expression that represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain $-2 \Pi<x<2 \Pi,-2 \Pi<y<2 \pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.
ezmesh(f,domain) plots f over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min $<x<\max$, $\min <y<\max$).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmesh(u^2 - v^3, $[0,1],[3,6])$ plots $u^{2}-v^{3}$ over $0<u<1,3<v<6$.
ezmesh $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ plots the parametric surface $x=x(s, t), y=y(s, t)$, and $z=z(s, t)$ over the square $-2 \Pi<s<2 \Pi,-2 \Pi<t<2 \Pi$.
ezmesh(x, y, z, domain) plots the parametric surface using the specified domain.
ezmesh(\qquad , n) plots f over the default domain using an n-by-n grid. The default value for n is 60 .
ezmesh(\qquad ,'circ') plots f over a disk centered on the domain.

Examples

3-D Mesh Plot of Symbolic Expression

This example visualizes the function,

$$
f(x, y)=x e^{-x^{2}-y^{2}}
$$

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color by setting the colormap to a single color.

```
syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])
```


Input Arguments

f - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

x - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

y - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

z - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain - Domain to plot over

symbolic vector
Domain to plot over, specified as a symbolic vector. domain is a 4 -by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, $\min <x<\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically.

n - grid points

number | symbolic number
Grid points, specified as a number or a symbolic number.

See Also
fcontour|fmesh|fplot|fplot3|fsurf|mesh
Introduced before R2006a

ezmeshc

Combined mesh and contour plotter

Note ezmeshc is not recommended. Use fmesh instead.

Syntax

```
ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,domain)
ezmeshc(
```

\qquad

``` , n)
ezmeshc(
``` \(\qquad\)
``` ,'circ')
```


Description

ezmeshc (f) creates a graph of $f(x, y)$, where f is a symbolic expression that represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain $-2 \pi<x<2 \pi,-2 \pi<y<2 \pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.
ezmeshc (f , domain) plots f over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min $<x<\max$, $\min <y<\max$).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmeshc (u^2 - v^3, $[0,1],[3,6])$ plots $u^{2}-v^{3}$ over $0<u<1,3<v<6$.
ezmeshc $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ plots the parametric surface $x=x(s, t), y=y(s, t)$, and $z=z(s, t)$ over the square $-2 \Pi<s<2 \Pi,-2 \Pi<t<2 \Pi$.
ezmeshc (x, y, z, domain) plots the parametric surface using the specified domain.
ezmeshc (\qquad , n) plots f over the default domain using an n-by-n grid. The default value for n is 60 .
ezmeshc (__ , 'circ') plots f over a disk centered on the domain.

Examples

3-D Mesh Plot with Contours

Create a mesh/contour graph of the expression,

$$
f(x, y)=\frac{y}{1+x^{2}+y^{2}}
$$

over the domain $-5<x<5,-2 \pi<y<2 \pi$. Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth $=-65$ and elevation $=26$).

```
syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])
```


Input Arguments

f - Input
symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

x - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

y - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

z - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain - Domain to plot over

symbolic vector
Domain to plot over, specified as a symbolic vector. domain is a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, $\min <x<\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically.

n - grid points

number | symbolic number
Grid points, specified as a number or a symbolic number.

See Also
fcontour|fmesh|fplot|fplot3|fsurf|meshc
Introduced before R2006a

ezplot

Plot symbolic expression, equation, or function

Note ezplot is not recommended. Use fplot instead. For implicit plots, use fimplicit.

Syntax

```
ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(f,[min,max],fig)
ezplot(f,[xmin,xmax,ymin,ymax],fig)
ezplot(x,y,[tmin,tmax],fig)
h = ezplot(
```

\qquad

``` )
```


Description

ezplot(f) plots a symbolic expression, equation, or function f. By default, ezplot plots a univariate expression or function over the range $[-2 \Pi 2 \Pi$] or over a subinterval of this range. If f is an equation or function of two variables, the default range for both variables is $[-2 \pi 2 \pi$] or over a subinterval of this range.
$\operatorname{ezplot}(f,[\min , \max])$ plots f over the specified range. If f is a univariate expression or function, then [min, max] specifies the range for that variable. This is the range along the abscissa (horizontal axis). If f is an equation or function of two variables, then [min, max] specifies the range for both variables, that is the ranges along both the abscissa and the ordinate.
ezplot(f,[xmin, xmax,ymin,ymax]) plots f over the specified ranges along the abscissa and the ordinate.
ezplot (x, y) plots the parametrically defined planar curve $x=x(t)$ and $y=y(t)$ over the default range $0<=t<=2$ п or over a subinterval of this range.
ezplot ($x, y,[t m i n, t m a x])$ plots $x=x(t)$ and $y=y(t)$ over the specified range tmin $<=t<=$ tmax.
$\operatorname{ezplot}(f,[\min , \max], f i g)$ plots f over the specified range in the figure with the figure number or figure handle fig. The title of each plot window contains the word Figure and the number, for example, Figure 1, Figure 2, and so on. If fig is already open, ezplot overwrites the content of that figure with the new plot.
ezplot(f,[xmin,xmax,ymin,ymax],fig) plots fover the specified ranges along the abscissa and the ordinate in fig.
ezplot ($\mathrm{x}, \mathrm{y},[$ tmin, $\operatorname{tmax}], \mathrm{fig}$) plots $x=x(t)$ and $y=y(t)$ over the specified range in fig.
$\mathrm{h}=\mathrm{ezplot}(\ldots \ldots)$ returns the plot handle as either a chart line or contour object.

Examples

Plot Over Particular Range

Plot the expression $\operatorname{erf}(x) * \sin (x)$ over the range $[-\Pi, \Pi]$:

```
syms x
ezplot(erf(x), [-pi, pi])
```


Plot Over Default Range

Plot this equation over the default range.
syms x y
ezplot $\left(x^{\wedge} 2==y^{\wedge} 4\right)$

Plot Symbolic Function

Create this symbolic function $f(x, y)$:
syms x y
$f(x, y)=\sin (x+y) * \sin \left(x^{*} y\right) ;$
Plot this function over the default range:
ezplot(f)

Plot Parametric Curve

Plot this parametric curve:
syms t
$\mathrm{x}=\mathrm{t} * \sin \left(5^{*} \mathrm{t}\right)$;
$y=t * \cos \left(5^{*} t\right)$;
ezplot(x, y)

Input Arguments

f - Input

symbolic expression | symbolic equation | symbolic function
Symbolic expression, equation, or function.

[min , max] - Numbers specifying the plotting range

[-2*pi,2*pi] (default) | vector | symbolic vector
Numbers specifying the plotting range, specified as a vector of length 2. For a univariate expression or function, the plotting range applies to that variable. For an equation or
function of two variables, the plotting range applies to both variables. In this case, the range is the same for the abscissa and the ordinate.

```
[xmin,xmax,ymin,ymax] - Numbers specifying the plotting range
[-2*pi,2*pi,-2*pi, 2*pi] (default)| vector | symbolic vector
```

Numbers specifying the plotting range, specified as a numeric or symbolic vector along the abscissa (first two numbers) and the ordinate (last two numbers).

fig - Figure
 figure handle | figure window

Figure specified as a figure handle or figure window where you want to display a plot. For figure handle, the current figure handle returned by gcf. For figure number, if no plot windows are open, then 1 . If one plot window is open, then the number in the title of that window. If more than one plot window is open, then the highest number in the titles of open windows.

x, y - Parametric curve

symbolic expression | symbolic function
Parametric curve specified as symbolic expressions or functions $x=x(t)$ and $y=y(t)$.

[tmin, tmax] - Plotting range for a parametric curve [0,2*pi] (default) | vector | symbolic vector

Plotting range for a parametric curve specified as a numeric or symbolic vector.

Output Arguments

h - Chart line or contour line object
 scalar

Chart line or contour line object, returned as a scalar. For details, see Chart Line and Contour.

Tips

- If you do not specify a plot range, ezplot uses the interval [-2п $2 \pi]$ as a starting point. Then it can choose to display a part of the plot over a subinterval of [-2п 2π]
where the plot has significant variation. Also, when selecting the plotting range, ezplot omits extreme values associated with singularities.
- ezplot open a plot window and displays a plot there. If any plot windows are already open, ezplot does not create a new window. Instead, it displays the new plot in the currently active window. (Typically, it is the window with the highest number.) To display the new plot in a new plot window or in an existing window other than that with highest number, use fig.
- If f is an equation or function of two variables, then the alphabetically first variable defines the abscissa (horizontal axis) and the other variable defines the ordinate (vertical axis). Thus, ezplot ($x^{\wedge} 2==a^{\wedge} 2,[-3,3,-2,2]$) creates the plot of the equation $x^{2}=a^{2}$ with $-3<=a<=3$ along the horizontal axis, and $-2<=x<=2$ along the vertical axis.

See Also

fcontour|fmesh|fplot|fplot3|fsurf|plot

Topics

"Create Plots" on page 2-245

Introduced before R2006a

ezplot3

3-D parametric curve plotter

Note ezplot3 is not recommended. Use fplot3 instead.

Syntax

```
ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(
```

\qquad

``` ,'animate')
```


Description

ezplot3 ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) plots the spatial curve $x=x(t), y=y(t)$, and $z=z(t)$ over the default domain $0<\mathrm{t}<2$ п.
ezplot3 $(x, y, z,[\operatorname{tmin}, \operatorname{tmax}])$ plots the curve $x=x(t), y=y(t)$, and $z=z(t)$ over the domain tmin $<t<t_{\text {max }}$.
ezplot3(__ , 'animate') produces an animated trace of the spatial curve.

Examples

3-D Parametric Curve

Plot the parametric curve $x=\sin (t), y=\cos (t), z=t$ over the domain $[0,6 \pi]$.

```
syms t
ezplot3(sin(t), cos(t), t,[0,6*pi])
```

$$
x=\sin (t), y=\cos (t), z=t
$$

Input Arguments

x - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

y - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

z - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

[tmin, tmax] - Domain to plot over

symbolic vector
Domain to plot over, specified as a symbolic vector. ezplot3 plots over the domain tmin $<t<$ tmax

See Also
fcontour|fmesh|fplot|fplot3|fsurf|plot3
Introduced before R2006a

ezpolar

Polar coordinate plotter

Syntax

ezpolar(f)
ezpolar(f, [a b])

Description

ezpolar(f) plots the polar curve $r=f(\theta)$ over the default domain $0<\theta<2 \pi$.
ezpolar(f, [a b]) plots for $\mathrm{a}<\theta<\mathrm{b}$.

Examples

Polar Plot of Symbolic Expression

This example creates a polar plot of the function, $1+\cos (t)$, over the domain $[0,2 \pi]$.

syms t

ezpolar(1 + cos(t))

Input Arguments

f - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.
[a b] - Angle to plot over
vector | symbolic vector
Angle to plot over, specified as a vector, or a symbolic vector.

Introduced before R2006a

ezsurf

Plot 3-D surface

Note ezsurf is not recommended. Use fsurf instead.

Syntax

```
ezsurf(f)
ezsurf(f,[xmin,xmax])
ezsurf(f,[xmin,xmax,ymin,ymax])
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax])
ezsurf(x,y,z,[smin,smax,tmin,tmax])
ezsurf(
                                ,n)
ezsurf(
```

\qquad

``` , 'circ')
h = ezsurf(
``` \(\qquad\)
``` )
```


Description

ezsurf(f) plots a two-variable symbolic expression or function $f(x, y)$ over the range $-2 *$ pi $<x<2 *$ pi, $-2 *$ pi $<y<2 *$ pi.
ezsurf(f, [xmin, xmax]) plots $f(x, y)$ over the specified range xmin $<x<x m a x$. This is the range along the abscissa (horizontal axis).
ezsurf(f,[xmin,xmax,ymin,ymax]) plots $f(x, y)$ over the specified ranges along the abscissa, xmin $<x<x m a x$, and the ordinate, ymin $<y<y m a x$.

When determining the range values, ezsurf sorts variables alphabetically. For example, ezsurf($x^{\wedge} 2$ - $a^{\wedge} 3$, $\left.[0,1,3,6]\right)$ plots $x^{\wedge} 2-a^{\wedge} 3$ over $0<a<1,3<x<6$.
$\operatorname{ezsurf}(x, y, z)$ plots the parametric surface $x=x(s, t), y=y(s, t), z=z(s, t)$ over the range - $2 *$ pi $<\mathrm{s}<2 *$ pi, $-2 *$ pi $<\mathrm{t}<2 *$ pi.
$\operatorname{ezsurf}(x, y, z,[\operatorname{smin}, \operatorname{smax}])$ plots the parametric surface $x=x(s, t), y=$ $y(s, t), z=z(s, t)$ over the specified range smin $<~ s<s m a x$.
$\operatorname{ezsurf}(x, y, z,[\operatorname{smin}, \operatorname{smax}$, tmin, tmax] $)$ plots the parametric surface $x=x(s, t)$, $y=y(s, t), z=z(s, t)$ over the specified ranges smin $<~ s<s m a x$ and tmin $<t$ < tmax.
ezsurf(\qquad , n) specifies the grid. You can specify n after the input arguments in any of the previous syntaxes. By default, $\mathrm{n}=60$.
ezsurf(, 'circ') creates the surface plot over a disk centered on the range. You can specify' circ' after the input arguments in any of the previous syntaxes.
h = ezsurf(\qquad) returns a handle h to the surface plot object. You can use the output argument h with any of the previous syntaxes.

Examples

Plot Function Over Default Range

Plot the symbolic function $f(x, y)=$ real $(\operatorname{atan}(x+i * y))$ over the default range $-2 *$ pi $<x<2 *$ pi, $-2 *$ pi $<y<2 *$ pi.

Create the symbolic function.
syms $f(x, y)$

```
f(x,y) = real(atan(x + i*y));
```

Plot this function using ezsurf.

```
ezsurf(f)
```


Specify Plotting Ranges

Plot the symbolic expression $x^{\wedge} 2+y^{\wedge} 2$ over the range $-1<x<1$. Because you do not specify the range for the y-axis, ezsurf chooses it automatically.
syms x y
ezsurf(x^2 + y^2, [-1, 1])

Specify the range for both axes.
$\operatorname{ezsurf}\left(x^{\wedge} 2+y^{\wedge} 2,[-1,1,-0.5,1.5]\right)$

Plot Parameterized Surface

Define the parametric surface $x(s, t), y(s, t), z(s, t)$ as follows.

```
syms s t
r=2 + sin(7*s + 5*t);
x = r*
y = r*sin(s)*sin(t);
z = r*}\operatorname{cos(t);
```

Plot the function using ezsurf.

To create a smoother plot, increase the number of mesh points.
ezsurf(x, y, z, [0, 2*pi, 0, pi], 120)
title('Parametric surface with grid = 120')

Specify Disk Plotting Range

First, plot the expression $\sin \left(x^{\wedge} 2+y^{\wedge} 2\right)$ over the square range $-\mathrm{pi} / 2<x<\mathrm{pi} / 2$, -pi/2 < y < pi/2.
syms x y
ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2])

Now, plot the same expression over the disk range.

```
ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2],'circ')
```


Use Handle to Surface Plot

Plot the symbolic expression $\sin (x) \cos (x)$, and assign the result to the handle h.
syms x y
$h=\operatorname{ezsurf}\left(\sin (x)^{*} \cos (y), \quad[-p i, p i]\right)$


```
    EdgeColor: [0 0 0]
        LineStyle:
        FaceColor: 'flat'
        FaceLighting: 'flat'
        FaceAlpha: 1
            XData: [60x60 double]
            YData: [60x60 double]
            ZData: [60x60 double]
            CData: [60x60 double]
```


Show all properties

You can use this handle to change properties of the plot. For example, change the color of the area outline.
h.EdgeColor = 'red'

$\mathrm{h}=$
Surface with properties:
EdgeColor: [1 0 0]
LineStyle: '-'
FaceColor: 'flat'

```
    FaceLighting: 'flat'
    FaceAlpha: 1
        XData: [60x60 double]
        YData: [60x60 double]
        ZData: [60x60 double]
        CData: [60x60 double]
```

Show all properties

- "Create Plots" on page 2-245

Input Arguments

f - Function to plot

symbolic expression with two variables | symbolic function of two variables
Function to plot, specified as a symbolic expression or function of two variables.
Example: ezsurf ($x^{\wedge} 2+y^{\wedge} 2$)

$x, y, z-$ Parametric function to plot

three symbolic expressions with two variables | three symbolic functions of two variables
Parametric function to plot, specified as three symbolic expressions or functions of two variables.

Example: ezsurf(s*cos(t), s*sin(t), t)

n - Grid value

integer
Grid value, specified as an integer. The default grid value is 60 .

Output Arguments

h - Surface plot handle

scalar
Surface plot handle, returned as a scalar. It is a unique identifier, which you can use to query and modify properties of the surface plot.

Tips

- ezsurf chooses the computational grid according to the amount of variation that occurs. If f is singular for some points on the grid, then ezsurf omits these points. The value at these points is set to NaN .

See Also

fcontour|fmesh|fplot|fplot3|fsurf|surf

Topics

"Create Plots" on page 2-245
Introduced before R2006a

ezsurfc

Combined surface and contour plotter

Note ezsurfc is not recommended. Use fsurf instead.

Syntax

```
ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,domain)
ezsurfc(
```

\qquad

``` , n)
ezsurfc( ,'circ')
```


Description

ezsurfc (f) creates a graph of $f(x, y)$, where f is a symbolic expression that represents a mathematical function of two variables, such as x and y. The function f is plotted over the default domain $-2 \pi<x<2 \pi,-2 \pi<y<2 \pi$. MATLAB software chooses the computational grid according to the amount of variation that occurs; if the function f is not defined (singular) for points on the grid, then these points are not plotted.
ezsurfc (f,domain) plots f over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min $<x<\max$, $\min <y<\max$).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc (u^2 - v^3, [0,1] , [3, 6]) plots $u^{2}-v^{3}$ over $0<u<1,3<v<6$.
ezsurfc (x, y, z) plots the parametric surface $x=x(s, t), y=y(s, t)$, and $z=z(s, t)$ over the square $-2 \Pi<s<2 \Pi,-2 \Pi<t<2 \Pi$.
ezsurfc($x, y, z, d o m a i n)$ plots the parametric surface using the specified domain.
ezsurfc(\qquad , n) plots f over the default domain using an n-by-n grid. The default value for n is 60 . ezsurfc (__ , 'circ') plots f over a disk centered on the domain.

Examples

3-D Surface Plot with Contours

Create a surface/contour plot of the expression,

$$
f(x, y)=\frac{y}{1+x^{2}+y^{2}}
$$

over the domain $-5<x<5,-2 \pi<y<2 \pi$, with a computational grid of size 35 -by- 35 . Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth $=-65$ and elevation $=26$).

syms x y

ezsurfc $\left(y /\left(1+x^{\wedge} 2+y^{\wedge} 2\right),[-5,5,-2 *\right.$ pi,2*pi],35)

Input Arguments

f - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

x - Input

symbolic function | symbolic expression
Input, specified as a symbolic function or expression.

y - Input
 symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

```
z - Input
symbolic function | symbolic expression
```

Input, specified as a symbolic function or expression.

domain - Domain to plot over

symbolic vector
Domain to plot over, specified as a symbolic vector. domain is a 4 -by- 1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, $\min <x<\max , \min <y<\max$). If f is a function of the variables u and v (rather than x and y), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically.

n - grid points

number | symbolic number
Grid points, specified as a number or a symbolic number.

See Also
fcontour|fmesh|fplot|fplot3|fsurf|surfc
Introduced before R2006a

factor

Factorization

Syntax

```
F = factor(x)
F = factor(x,vars)
F = factor( ___,Name,Value)
```


Description

$F=$ factor (x) returns all irreducible factors of x in vector F. If x is an integer, factor returns the prime factorization of x. If x is a symbolic expression, factor returns the subexpressions that are factors of x.
$F=$ factor(x,vars) returns an array of factors F, where vars specifies the variables of interest. All factors not containing a variable in vars are separated into the first entry $F(1)$. The other entries are irreducible factors of x that contain one or more variables from vars.

F = factor (__ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments. This syntax can use any of the input arguments from the previous syntaxes.

Examples

Factor Integer Numbers

```
F = factor(823429252)
F=
    2 2
        2

To factor integers greater than flintmax, convert the integer to a symbolic object using sym. Then place the number in quotation marks to represent it accurately.
```

F = factor(sym('82342925225632328'))
F =
[2, 2, 2, 251, 401, 18311, 5584781]

```

To factor a negative integer, convert it to a symbolic object using sym.
```

F = factor(sym(-92465))

```
\(\mathrm{F}=\)
[ -1, 5, 18493]

\section*{Perform Prime Factorization of Large Numbers}

Perform prime factorization for 41758540882408627201 . Since the integer is greater than flintmax, convert it to a symbolic object using sym, and place the number in quotation marks to represent it accurately.
```

n = sym('41758540882408627201');
factor(n)
ans =
[479001599, 87178291199]

```

\section*{Factor Symbolic Fractions}

Factor the fraction 112/81 by converting it into a symbolic object using sym.
```

F = factor(sym(112/81))
F =
[2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]

```

\section*{Factor Polynomials}

Factor the polynomial \(x^{\wedge} 6-1\).
syms \(x\)
F = factor( \(x^{\wedge} 6-1\) )
\(\mathrm{F}=\)
\(\left[x-1, x+1, x^{\wedge} 2+x+1, x^{\wedge} 2-x+1\right]\)
Factor the polynomial \(y^{\wedge} 6-x^{\wedge} 6\).
```

syms y
F= factor((y^6-x^6)
F =
[-1,x - y, x + y, x^2 + x**y + y^2, x^2 - x* y + y^^2]

```

\section*{Separate Factors Containing Specified Variables}

Factor \(y^{\wedge} 2^{*} x^{\wedge} 2\) for factors containing \(x\).
```

syms x y
F = factor(y^2*x^2,x)
F =
[y^2, x, x]

```
factor combines all factors without \(x\) into the first element. The remaining elements of \(F\) contain irreducible factors that contain \(x\).

Factor the polynomial \(y\) for factors containing symbolic variables \(b\) and \(c\).
```

syms a b c d
y = -a*b^ 5* c*d*(a^2 - 1)*(a*d - b*c);
F = factor(y,[b c])
F =
[-a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]

```
factor combines all factors without \(b\) or \(c\) into the first element of \(F\). The remaining elements of \(F\) contain irreducible factors of \(y\) that contain either \(b\) or \(c\).

\section*{Choose Factorization Modes}

Use the FactorMode argument to choose a particular factorization mode.
Factor an expression without specifying the factorization mode. By default, factor uses factorization over rational numbers. In this mode, factor keeps rational numbers in their exact symbolic form.
syms x
factor(x^3 + 2, x)
ans \(=\)
\(x^{\wedge} 3+2\)

Factor the same expression, but this time use numeric factorization over real numbers. This mode factors the expression into linear and quadratic irreducible polynomials with real coefficients and converts all numeric values to floating-point numbers.
```

factor(x^3 + 2, x, 'FactorMode', 'real')
ans =
[x + 1.2599210498948731647672106072782,...
x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]

```

Factor this expression using factorization over complex numbers. In this mode, factor reduces quadratic polynomials to linear expressions with complex coefficients. This mode converts all numeric values to floating-point numbers.
```

factor(x^3 + 2, x, 'FactorMode', 'complex')
ans =
[x + 1.2599210498948731647672106072782,...
x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i,...
x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i]

```

Factor this expression using the full factorization mode. This mode factors the expression into linear expressions, reducing quadratic polynomials to linear expressions with complex coefficients. This mode keeps rational numbers in their exact symbolic form.
```

factor(x^3 + 2, x, 'FactorMode', 'full')
ans =
[x + 2^(1/3),...
x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2),...
x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2)]

```

Approximate the result with floating-point numbers by using vpa. Because the expression does not contain any symbolic parameters besides the variable \(x\), the result is the same as in complex factorization mode.
```

vpa(ans)
ans =
[x + 1.2599210498948731647672106072782,...
x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i,...
x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i]

```

\section*{Approximate Results Containing Root0f}

In the full factorization mode,factor also can return results as a symbolic sums over polynomial roots expressed as Root0f.

Factor this expression.
```

syms x
s = factor(x^3 + x - 3, x, 'FactorMode','full')
s =
[x - root(z^3 + z - 3, z, 1),...
x - root(z^3 + z - 3, z, 2)
x - root(z^3 + z - 3, z, 3)]

```

Approximate the result with floating-point numbers by using vpa.
```

vpa(s)
ans =
[x - 1.2134116627622296341321313773815,...
x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i,···..
x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i]

```

\section*{Input Arguments}

\section*{x - Input to factor}
number | symbolic number | symbolic expression | symbolic function
Input to factor, specified as a number, or a symbolic number, expression, or function.

\section*{vars - Variables of interest \\ symbolic variable | vector of symbolic variables}

Variables of interest, specified as a symbolic variable or a vector of symbolic variables.
Factors that do not contain a variable specified in vars are grouped into the first element of \(F\). The remaining elements of \(F\) contain irreducible factors of \(x\) that contain a variable in vars.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.
Example: factor( \(\left.x^{\wedge} 3-2, x, ' F a c t o r M o d e ', ' r e a l '\right)\)

\section*{FactorMode - Factorization mode}
'rational' (default) | 'real'|'complex'|'full'
Factorization mode, specified as the comma-separated pair consisting of 'FactorMode' and one of these character vectors.
\begin{tabular}{|l|l|}
\hline ' rational ' & Factorization over rational numbers. \\
\hline ' real ' & \begin{tabular}{l} 
Factorization over real numbers. A real numeric factorization is a \\
factorization into linear and quadratic irreducible polynomials with \\
real coefficients. This factorization mode requires the coefficients \\
of the input to be convertible to real floating-point numbers. All \\
other inputs (for example, those inputs containing symbolic or \\
complex coefficients) are treated as irreducible.
\end{tabular} \\
\hline ' complex ' & \begin{tabular}{l} 
Factorization over complex numbers. A complex numeric \\
factorization is a factorization into linear factors whose coefficients \\
are floating-point numbers. Such factorization is only available if \\
the coefficients of the input are convertible to floating-point \\
numbers, that is, if the roots can be determined numerically. \\
Symbolic inputs are treated as irreducible.
\end{tabular} \\
\hline ' full' & \begin{tabular}{l} 
Full factorization. A full factorization is a symbolic factorization \\
into linear factors. The result shows these factors using radicals or \\
as a symsum ranging over a Root0f.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Arguments}

\section*{F - Factors of input}
symbolic vector
Factors of input, returned as a symbolic vector.

\section*{Tips}
- To factor an integer greater than flintmax, wrap the integer with sym. Then place the integer in quotation marks to represent it accurately, for example, sym('465971235659856452').
- To factor a negative integer, wrap the integer with sym, for example, sym(-3).

\section*{See Also}
collect | combine | divisors | expand| horner | numden | rewrite | simplify | simplifyFraction

\section*{Introduced before R2006a}

\section*{factorial}

Factorial of symbolic input

\section*{Syntax}
factorial(n)

\section*{Description}
factorial( \(n\) ) returns the factorial on page 4-556 of \(n\). If \(n\) is an array, factorial acts element-wise on \(n\).

\section*{Examples}

\section*{Compute Factorial Function for Symbolic Input}

Compute the factorial function for a symbolic expression. Because the input is symbolic, factorial returns exact symbolic output as the function call.

\section*{syms \(n\)}
\(f=n^{\wedge} 2+1\);
fFac \(=\) factorial(f)
fFac =
factorial(n^2 +1\()\)
Calculate fFac for a value of \(n\) by substituting \(n\) with the value.
```

subs(fFac,n,3) % value at n=3

```
ans \(=\)

3628800

\section*{Differentiate the Factorial Function}

Differentiate an expression containing the factorial function.
```

syms n
f = factorial(n^2 + n + 1);
diff(f)
ans =
factorial(n^2 + n + 1)*psi(n^2 + n + 2)*(2*n + 1)

```

\section*{Expand the Factorial Function}

Expand an expression containing the factorial function.
```

syms n
f = factorial(n^2 + n + 1);
expand(f)
ans =
factorial(n^2 + n)*(n^2 + n + 1)

```

\section*{Limit of Factorial Function}

Compute the limit at infinity for an expression containing the factorial function.

\section*{syms n}
```

f = factorial(n)/exp(n);

```
limit(f,n,Inf)
ans \(=\)
Inf

\section*{Compute the Factorial Function for Array Input}

Call factorial for array input. factorial acts element-wise on array input.
```

A = sym([1 2; 3 4]);

```
factorial(A)
```

ans =
[1, 2]
[6, 24]

```

\section*{Input Arguments}

\section*{n - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{Definitions}

\section*{Factorial Function}

The factorial of a number \(n\) is defined as follows.
\[
n!=\prod_{k=1}^{n} k
\]

The factorial of 0 is 1 .

\section*{Tips}
- Calling factorial for a number that is not a symbolic object invokes the MATLAB factorial function.

\author{
See Also \\ beta|gamma|nchoosek|psi \\ Introduced in R2012a
}

\title{
factorIntegerPower
}

Perfect power factoring

\section*{Syntax}
\(x\) = factorIntegerPower(n)
[x,k] = factorIntegerPower(n)

\section*{Description}
\(x=\) factorIntegerPower( \(n\) ) factors the number \(n\) into its perfect power \(x^{k}\) and returns the base \(x\). If several perfect powers exist, \(x\) is returned for maximum \(k\). The function factorIntegerPower acts element-wise on array input.
\([x, k]=\) factorIntegerPower( \(n\) ) returns both the base \(x\) and power \(k\).

\section*{Examples}

\section*{Factor Integer into Perfect Power}

Factor 64 into its perfect power. If several perfect powers exist for a number, the maximum k is returned.
```

n = 64;
[x,k] = factorIntegerPower(n)
x =
2
k =
6

```

Find perfect powers of 7, 841, and 2541865828329.
\(\mathrm{n}=[7841\) 2541865828329];
[x,k] = factorIntegerPower(n)
```

x =
7 29 3
k =
1 2 26

```

Reconstruct the numbers. Return exact symbolic integers instead of floating point by converting x to symbolic form.
```

sym(x).^k
ans =
[7, 841, 2541865828329]

```

\section*{Test if Number Is Perfect Power}

If a number is not a perfect power, factorIntegerPower returns the number itself as the base with exponent 1 . So, a number is a perfect power if it does not equal its base.

Check if 125 is a perfect power. isequal returns logical 0 (false), meaning 125 is not equal to the returned base. Therefore, 125 is a perfect power.
```

n = 125;
isequal(n,factorIntegerPower(n))
ans =
logical
0

```

\section*{Input Arguments}
```

n - Input
number | vector | matrix | array | symbolic number | symbolic array

```

Input, specified as a number, vector, matrix, array, or a symbolic number or array. n must be a positive integer.

\section*{Output Arguments}

\section*{x - Base in perfect power}
number | vector \(\mid\) matrix | array | symbolic number | symbolic array
Base in perfect power, returned as a number, vector, matrix, array, or a symbolic number or array.

\section*{k - Power in perfect power}
number | vector | matrix | array | symbolic number | symbolic array
Power in perfect power, returned as a number, vector, matrix, array, or a symbolic number or array.

\section*{See Also}
factor

Introduced in R2018a

\section*{fcontour}

Plot contours

\section*{Syntax}
```

fcontour(f)
fcontour(f,[min max])
fcontour(f,[xmin xmax ymin ymax])
fcontour(___,LineSpec)
fcontour(___,Name,Value)
fcontour(ax,
_)
fc = fcontour(___)

```

\section*{Description}
fcontour ( f ) plots the contour lines of symbolic expression \(f(x, y)\) over the default interval of \(x\) and \(y\), which is [-5 5].
foontour (f, [min max]) plots \(f\) over the interval min \(<x<\max\) and min \(<y<\max\).
fcontour(f,[xmin xmax ymin ymax]) plots fover the interval xmin \(<x<x \max\) and ymin \(<y<y m a x\). fcontour uses symvar to order the variables and assign intervals.
fcontour ( \(\qquad\) , LineSpec) uses LineSpec to set the line style and color. fcontour doesn't support markers.
fcontour (__ , Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes. Name, Value pair settings apply to all the lines plotted. To set options for individual plots, use the objects returned by fcontour.
fcontour(ax, \(\qquad\) ) plots into the axes object ax instead of the current axes object gca.
\(\mathrm{fc}=\) fcontour( \(\qquad\) ) returns a function contour object. Use the object to query and modify properties of a specific contour plot. For details, see Function Contour.

\section*{Examples}

\section*{Plot Contours of Symbolic Expression}

Plot the contours of \(\sin (x)+\cos (y)\) over the default range of \(-5<x<5\) and \(-5<y<5\). Show the colorbar. Find a contour's level by matching the contour's color with the colorbar value.
```

syms x y
fcontour(sin(x) + cos(y))
colorbar

```


\section*{Plot Contours of Symbolic Function}

Plot the contours of \(f(x, y)=\sin (x)+\cos (y)\) over the default range of \(-5<x<5\) and \(-5<y<5\).
```

syms f(x,y)
f(x,y) = sin(x) + cos(y);
fcontour(f)

```


\section*{Specify Plotting Interval}

Plot \(\sin (x)+\cos (y)\) over \(-\pi / 2<x<\pi / 2\) and \(0<y<5\) by specifying the plotting interval as the second argument of fcontour.
```

syms x y
f = sin(x) + cos(y);
fcontour(f,[-pi/2 pi/2 0 5])

```


\section*{Change Line Style, Color and Width}

Plot the contours of \(x^{2}-y^{2}\) as blue, dashed lines by specifying the LineSpec input. Specify a LineWidth of 2 . Markers are not supported by fcontour.
```

syms x y
fcontour(x^2 - y^2,'--b','LineWidth',2)

```


\section*{Plot Multiple Contour Plots on Same Figure}

Plot multiple contour plots either by passing the inputs as a vector or by using hold on to successively plot on the same figure. If you specify LineStyle and Name-Value
arguments, they apply to all contour plots. You cannot specify individual LineStyle and Name-Value pair arguments for each plot.

Divide a figure into two subplots by using subplot. On the first subplot, plot \(\sin (x)+\cos (y)\) and \(x-y\) by using vector input. On the second subplot, plot the same expressions by using hold on.
```

syms X y
subplot(2,1,1)
fcontour([sin(x)+\operatorname{cos(y) x-y])}
title('Multiple Contour Plots Using Vector Inputs')
subplot(2,1,2)
fcontour(sin(x)+\operatorname{cos(y))}
hold on
fcontour(x-y)
title('Multiple Contour Plots Using Hold Command')
hold off

```


\section*{Modify Contour Plot After Creation}

Plot the contours of \(e^{-(x / 3)^{2}-(y / 3)^{2}}+e^{-(x+2)^{2}-(y+2)^{2}}\). Specify an output to make fcontour return the plot object.
```

syms x y
f = exp(-(x/3)^2-(y/3)^2) + exp(-(x+2)^2-(y+2)^2);
fc = fcontour(f)

```

fc =
FunctionContour with properties:
```

 Function: [1x1 sym]
 LineColor: 'flat'
 LineStyle: '-'
 LineWidth: 0.5000
 Fill: 'off'
 LevelList: [0.2000 0.4000 0.6000 0.8000 1 1.2000 1.4000]
 Show all properties
    ```

Change the LineWidth to 1 and the LineStyle to a dashed line by using dot notation to set properties of the object fc. Visualize contours close to 0 and 1 by setting LevelList to \(\left[\begin{array}{lllll}1 & 0.9 & 0.8 & 0.2 & 0.1\end{array}\right]\).
fc.LineStyle = '--';
fc.LineWidth = 1;
fc.LevelList = [1 0.9 0.8 0.2 0.1];
colorbar


\section*{Fill Area Between Contours}

Fill the area between contours by setting the Fill input of fcontour to ' on '. If you want interpolated shading instead, use the fsurf function with its option 'EdgeColor' set to ' none' followed by the command view ( 0,90 ).

Create a plot that looks like a sunset by filling the contours of
\[
\operatorname{erf}\left((y+2)^{3}\right)-e^{\left(-0.65\left((x-2)^{2}+(y-2)^{2}\right)\right.}
\]
syms x y
\(f=\operatorname{erf}\left((y+2)^{\wedge} 3\right)-\exp \left(-0.65 *\left((x-2)^{\wedge} 2+(y-2)^{\wedge} 2\right)\right)\);
fcontour(f,'Fill','on')


\section*{Specify Levels for Contour Lines}

Set the values at which fcontour draws contours by using the 'LevelList ' option.
```

syms x y
f = sin(x) + cos(y);
fcontour(f,'LevelList',[-1 0 1])

```


\section*{Control Resolution of Contour Lines}

Control the resolution of contour lines by using the 'MeshDensity ' option. Increasing 'MeshDensity ' can make smoother, more accurate plots while decreasing it can increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the contours of \(\sin (x) \sin (y)\). The corners of the squares do not meet. To fix this issue, increase 'MeshDensity ' to 200 in the second subplot. The corners now meet, showing that by increasing 'MeshDensity' you increase the plot's resolution.
```

syms x y
subplot(2,1,1)
fcontour(sin(x).*sin(y))
title('Default MeshDensity = 71')
subplot(2,1,2)
fcontour(sin(x).*sin(y),'MeshDensity',200)
title('Increased MeshDensity = 200')

```


\section*{Add Title and Axis Labels and Format Ticks}

Plot \(x \sin (y)-y \cos (x)\). Add a title and axis labels. Create the \(x\)-axis ticks by spanning the x-axis limits at intervals of pi/2. Display these ticks by using the XTick property. Create x-axis labels by using arrayfun to apply texlabel to S . Display these labels by using the XTickLabel property. Repeat these steps for the \(y\)-axis.

To use LaTeX in plots, see latex.
```

syms x y
fcontour(x*sin(y)-y*}\operatorname{cos}(x), [-2*pi 2*pi]
grid on

```
```

title('xsin(y)-ycos(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'Uniform0utput', false);
S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'Uniform0utput', false);

```

\section*{\(x \sin (y)-y \cos (x)\) for \(-2 \pi<x<2 \pi\) and \(-2 \pi<y<2 \pi\)}


\section*{Create Animations}

Create animations by changing the displayed expression using the Function property of the function handle, and then using drawnow to update the plot. To export to GIF, see imwrite.

By varying the variable \(i\) from \(-\pi / 8\) to \(\pi / 8\), animate the parametric curve \(i \sin (x)+i \cos (y)\).
```

syms x y
fc = fcontour(-pi/8.*sin(x)-pi/8.*cos(y));
for i=-pi/8:0.01:pi/8
fc.Function = i.*sin(x)+i.*}\operatorname{cos}(y)
drawnow
pause(0.05)
end

```


\section*{Input Arguments}

\section*{f - Expression or function to be plotted}
symbolic expression | symbolic function
Expression or function to be plotted, specified as a symbolic expression or function.

\section*{[min max] - Plotting range for \(x\) and \(y\)}
[-5 5] (default) | vector of two numbers
Plotting range for \(x\) and \(y\), specified as a vector of two numbers. The default range is [-5 5].

\section*{[xmin xmax ymin ymax]-Plotting range for \(x\) and \(y\) [-5 5-5 5] (default) | vector of four numbers}

Plotting range for \(x\) and \(y\), specified as a vector of four numbers. The default range is [-5 5-5 5].

\section*{ax - Axes object}
axes object
Axes object. If you do not specify an axes object, then the plot function uses the current axes.

\section*{LineSpec - Line style and color}
character vector | string
Line style and color, specified as a character vector or string containing a line style specifier, a color specifier, or both.
```

Example: ' - - r' specifies red dashed lines

```

These two tables list the line style and color options.
\begin{tabular}{|l|l|}
\hline Line Style Specifier & Description \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color Specifier & Description \\
\hline y & yellow \\
\hline m & magenta \\
\hline C & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color Specifier & Description \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'MeshDensity', 30
The properties listed here are only a subset. For a complete list, see Function Contour.

\section*{MeshDensity - Number of evaluation points per direction}

71 (default) | number
Number of evaluation points per direction, specified as a number. The default is 71. Because fcontour uses adaptive evaluation, the actual number of evaluation points is greater.

Example: 30

\section*{Fill - Fill between contour lines}
```

'off' (default)|'on'

```

Fill between contour lines, specified as one of these values:
- 'off' - Do not fill the spaces between contour lines with a color.
- ' on ' - Fill the spaces between contour lines with color.

\section*{LevelList - Contour levels}

\section*{vector of \(z\) values}

Contour levels, specified as a vector of \(z\) values. By default, the fcontour function chooses values that span the range of values in the ZData property.

Setting this property sets the associated mode property to manual.
Data Types: single |double |int8|int16|int32|int64|uint8|uint16| uint32 |uint64

\section*{LevelListMode - Selection mode for LevelList 'auto' (default)|'manual'}

Selection mode for the LevelList, specified as one of these values:
- 'auto' - Determine the values based on the ZData values.
- 'manual' - Use manually specified values. To specify the values, set the LevelList property. When the mode is 'manual ', the LevelList values do not change if you change the Function property or the limits.

\section*{LevelStep - Spacing between contour lines}

\section*{0 (default) | scalar numeric value}

Spacing between contour lines, specified as a scalar numeric value. For example, specify a value of 2 to draw contour lines at increments of 2 . By default, LevelStep is determined by using the ZData values.

Setting this property sets the associated mode property to 'manual'.
Example: 3.4
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{LevelStepMode - Selection mode for LevelStep}
'auto' (default)|'manual'
Selection mode for the LevelStep, specified as one of these values:
- 'auto' - Determine the value based on the ZData values.
- 'manual' - Use a manually specified value. To specify the value, set the LevelStep property. When the mode is 'manual ', the value of LevelStepMode does not change when the Function property or the limits change.

\section*{LineColor - Color of contour lines}
'flat' (default) | RGB triplet| 'r' | 'g' | 'b' | ...
Color of contour lines, specified as 'flat', an RGB triplet, or one of the color options listed in the table.
- To use a different color for each contour line, specify ' \(f\) lat '. The color is determined by the contour value of the line, the colormap, and the scaling of data values into the colormap. For more information on color scaling, see caxis.
- To use the same color for all the contour lines, specify an RGB triplet or one of the color options from the table.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green ' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta ' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

\section*{LineStyle - Line style}
'- ' (default)|'--'|':'|' - .' | 'none'
Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline '-' & Solid line & \\
\hline '--' & Dashed line & - - - - - \\
\hline ':' & Dotted line & ............... \\
\hline ' - ' & Dash-dotted line & -------- \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width \\ 0.5 (default) | positive value}

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.
Example: 0.75

\section*{Output Arguments}

\section*{fc - One or more function contour objects}
scalar | vector
One or more function contour objects, returned as a scalar or a vector. These objects are unique identifiers, which you can use to query and modify the properties of a specific contour plot. For details, see Function Contour.

\section*{See Also}

\section*{Functions}
fimplicit|fimplicit3|fmesh|fplot|fplot3|fsurf

\section*{Properties}

Function Contour

\section*{Topics}
"Create Plots" on page 2-245
Introduced in R2016a

\section*{feval}

Evaluate MuPAD expressions specifying their arguments

\section*{Syntax}
```

result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

```

\section*{Description}
result \(=\) feval (symengine, \(F, x 1, \ldots, x n)\) evaluates \(F\), which is either a MuPAD function name or a symbolic object, with arguments \(x 1, \ldots, x n\). Here, the returned value result is a symbolic object. If F with the arguments \(\times 1, \ldots, x n\) throws an error in MuPAD, then this syntax throws an error in MATLAB.
[result,status] = feval(symengine, \(F, x 1, \ldots, x n\) ) lets you catch errors thrown by MuPAD. This syntax returns the error status in status, and the error message in result if status is nonzero. If status is 0 , result is a symbolic object. Otherwise, result is a character vector.

\section*{Examples}

\section*{Perform MuPAD Command}
```

syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)
ans =
b^2 - 4*a*c

```

Alternatively, the same calculation based on variables not defined in the MATLAB workspace is:
```

feval(symengine,'polylib::discrim', 'a*x^2 + b*x + c', 'x')
ans =
b^2 - 4*a*c

```

\section*{Return Error Thrown by MuPAD}

Try using polylib: :discrim to compute the discriminant of the following nonpolynomial expression:
```

[result, status] = feval(symengine,'polylib::discrim',...
'a*x^2 + b*x + c** ln(x)', 'x')
result =
'Arithmetical expression expected.'
status =
2

```

\section*{Input Arguments}

\section*{F - Input}

MuPAD function name | symbolic object
Input specified as a MuPAD function name or symbolic object.
x1, ..., xn - Arguments
symbolic expression
Arguments specified as symbolic expressions.

\section*{Output Arguments}

\section*{result - Computation result}
character vector | symbolic object
Computation result returned as a symbolic object or character vector containing a MuPAD error message.

\section*{status - Error status}
integer
Error status returned as an integer. If \(F\) with the arguments \(x 1, \ldots, x n\) executes without errors, the error status is 0 .

\section*{Tips}
- Results returned by feval can differ from the results that you get using a MuPAD notebook directly. The reason is that feval sets a lower level of evaluation to achieve better performance.
- feval does not open a MuPAD notebook, and therefore, you cannot use this function to access MuPAD graphics capabilities.

\section*{Alternatives}
evalin lets you evaluate MuPAD expressions without explicitly specifying their arguments.

\section*{See Also}
evalin|read|symengine

\section*{Topics}
"Call Built-In MuPAD Functions from MATLAB" on page 3-59
"Evaluations in Symbolic Computations"
"Level of Evaluation"

\section*{Introduced in R2008b}

\section*{fibonacci}

Fibonacci numbers

\section*{Syntax}
fibonacci(n)

\section*{Description}
fibonacci( n ) returns the \(\mathrm{n}^{\text {th }}\) "Fibonacci Number" on page 4-589.

\section*{Examples}

\section*{Find Fibonacci Numbers}

Find the sixth Fibonacci number by using fibonacci.
fibonacci(6)
```

ans =

```

8
Find the first 10 Fibonacci numbers.
```

n = 1:10;

```
fibonacci(n)
ans =
\begin{tabular}{llllllllll}
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55
\end{tabular}

\section*{Fibonacci Sequence Approximates Golden Ratio}

The ratio of successive Fibonacci numbers converges to the golden ratio \(1.61803 \ldots\). Show this convergence by plotting this ratio against the golden ratio for the first 10 Fibonacci numbers.
```

 n = 2:10;
 ratio = fibonacci(n)./fibonacci(n-1);
 plot(n,ratio,'--o')
 hold on
line(xlim,[1.618 1.618])
hold off

```


\section*{Symbolically Represent Fibonacci Numbers}

Use Fibonacci numbers in symbolic calculations by representing them with symbolic input. fibonacci returns the input.

Represent the \(\mathrm{n}^{\text {th }}\) Fibonacci number.
```

syms n
fibonacci(n)
ans =
fibonacci(n)

```

\section*{Find Large Fibonacci Numbers}

Find large Fibonacci numbers by specifying the input symbolically using sym. Symbolic input returns exact symbolic output instead of double output. Convert symbolic numbers to double by using the double function.

Find the \(300^{\text {th }}\) Fibonacci number.
```

num = sym(300);
fib300 = fibonacci(num)
fib300 =
2222322446294204455297398934619099672066666939096499764990979600

```

Convert fib300 to double. The result is a floating-point approximation.
```

double(fib300)

```
ans \(=\)
    \(2.2223 e+62\)

For more information on symbolic and double arithmetic, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

\section*{Golden Spiral Using Fibonacci Numbers}

The Fibonacci numbers are commonly visualized by plotting the Fibonacci spiral. The Fibonacci spiral approximates the golden spiral.

Approximate the golden spiral for the first 8 Fibonacci numbers. Define the four cases for the right, top, left, and bottom squares in the plot by using a switch statement. Form the spiral by defining the equations of arcs through the squares in eqnArc. Draw the squares and arcs by using rectangle and fimplicit respectively.
\(x=0 ;\)
\(y=1 ;\)
```

syms v u
axis off
hold on
for n = 1:8
a = fibonacci(n);
% Define squares and arcs
switch mod(n,4)
case 0
y = y - fibonacci(n-2);
x = x - a;
eqnArc = (u-(x+a))^2 + (v-y)^2 == a^2;
case 1
y = y - a;
eqnArc = (u-(x+a))^^2 + (v-(y+a))^2 == a^2;
case 2
x = x + fibonacci(n-1);
eqnArc = (u-x)^2 + (v-(y+a))^2 == a^2;
case 3
x = x - fibonacci(n-2);
y = y + fibonacci(n-1);
eqnArc = (u-x)^2 + (v-y)^2 == a^2;
end
% Draw square
pos = [x y a a];
rectangle('Position', pos)
% Add Fibonacci number
xText = (x+x+a)/2;
yText = (y+y+a)/2;
text(xText, yText, num2str(a))
% Draw arc
interval = [x x+a y y+a];
fimplicit(eqnArc, interval, 'b')
end

```


\section*{Input Arguments}

\section*{n - Input}
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

\section*{Definitions}

\section*{Fibonacci Number}

The Fibonacci numbers are the sequence \(0,1,1,2,3,5,8,13,21 \ldots\).
Given that the first two numbers are 0 and 1 , the \(n^{\text {th }}\) Fibonacci number is
\(F_{\mathrm{n}}=F_{\mathrm{n}-1}+F_{\mathrm{n}-2}\).
Applying this formula repeatedly generates the Fibonacci numbers.

\section*{Introduced in R2017a}

\section*{fimplicit}

Plot implicit symbolic equation or function

\section*{Syntax}
```

fimplicit(f)
fimplicit(f,[min max])
fimplicit(f,[xmin xmax ymin ymax])
fimplicit(___,LineSpec)
fimplicit(___,Name,Value)
fimplicit(ax,
\)
fi = fimplicit(___)

```

\section*{Description}
fimplicit(f) plots the implicit symbolic equation or function \(f\) over the default interval [-5 5] for \(x\) and \(y\).
fimplicit(f,[min max]) plots \(f\) over the interval \(\min <x<\max\) and \(\min <y<\max\).
fimplicit(f,[xmin xmax ymin ymax]) plots fover the interval xmin \(<x<x m a x\) and ymin < y < ymax. fimplicit uses symvar to order the variables and assign intervals.
fimplicit( __ , LineSpec) uses LineSpec to set the line style, marker symbol, and line color.
fimplicit(__ , Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes. Name, Value pair settings apply to all the lines plotted. To set options for individual lines, use the objects returned by fimplicit.
fimplicit(ax, \(\qquad\) ) plots into the axes specified by ax instead of the current axes gca.
fi = fimplicit( ) returns an implicit function line object. Use the object to query and modify properties of a specific line. For details, see Implicit Function Line.

\section*{Examples}

\section*{Plot Implicit Symbolic Equation}

Plot the hyperbola \(x^{2}-y^{2}=1\) by using fimplicit. The fimplicit function uses the default interval of \([-5,5]\) for \(x\) and \(y\).
syms x y
fimplicit( \(x^{\wedge} 2\) - \(y^{\wedge} 2\) == 1)


\section*{Plot Implicit Symbolic Function}

Plot the hyperbola described by the function \(f(x, y)=x^{2}-y^{2}-1\) by first declaring the symbolic function \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) using syms. The fimplicit function uses the default interval of \([-5,5]\) for \(x\) and \(y\).
syms \(f(x, y)\)
\(f(x, y)=x^{\wedge} 2-y^{\wedge} 2-1 ;\)
fimplicit(f)


\section*{Specify Plotting Interval}

Plot half of the circle \(x^{2}+y^{2}=3\) by using the intervals \(-4<x<0\) and \(-2<y<2\). Specify the plotting interval as the second argument of fimplicit.
syms \(x\) y
circle \(=x^{\wedge} 2+y^{\wedge} 2==3\);
fimplicit(circle, [-4 0 -2 2])


Plot Multiple Implicit Equations
You can plot multiple equations either by passing the inputs as a vector or by using hold on to successively plot on the same figure. If you specify LineSpec and Name-Value arguments, they apply to all lines. To set options for individual plots, use the function handles returned by fimplicit.

Divide a figure into two subplots by using subplot. On the first subplot, plot \(x^{2}+y^{2}==1\) and \(x^{2}+y^{2}==3\) using vector input. On the second subplot, plot the same inputs by using hold on.
```

syms x y
circle1 = x^2 + y^2 == 1;
circle2 = x^2 + y^2 == 3;
subplot(2,1,1)
fimplicit([circle1 circle2])
title('Multiple Equations Using Vector Input')
subplot(2,1,2)
fimplicit(circle1)
hold on
fimplicit(circle2)
title('Multiple Equations Using hold on Command')
hold off

```


\section*{Change Line Properties and Display Markers}

Plot three concentric circles of increasing diameter. For the first line, use a linewidth of 2. For the second, specify a dashed red line style with circle markers. For the third, specify a cyan, dash-dot line style with asterisk markers. Display the legend.
```

syms x y
circle = x^2 + y^2;
fimplicit(circle == 1, 'Linewidth', 2)
hold on
fimplicit(circle == 2, '--or')

```
```

fimplicit(circle == 3, '-.*c')
legend('show','Location','best')
hold off

```


\section*{Modify Implicit Plot After Creation}

Plot \(y \sin (x)+x \cos (y)=1\). Specify an output to make fimplicit return the plot object.
```

syms x y
eqn = y*}\operatorname{sin}(x)+x*\operatorname{cos}(y)== 1
fi = fimplicit(eqn)

```

fi =
ImplicitFunctionLine with properties:
Function: [1x1 sym]
Color: [0 0.4470 0.7410]
LineStyle: '-'
LineWidth: 0.5000
Show all properties

Change the plotted equation to \(x \cos (y)+y \sin (x)=0\) by using dot notation to set properties. Similarly, change the line color to red and line style to a dash-dot line. The horizontal and vertical lines in the output are artifacts that should be ignored.
fi.Function \(=x / \cos (y)+y / \sin (x)==0\);
fi.Color = 'r';
fi.LineStyle = '-.';


\section*{Add Title and Axis Labels and Format Ticks}

Plot \(x \cos (y)+y \sin (x)=1\) over the interval \(-2 \pi<x<2 \pi\) and \(-2 \pi<y<2 \pi\). Add a title and axis labels. Create the x -axis ticks by spanning the x -axis limits at intervals of pi/2. Display these ticks by using the XTick property. Create x-axis labels by using arrayfun to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.
```

syms x y
eqn = x*\operatorname{cos}(y) + y*sin(x) == 1;
fimplicit(eqn, [-2*pi 2*pi])
grid on
title('x cos(y) + y sin(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);
S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

```


\section*{Re-evaluation on Zoom}

When you zoom into a plot, fimplicit re-evaluates the plot automatically. This reevaluation on zoom can reveal hidden detail at smaller scales.

Divide a figure into two by using subplot. Plot \(x \cos (y)+y \sin (1 / x)=0\) in both the first and second subplots. Zoom into the second subplot by using zoom. The zoomed subplot shows detail that is not visible in the first subplot.
```

syms x y
eqn = x* cos(y) + y*

```


\section*{Input Arguments}
f - Implicit equation or function to plot
symbolic equation | symbolic expression | symbolic function

Implicit equation or function to plot, specified as a symbolic equation, expression, or function. If the right-hand side is not specified, then it is assumed to be 0 .

\section*{[min max] - Plotting range for \(x\) and \(y\)}
[-5 5] (default) | vector of two numbers
Plotting range for \(x\) and \(y\), specified as a vector of two numbers. The default range is [-5 5].

\section*{[xmin xmax ymin ymax] - Plotting range for \(x\) and \(y\)}
[-5 5-5 5] (default) | vector of four numbers
Plotting range for x and y , specified as a vector of four numbers. The default range is [-5 5-5 5].

\section*{ax - Axes object}
axes object
Axes object. If you do not specify an axes object, then fimplicit uses the current axes gca.

\section*{LineSpec - Line specification}
character vector | string
Line specification, specified as a character vector or string with a line style, marker, and color. The elements can appear in any order, and you can omit one or more options. To show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers
\begin{tabular}{|l|l|}
\hline Line Style Specifier & Description \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Marker Specifier & Description \\
\hline 0 & Circle \\
\hline+ & Plus sign \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Marker Specifier & Description \\
\hline\(*\) & Asterisk \\
\hline\(\cdot\) & Point \\
\hline X & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline A & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline > & Right-pointing triangle \\
\hline < & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color Specifier & Description \\
\hline y & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

The function line properties listed here are only a subset. For a complete list, see Implicit Function Line.

\section*{Example: 'Marker', 'o','MarkerFaceColor','red'}

\section*{MeshDensity - Number of evaluation points per direction}

151 (default) | number
Number of evaluation points per direction, specified as a number. The default is 151 .

\section*{Color - Line color}
```

[0 0.4470 0.7410] (default)|RGB triplet|'r'|'g'|'b' | ...

```

Line color, specified as an RGB triplet or one of the color options listed in the table.
For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\(\left.\begin{array}{|l|l|l|}\hline \text { Option } & \text { Description } & \text { Equivalent RGB Triplet } \\ \hline \text { 'red' or 'r' } & \text { Red } & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\ \hline \text { 'green' or 'g' } & \text { Green } & {\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]} \\ \hline \text { 'blue' or 'b' } & \text { Blue } & {\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} \\ \hline \text { 'yellow' or 'y' } & \text { Yellow } & {\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]} \\ \hline \text { 'magenta' or 'm' } & \text { Magenta } & {\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]} \\ \hline \text { 'cyan' or 'c' } & \text { Cyan } & {\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]} \\ \hline \text { 'white' or 'w' } & \text { White } & {\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]} \\ \hline \text { 'black' or 'k' } & \text { Black } & 0\end{array}\right]\)

Example: 'blue'
Example: [0 0 1]
```

LineStyle - Line style
'-' (default)|'--'| ':' | '-.' | 'none'

```

Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline '--' & Dashed line & - - - - - \\
\hline ':' & Dotted line & ............... \\
\hline ' - . & Dash-dotted line & -- \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width}

\section*{0.5 (default) | positive value}

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.
Example: 0.75

\section*{Marker - Marker symbol}
'none' (default) | 'o'|'+'|'*'|'.'|'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 'o' & Circle \\
\hline ' + ' & Plus sign \\
\hline\('^{*}\) ' & Asterisk \\
\hline ' .' \(^{\prime}\) & Point \\
\hline ' x ' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond' or 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline ' \(>\) ' & Right-pointing triangle \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline ' <' & Left-pointing triangle \\
\hline 'pentagram ' or ' p ' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}

\section*{MarkerEdgeColor - Marker outline color}
'auto' (default)|RGB triplet|'r'| 'g'|'b'|...
Marker outline color, specified as 'auto ' , an RGB triplet, or one of the color options listed in the table. The default value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red ' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white ' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]
Example: 'blue'

\section*{MarkerFaceColor - Marker fill color}
'none' (default) | 'auto'|RGB triplet|'r'|'g'|'b'|...

Marker fill color, specified as 'auto', an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red ' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' \({ }^{\prime}\) ' 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white ' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.3 0.2 0.1]
Example: 'green'

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.
Example: 10

\section*{Output Arguments}
fi - One or more implicit function line objects
scalar | vector

One or more implicit function line objects, returned as a scalar or a vector. You can use these objects to query and modify properties of a specific line. For a list of properties, see Implicit Function Line.

\section*{See Also}

\section*{Functions}
fcontour|fimplicit3|fmesh|fplot|fplot3|fsurf

\section*{Properties}

Implicit Function Line

\section*{Topics}
"Create Plots" on page 2-245

\section*{Introduced in R2016b}

\section*{fimplicit3}

Plot 3-D implicit equation or function

\section*{Syntax}
```

fimplicit3(f)
fimplicit3(f,[min max])
fimplicit3(f,[xmin xmax ymin ymax zmin zmax])
fimplicit3(___,LineSpec)
fimplicit3(___,Name,Value)
fimplicit3(ax,
_)
fi = fimplicit\(___)

```

\section*{Description}
fimplicit3(f) plots the 3-D implicit equation or function \(f(x, y, z)\) over the default interval [-5 5] for \(x, y\), and \(z\).
fimplicit3(f,[min max]) plots \(f(x, y, z)\) over the interval [min max] for \(x, y\), and z.
fimplicit3(f,[xmin xmax ymin ymax zmin zmax]) plots \(f(x, y, z)\) over the interval [xmin xmax] for \(x\), [ymin ymax] for \(y\), and [zmin zmax] for z. fimplicit3 uses symvar to order the variables and assign intervals.
fimplicit3( \(\qquad\) , LineSpec) uses LineSpec to set the line style, marker symbol, and face color.
fimplicit3( \(\qquad\) ,Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes.
fimplicit3(ax, \(\qquad\) ) plots into the axes with the object ax instead of the current axes object gca.
fi = fimplicit3( \(\qquad\) ) returns an implicit function surface object. Use the object to query and modify properties of a specific surface. For details, see Implicit Function Surface.

\section*{Examples}

Plot 3-D Implicit Symbolic Equation
Plot the hyperboloid \(x^{2}+y^{2}-z^{2}=0\) by using fimplicit3. The fimplicit3 function plots over the default interval of \([-5,5]\) for \(x, y\), and \(z\).
```

syms x y z
fimplicit3(x^2 + y^2 - z^2)

```


Plot 3-D Implicit Symbolic Function
Plot the hyperboloid specified by the function \(f(x, y, z)=x^{2}+y^{2}-z^{2}\). The fimplicit3 function plots over the default interval of \([-5,5]\) for \(x, y\), and \(z\).
syms \(f(x, y, z)\)
\(f(x, y, z)=x^{\wedge} 2+y^{\wedge} 2-z^{\wedge} 2\);
fimplicit3(f)


\section*{Specify Plotting Interval}

Specify the plotting interval by specifying the second argument to fimplicit3. Plot the upper half of the hyperboloid \(x^{2}+y^{2}-z^{2}=0\) by specifying the interval \(0<z<5\). For \(x\) and \(y\), use the default interval \([-5,5]\).
```

syms x y z
f = x^2 + y^2 - z^2;
interval = [-5 5 -5 5 0 5];
fimplicit3(f, interval)

```


\section*{Add Title and Axis Labels and Format Ticks}

Plot the implicit equation \(x \sin (y)+z \cos (x)=0\) over the interval \((-2 \pi, 2 \pi)\) for all axes.
Create the x -axis ticks by spanning the x -axis limits at intervals of \(\mathrm{pi} / 2\). Convert the axis limits to precise multiples of pi/2 by using round and get the symbolic tick values in S . Display these ticks by using the XTick property. Create x -axis labels by using arrayfun to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.
```

syms x y z
eqn = x*}\operatorname{sin}(y)+z*\operatorname{cos}(x)
fimplicit3(eqn,[-2*pi 2*pi])
title('xsin(y) + zcos(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel,S,'Uniform0utput',false);
S = sym(ax.YLim(1):pi/2:ax.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'Uniform0utput', false);

```


\section*{Line Style and Width for Implicit Surface Plot}

Plot the implicit surface \(x^{2}+y^{2}-z^{2}=0\) with different line styles for different values of \(z\). For \(-5<z<-2\), use a dashed line with green dot markers. For \(-2<z<2\), use a LineWidth of 1 and a green face color. For \(2<z<5\), turn off the lines by setting EdgeColor to none.
```

syms x y z
f = x^2 + y^2 - z^2;

```
```

fimplicit3(f,[-5 5-5 5-5-2],'--.','MarkerEdgeColor','g')
hold on
fimplicit3(f,[-5 5-5 5-2 2],'LineWidth',1,'FaceColor','g')
fimplicit3(f,[-5 5-5 52 5],'EdgeColor','none')

```


Warning: Error updating ImplicitFunctionSurface.
The grid must be created from grid vectors which contain unique points.

\section*{Modify Implicit Surface After Creation}

Plot the implicit surface \(1 / x^{2}-1 / y^{2}+1 / z^{2}=0\). Specify an output to make fimplicit3 return the plot object.
syms \(x\) y \(z\)
\(f=1 / x^{\wedge} 2-1 / y^{\wedge} 2+1 / z^{\wedge} 2\);
fi = fimplicit3(f)

fi \(=\)
ImplicitFunctionSurface with properties:
Function: [1x1 sym]
EdgeColor: [0 0 0]
```

LineStyle: '-'
FaceColor: 'interp'

```

\section*{Show all properties}

Show only the positive \(x\)-axis by setting the XRange property of fi to [0 5]. Remove the lines by setting the EdgeColor property to ' none'. Visualize the hidden surfaces by making the plot transparent by setting the FaceAlpha property to 0.8 .
```

fi.XRange = [0 5];
fi.EdgeColor = 'none';
fi.FaceAlpha = 0.8;

```


\section*{Control Resolution of Implicit Surface Plot}

Control the resolution of an implicit surface plot by using the 'MeshDensity' option. Increasing 'MeshDensity' can make smoother, more accurate plots while decreasing 'MeshDensity' can increase plotting speed.

Divide a figure into two by using subplot. In the first subplot, plot the implicit surface \(\sin (1 /(x y z))\). The surface has large gaps. Fix this issue by increasing the 'MeshDensity' to 40 in the second subplot. fimplicit3 fills the gaps showing that by increasing 'MeshDensity' you increased the resolution of the plot.
```

syms x y z

```
\(f=\sin \left(1 /\left(x^{*} y^{*} z\right)\right) ;\)
subplot (2,1,1)
fimplicit3(f)
title('Default MeshDensity = 35')
subplot (2,1,2)
fimplicit3(f,'MeshDensity',40)
title('Increased MeshDensity \(=40^{\prime}\) )


\section*{Input Arguments}

\section*{f-3-D implicit equation or function to plot}
symbolic equation | symbolic expression | symbolic function
3-D implicit equation or function to plot, specified as a symbolic equation, expression, or function. If an expression or function is specified, then fimplicit3 assumes the righthand size to be 0 .
[min max] - Plotting interval for \(\mathbf{x}\)-, \(\mathbf{y}\) - and \(\mathbf{z -}\) axes
[-5 5] (default) | vector of two numbers

Plotting interval for \(\mathrm{x}-\mathrm{y}\) - and z - axes, specified as a vector of two numbers. The default is [-5 5].
[xmin xmax ymin ymax zmin zmax] - Plotting interval for \(x-y\) - and \(z\) - axes [-5 5-5 5-5 5] (default) | vector of six numbers

Plotting interval for \(\mathrm{x}-, \mathrm{y}\) - and z - axes, specified as a vector of six numbers. The default is \(\begin{array}{llllll}-5 & 5 & -5 & 5 & -5 & 5\end{array}\).
ax - Axes object
axes object
Axes object. If you do not specify an axes object, then fimplicit3 uses the current axes.

\section*{LineSpec - Line style, marker symbol, and face color}
character vector
Line style, marker symbol, and face color, specified as a character vector. The elements of the character vector can appear in any order, and you can omit one or more options from the character vector specifier.
Example: ' - - or' is a red surface with circle markers and dashed lines
\begin{tabular}{|l|l|}
\hline Specifier & Line Style \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Marker \\
\hline 0 & Circle \\
\hline+ & Plus sign \\
\hline\(*\) & Asterisk \\
\hline\(\cdot\) & Point \\
\hline X & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Marker \\
\hline\(\wedge\) & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline\(>\) & Right-pointing triangle \\
\hline\(<\) & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Color \\
\hline y & yellow \\
\hline m & magenta \\
\hline C & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline w & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'Marker', 'o','MarkerFaceColor','red'
The properties listed here are only a subset. For a complete list, see Implicit Function Surface.

MeshDensity - Number of evaluation points per direction
35 (default) | number
Number of evaluation points per direction, specified as a number. The default is 35 .
Example: 100

\section*{EdgeColor - Line color}
[0 0 0] (default) |'interp' | 'none' | RGB triplet | 'r' | 'g' | 'b' | ...
Line color, specified as 'interp ', an RGB triplet, or one of the color options listed in the table. The default RGB triplet value of [0 0 0] corresponds to black. The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [ 0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

\section*{LineStyle - Line style}
' - ' (default) |' - - | ':' | ' - .' | 'none'
Line style, specified as one of the options listed in this table.
\begin{tabular}{|l|l|l|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & - \\
\hline ' - - ' & Dashed line & ----- \\
\hline ' ' & Dotted line & \(\ldots \ldots \ldots \ldots .\). \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Dash-dotted line & \(-\cdot-\cdot-\cdot-\cdot\) \\
\hline ' none ' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width}
0.5 (default) | positive value

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.

Example: 0.75

\section*{Marker - Marker symbol}
'none' (default) | 'o'|'+'|'*'|'.'|'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline 'o' & Circle \\
\hline '+' & Plus sign \\
\hline '*' & Asterisk \\
\hline '.' & Point \\
\hline 'x' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond' or 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline '>' & Right-pointing triangle \\
\hline '<' & Left-pointing triangle \\
\hline 'pentagram' or 'p' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}
```

MarkerEdgeColor - Marker outline color
'auto' (default)|RGB triplet| 'r' | 'g'| 'b' | ...

```

Marker outline color, specified as 'auto' , an RGB triplet, or one of the color options listed in the table. The default value of 'auto' uses the same color as the EdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white ' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]

\section*{Example: 'blue'}

\section*{MarkerFaceColor - Marker fill color}
'none' (default) | 'auto' | RGB triplet | 'r' | 'g' | 'b' | ...
Marker fill color, specified as 'auto' , an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.3 0.2 0.1]
Example: 'green'

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.

\section*{Example: 10}

\section*{Output Arguments}

\section*{fi - One or more objects}
scalar | vector
One or more objects, returned as a scalar or a vector. The object is an implicit function surface object. You can use these objects to query and modify properties of a specific line. For details, see Implicit Function Surface.

\section*{See Also}

\section*{Functions}
fcontour|fimplicit|fmesh|fplot|fplot3|fsurf

\section*{Properties}

Implicit Function Surface

\section*{Topics}
"Create Plots" on page 2-245

Introduced in R2016b

\section*{findDecoupledBlocks}

Search for decoupled blocks in systems of equations

\section*{Syntax}
```

[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars)

```

\section*{Description}
[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars) identifies subsets (blocks) of equations that can be used to define subsets of variables. The number of variables vars must coincide with the number of equations eqs.

The ith block is the set of equations determining the variables in vars(varsBlocks\{i\}). The variables in vars([varsBlocks\{1\}, ..., varsBlocks\{i-1\}]) are determined recursively by the previous blocks of equations. After you solve the first block of equations for the first block of variables, the second block of equations, given by eqs (eqsBlocks\{2\}), defines a decoupled subset of equations containing only the subset of variables given by the second block of variables, vars(varsBlock\{2\}), plus the variables from the first block (these variables are known at this time). Thus, if a nontrivial block decomposition is possible, you can split the solution process for a large system of equations involving many variables into several steps, where each step involves a smaller subsystem.

The number of blocks length(eqsBlocks) coincides with length(varsBlocks). If length(eqsBlocks) = length(varsBlocks) = 1, then a nontrivial block decomposition of the equations is not possible.

\section*{Examples}

\section*{Block Lower Triangular Decomposition of DAE System}

Compute a block lower triangular decomposition (BLT decomposition) of a symbolic system of differential algebraic equations (DAEs).

Create the following system of four differential algebraic equations. Here, the symbolic function calls \(x 1(t), x 2(t), x 3(t)\), and \(x 4(t)\) represent the state variables of the system. The system also contains symbolic parameters c1, c2, c3, c4, and functions \(f(t, x, y)\) and \(g(t, x, y)\).
```

syms x1(t) x2(t) x3(t) x4(t)
syms c1 c2 c3 c4
syms f(t,x,y) g(t,x,y)
eqs = [c1*diff(x1(t),t)+c2*diff(x3(t),t)==c3*f(t,x1(t),x3(t));...
c2*diff(x1(t),t)+c1*diff(x3(t),t)==c4*g(t,x3(t),x4(t));...
x1(t)==g(t,x1(t),x3(t));...
x2(t)==f(t,x3(t),x4(t))];
vars = [x1(t), x2(t), x3(t), x4(t)];

```

Use findDecoupledBlocks to find the block structure of the system.
```

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)

```
eqsBlocks =
    \(1 \times 3\) cell array
        \{1×2 double\} \{[2]\} \{[4]\}
varsBlocks =
    \(1 \times 3\) cell array
        \(\{1 \times 2\) double \(\} \quad\{[4]\} \quad\{[2]\}\)

The first block contains two equations in two variables.
```

eqs(eqsBlocks{1})
ans =
c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))
x1(t) == g(t, x1(t), x3(t))
vars(varsBlocks{1})
ans =
[x1(t), x3(t)]

```

After you solve this block for the variables \(\mathrm{x} 1(\mathrm{t}), \mathrm{x} 3(\mathrm{t})\), you can solve the next block of equations. This block consists of one equation.
```

eqs(eqsBlocks{2})

```
```

ans =
c2*diff(x1(t), t) + cl*diff(x3(t), t) == c4*g(t, x3(t), x4(t))

```

The block involves one variable.
```

vars(varsBlocks{2})
ans =
x4(t)

```

After you solve the equation from block 2 for the variable \(\times 4(\mathrm{t})\), the remaining block of equations, eqs (eqsBlocks \(\{3\}\) ), defines the remaining variable, vars(varsBlocks\{3\}).
```

eqs(eqsBlocks{3})
vars(varsBlocks{3})
ans =
x2(t) == f(t, x3(t), x4(t))
ans=
x2(t)

```

Find the permutations that convert the system to a block lower triangular form.
```

eqsPerm = [eqsBlocks{:}]
varsPerm = [varsBlocks{:}]
eqsPerm =
1 3
varsPerm =
1 3 4 2

```

Convert the system to a block lower triangular system of equations.
```

eqs = eqs(eqsPerm)
vars = vars(varsPerm)
eqs =
c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))
x1(t) == g(t, x1(t), x3(t))
c2*diff(x1(t), t) + c1*diff(x3(t), t) == c4*g(t, x3(t), x4(t))
x2(t) == f(t, x3(t), x4(t))

```
```

vars =
[x1(t), x3(t), x4(t), x2(t)]

```

Find the incidence matrix of the resulting system. The incidence matrix shows that the system of permuted equations has three diagonal blocks of size 2-by-2, 1-by-1, and 1-by-1.
```

incidenceMatrix(eqs, vars)
ans =

| 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |

```

\section*{BLT Decomposition and Solution of Linear System}

Find blocks of equations in a linear algebraic system, and then solve the system by sequentially solving each block of equations starting from the first one.

Create the following system of linear algebraic equations.
```

syms x1 x2 x3 x4 x5 x6 c1 c2 c3
eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...
x1 + x3 + x4 + 2*x6 == 4 + c2;...
x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...
x2 + x3 + x4 + x5 == 2 + c2;...
x1 - c2*x3 + x5 == 2 - c2^2;...
x1 - x3 + x4 - x6 == 1 - c2];
vars = [x1, x2, x3, x4, x5, x6];

```

Use findDecoupledBlocks to convert the system to a lower triangular form. For this system, findDecoupledBlocks identifies three blocks of equations and corresponding variables.
```

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)
eqsBlocks =
1\times3 cell array
{1\times3 double} {1\times2 double} {[4]}
varsBlocks =
1\times3 cell array
{1\times3 double} {1\times2 double}\{[2]\}

```

Identify the variables in the first block. This block consists of three equations in three variables.
```

vars(varsBlocks{1})
ans =
[x1, x3, x5]

```

Solve the first block of equations for the first block of variables assigning the solutions to the corresponding variables.
```

[x1,x3,x5] = solve(eqs(eqsBlocks{1}), vars(varsBlocks{1}))
x1 =
1
x3 =
c2
x5 =
1

```

Identify the variables in the second block. This block consists of two equations in two variables.
```

vars(varsBlocks{2})
ans =
[x4, x6]

```

Solve this block of equations assigning the solutions to the corresponding variables.
```

[x4, x6] = solve(eqs(eqsBlocks{2}), vars(varsBlocks{2}))
x4 =
x3/3 - x1 - c2/3 + 2
x6 =
(2*c2)/3 - (2*x3)/3 + 1

```

Use subs to evaluate the result for the already known values of variables \(x 1, x 3\), and \(\times 5\).
```

x4 = subs(x4)
x6 = subs(x6)
x4 =
1

```

\section*{\(\times 6=\)}

1
Identify the variables in the third block. This block consists of one equation in one variable.
```

vars(varsBlocks{3})
ans =
x2

```

Solve this equation assigning the solution to \(\times 2\).
```

x2 = solve(eqs(eqsBlocks{3}), vars(varsBlocks{3}))
x2 =
c2 - x3 - x4 - x5 + 2

```

Use subs to evaluate the result for the already known values of all other variables of this system.
```

x2 = subs(x2)
x2 =
0

```

Alternatively, you can rewrite this example using the for-loop. This approach lets you use the example for larger systems of equations.
```

syms x1 x2 x3 x4 x5 x6 c1 c2 c3
eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...
x1 + x3 + x4 + 2*x6 == 4 + c2;...
x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...
x2 + x3 + x4 + x5 == 2 + c2;...
x1 - c2*x3 + x5 == 2 - c2^2
x1 - x3 + x4 - x6 == 1 - c2];
vars = [x1, x2, x3, x4, x5, x6];
[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars);
vars sol = vars;

```
```

for i = 1:numel(eqsBlocks)
sol = solve(eqs(eqsBlocks{i}), vars(varsBlocks{i}));
vars_sol_per_block = subs(vars(varsBlocks{i}), sol);
for k=1:i-1
vars_sol_per_block = subs(vars_sol_per_block, vars(varsBlocks{k}),...
vars_sol(varsBlocks{k}));
end
vars_sol(varsBlocks{i}) = vars_sol_per_block
end
vars_sol =
[1, x2, c2, x4, 1, x6]
vars sol =
[1, x2, c2, 1, 1, 1]
vars_sol =
[1, 0, c2, 1, 1, 1]

```

\section*{Input Arguments}

\section*{eqs - System of equations}
vector of symbolic equations | vector of symbolic expressions
System of equations, specified as a vector of symbolic equations or expressions.

\section*{vars - Variables}
vector of symbolic variables | vector of symbolic functions | vector of symbolic function calls

Variables, specified as a vector of symbolic variables, functions, or function calls, such as \(x(t)\).

Example: [x(t),y(t)] or [x(t);y(t)]

\section*{Output Arguments}

\section*{eqsBlocks - Indices defining blocks of equations \\ cell array}

Indices defining blocks of equations, returned as a cell array. Each block of indices is a row vector of double-precision integer numbers. The ith block of equations consists of the
equations eqs(eqsBlocks\{i\}) and involves only the variables in vars(varsBlocks\{1:i\}).

\section*{varsBlocks - Indices defining blocks of variables}
cell array
Indices defining blocks of variables, returned as a cell array. Each block of indices is a row vector of double-precision integer numbers. The ith block of equations consists of the equations eqs (eqsBlocks\{i\}) and involves only the variables in vars(varsBlocks\{1:i\}).

\section*{Tips}
- The implemented algorithm requires that for each variable in vars there must be at least one matching equation in eqs involving this variable. The same equation cannot also be matched to another variable. If the system does not satisfy this condition, then findDecoupledBlocks throws an error. In particular, findDecoupledBlocks requires that length(eqs) = length(vars).
- Applying the permutations \(e=\) [eqsBlocks\{:\}] to the vector eqs and \(v=\) [varsBlocks\{:\}] to the vector vars produces an incidence matrix incidenceMatrix(eqs(e), vars(v)) that has a block lower triangular sparsity pattern.

\section*{See Also}
daeFunction|decic|diag|incidenceMatrix|isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder|reduceRedundancies|tril|triu

\section*{Introduced in R2014b}

\section*{findUnits}

Find units in input

\section*{Syntax}
\(U=\) findUnits(expr)

\section*{Description}
\(U=\) findUnits (expr) returns a row vector of units in the symbolic expression expr.

\section*{Examples}

\section*{Find Units in Expression}

Find the units in an expression by using findUnits.
```

u = symunit;
syms X
units = findUnits(x*u.m + 2*u.N)
units =
[[N], [m]]

```

\section*{Find Units in Array of Equations or Expressions}

Find the units in an array of equations or expressions by using findUnits. The findUnits function concatenates all units found in the input to return a row vector of units. findUnits returns only base units.
```

u = symunit;
array = [2*u.m + 3*u.K, 1*u.N == 1*u.kg/(u.m*u.s^2)];
units = findUnits(array)

```
```

units =
[[K], [N], [kg], [m], [s]]

```

\section*{Input Arguments}

\section*{expr - Input}
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

\section*{See Also}
checkUnits |isUnit|newUnit| separateUnits | str2symunit| symunit| symunit2str|unitConversionFactor

\section*{Topics}
"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

\section*{External Websites}

The International System of Units (SI)

\section*{Introduced in R2017a}

\section*{finverse}

Functional inverse

\section*{Syntax}
\(g=\) finverse(f)
\(g\) = finverse(f,var)

\section*{Description}
\(g=\) finverse(f) returns the inverse of function \(f\), such that \(f(g(x))=x\). If \(f\) contains more than one variable, use the next syntax to specify the independent variable.
\(g=\) finverse(f,var) uses the symbolic variable var as the independent variable, such that \(f(g(v a r))=\) var.

\section*{Examples}

\section*{Compute Functional Inverse}

Compute functional inverse for this trigonometric function.
```

syms x
f(x) = 1/tan(x);
g = finverse(f)
g(x) =
atan(1/x)

```

Compute functional inverse for this exponential function by specifying the independent variable.
```

ans =
2*v + log(u)

```

\section*{Input Arguments}

\author{
f - Input \\ symbolic expression | symbolic function
}

Input, specified as a symbolic expression or function.

\section*{var - Independent variable}
symbolic variable
Independent variable, specified as a symbolic variable.

\section*{Tips}
- finverse does not issue a warning when the inverse is not unique.

\section*{See Also}
compose | syms
Introduced before R2006a

\section*{fmesh}

Plot 3-D mesh

\section*{Syntax}
```

fmesh(f)
fmesh(f,[min max])
fmesh(f,[xmin xmax ymin ymax])
fmesh(funx,funy,funz)
fmesh(funx,funy,funz,[uvmin uvmax])
fmesh(funx,funy,funz,[umin umax vmin vmax])
fmesh(___,LineSpec)
fmesh(___,Name,Value)
fmesh(ax,

```
\(\qquad\)
```

obj = fmesh(___)

```

\section*{Description}
fmesh(f) creates a mesh plot of the symbolic expression \(f(x, y)\) over the default interval [-5 5] for \(x\) and \(y\).
fmesh(f,[min max]) plots \(f(x, y)\) over the interval [min max] for \(x\) and \(y\).
fmesh(f,[xmin xmax ymin ymax]) plots \(f(x, y)\) over the interval [xmin xmax] for \(x\) and [ymin ymax] for \(y\).
fmesh(funx, funy,funz) plots the parametric mesh \(x=x(u, v), y=y(u, v), z=\) \(z(u, v)\) over the interval [-5 5] for \(u\) and \(v\).
fmesh(funx,funy,funz,[uvmin uvmax]) plots the parametric mesh \(x=x(u, v), y\) \(=y(u, v), z=z(u, v)\) over the interval [uvmin uvmax] for \(u\) and \(v\).
fmesh(funx,funy,funz,[umin umax vmin vmax]) plots the parametric mesh \(x=\) \(x(u, v), y=y(u, v), z=z(u, v)\) over the interval [umin umax] for \(u\) and [vmin vmax] for \(v\).
fmesh( , LineSpec) uses the LineSpec to set the line style, marker symbol, and plot color.
fmesh( \(\qquad\) ,Name, Value) specifies surface properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes.
fmesh(ax, \(\qquad\) ) plots into the axes with the object ax instead of the current axes object gca.
obj = fmesh( \(\qquad\) ) returns a function surface object or a parameterized function surface object. Use the object to query and modify properties of a specific mesh.

\section*{Examples}

\section*{Additional Examples: See fsurf Page}

Note For additional examples, follow the fsurf page because fmesh and fsurf share the same syntax. All examples on the fsurf page apply to fmesh.

\section*{3-D Mesh Plot of Symbolic Expression}

Plot a mesh of the input \(\sin (x)+\cos (y)\) over the default range \(-5<x<5\) and \(-5<y<5\).
syms x y
fmesh(sin(x)+cos(y))


\section*{3-D Mesh Plot of Symbolic Function}

Plot a 3-D mesh of the real part of \(\tan ^{-1}(x+i y)\) over the default range \(-5<x<5\) and \(-5<y<5\).
```

syms f(x,y)
f(x,y) = real(atan(x + i*y));
fmesh(f)

```


\section*{Specify Plotting Interval of Mesh Plot}

Plot \(\sin (x)+\cos (y)\) over \(-\pi<x<\pi\) and \(-5<y<5\) by specifying the plotting interval as the second argument of fmesh.
syms \(x\) y
\(\mathrm{f}=\sin (\mathrm{x})+\cos (\mathrm{y})\);
fmesh(f, [-pi pi -5 5])


\section*{Parameterized Mesh Plot}

Plot the parameterized mesh
\[
\begin{aligned}
& \qquad \begin{aligned}
x= & r \cos (s) \sin (t) \\
y= & r \sin (s) \sin (t) \\
z & =r \cos (t)
\end{aligned} \\
& \text { where } \quad r=8+\sin (7 s+5 t)
\end{aligned}
\]
for \(0<s<2 \pi\) and \(0<t<\pi\). Make the aspect ratio of the axes equal using axis equal. See the entire mesh by making the mesh partially transparent using alpha.
syms st
\(r=8+\sin (7 * s+5 * t) ;\)
\(x=r^{*} \cos (s) * \sin (t)\);
\(y=r * \sin (s) * \sin (t)\);
\(z=r * \cos (t) ;\)
fmesh(x, y, z, [0 2*pi 0 pi], 'Linewidth', 2)
axis equal

alpha(0.8)

\section*{Additional Examples: See fsurf Page}

Note For additional examples, follow the fsurf page because fmesh and fsurf share the same syntax. All examples on the fsurf page apply to fmesh.

\section*{Input Arguments}

\section*{\(f\) - 3-D expression or function to be plotted \\ symbolic expression | symbolic function}

Expression or function to be plotted, specified as a symbolic expression or function.

\section*{[min max] - Plotting interval for \(\mathbf{x}\) - and \(\mathbf{y}\)-axes}
[-5 5] (default) | vector of two numbers
Plotting interval for x - and y -axes, specified as a vector of two numbers. The default is [-5 5].
[xmin xmax ymin ymax] - Plotting interval for \(x\) - and \(y\)-axes [-5 5-5 5] (default) | vector of four numbers

Plotting interval for x - and y -axes, specified as a vector of four numbers. The default is \(\left[\begin{array}{llll}-5 & 5 & -5 & 5\end{array}\right]\).

\section*{funx, funy, funz - Parametric functions of \(u\) and \(v\)}
symbolic expressions | symbolic functions
Parametric functions of \(u\) and \(v\), specified as a symbolic expression or function.

\section*{[uvmin uvmax] - Plotting interval for \(u\) and \(v\) \\ [-5 5] (default) | vector of two numbers}

Plotting interval for \(u\) and \(v\) axes, specified as a vector of two numbers. The default is [-5 5].

\section*{[umin umax vmin vmax] - Plotting interval for \(u\) and \(v\) \\ [-5 5-5 5] (default) | vector of four numbers}

Plotting interval for \(u\) and \(v\), specified as a vector of four numbers. The default is [-5 5 -5 5].

\section*{ax - Axes object}
axes object
Axes object. If you do not specify an axes object, then fmesh uses the current axes.

\section*{LineSpec - Line style, marker symbol, and line color}
character vector
Line style, marker symbol, and line color, specified as a character vector. The elements of the character vector can appear in any order, and you can omit one or more options from the character vector specifier.
Example: ' - - or' is a red mesh with circle markers
\begin{tabular}{|l|l|}
\hline Specifier & Line Style \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Marker \\
\hline o & Circle \\
\hline+ & Plus sign \\
\hline * & Asterisk \\
\hline\(\cdot\) & Point \\
\hline x & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline 人 & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline > & Right-pointing triangle \\
\hline < & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Color \\
\hline y & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'Marker','o','MarkerFaceColor','red'

\section*{MeshDensity - Number of evaluation points per direction}

\section*{35 (default) | number}

Number of evaluation points per direction, specified as a number. The default is 35 .
Because fmesh objects use adaptive evaluation, the actual number of evaluation points is greater.

\section*{Example: 100}

\section*{ShowContours - Display contour plot under plot 'off' (default) |'on'}

Display contour plot under plot, specified as 'off' (default) or 'on'.

\section*{EdgeColor - Line color}
```

'interp' (default)| RGB triplet|'none' | 'r' | 'g' | 'b' | ...

```

Line color, specified as 'interp', an RGB triplet, or one of the color options listed in the table. The default value of 'interp' colors the edges based on the ZData property values.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green ' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta ' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

\section*{Example: 'blue'}

Example: [0 0 1]

\section*{LineStyle - Line style}
```

'-' (default)| '--'|':' | ' - .' | 'none'

```

Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline '- - ' & Dashed line & - - - - - \\
\hline ':' & Dotted line & ............... \\
\hline '-.' & Dash-dotted line & -------- \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width \\ 0.5 (default) | positive value}

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.

Example: 0.75

\section*{Marker - Marker symbol}
'none' (default) | 'o'|'+'| '*'| '.' | 'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline '0' & Circle \\
\hline '+' & Plus sign \\
\hline '*' & Asterisk \\
\hline '.' & Point \\
\hline 'x' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond' or 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline '>' & Right-pointing triangle \\
\hline '<' & Left-pointing triangle \\
\hline 'pentagram' or 'p' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}

\section*{MarkerEdgeColor - Marker outline color}
'auto' (default)|RGB triplet|'r'| 'g'|'b'|...
Marker outline color, specified as 'auto ', an RGB triplet, or one of the color options listed in the table. The default value of ' auto ' uses the same color as the EdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]

\section*{Example: 'blue'}

\section*{MarkerFaceColor - Marker fill color}
'none' (default) | 'auto' | RGB triplet | 'r' | 'g ' | 'b ' | ...
Marker fill color, specified as 'auto', an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.3 0.2 0.1]
Example: 'green'

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.
Example: 10

\section*{Output Arguments}

\section*{obj - One or more objects}
scalar | vector
One or more objects, returned as a scalar or a vector. The object is either a function surface object or parameterized mesh object, depending on the type of plot. You can use these objects to query and modify properties of a specific line. For details, see Function Surface and Parameterized Function Surface.

\section*{See Also}

\section*{Functions}
fcontour|fimplicit|fimplicit3|fplot|fplot3|fsurf

\section*{Properties}

Function Surface | Parameterized Function Surface

\section*{Topics}
"Create Plots" on page 2-245

Introduced in R2016a

\section*{fold}

Combine (fold) vector using function

\section*{Syntax}
fold(fun, v)
fold(fun, v, defaultVal)

\section*{Description}
fold (fun,\(v\) ) folds \(v\) by using fun. That is, fold calls fun on the first two elements of \(v\), and then repeatedly calls fun on the result and the next element till the last element is combined. Programmatically, the fold operation is fold(fun,v) = fun(fold(fun, v(1: end-1)), v(end)).
fold(fun,v,defaultVal) returns the value defaultVal if v is empty.

\section*{Examples}

\section*{Fold Vector Using Function}

Fold a vector of symbolic variables using the power function. The output shows how fold combines elements of the vector from left to right by using the specified function.
```

syms a b c d e
fold(@power, [a b c d e])
ans =
(((a^b)^c)^d)^e

```

\section*{Assume Variable Belongs to Set of Values}

Assume the variable \(\times\) belongs to the set of values \(1,2, \ldots, 10\) by applying or to the conditions \(x==1, \ldots, x==10\) using fold. Check that the assumption is set by using assumptions.
```

syms x
cond = fold(@or, x == 1:10);
assume(cond)
assumptions
ans =
x == 1 | x == 2 | x == 3 | x == 4 | x == 5 |...
x == 6 | x == 7 | x == 8 | x == 9 | x == 10

```

\section*{Specify Default Value of Fold Operation}

Specify the default value of fold when the input is empty by specifying the third argument. If the third argument is not specified and the input is empty, then fold throws an error.

When creating a function to sum a vector, specify a default value of 0 , such that the function returns 0 when the vector is empty.
```

sumVector = @(x) fold(@plus, x, 0);
sumVector([])
ans =
0

```

\section*{Input Arguments}

\section*{fun - Function used to fold vector}
function handle
Function used to fold vector, specified as a function handle.
Example: @or

\section*{v - Vector to fold}
vector | symbolic vector | cell vector

Vector to fold, specified as a vector, symbolic vector, or cell vector. If an element of \(v\) is a symbolic function, then the formula of the symbolic function is used by calling formula.

\section*{defaultVal - Default value of fold operation}
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Default value of fold operation, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

\author{
See Also \\ prod| sum \\ Introduced in R2016b
}

\section*{formula}

Return body of symbolic function

\section*{Syntax}

\section*{formula(f)}

\section*{Description}
formula(f) returns the body, or definition, of the symbolic function \(f\).

\section*{Examples}

\section*{Return Body of Symbolic Function}

Return the body, or definition, of a symbolic function by using formula.
```

syms x y
f(x,y) = x + y;
formula(f)
ans =
x + y

```

If the symbolic function does not have a definition, formula returns the symbolic function.
```

syms g(x,y)
formula(g)

```
```

ans =
g(x, y)

```

\section*{Input Arguments}

\section*{f - Input}
symbolic function
Input specified as a symbolic function.

\section*{See Also}
argnames | sym | syms | symvar

\section*{Introduced in R2012a}

\section*{fortran}

Fortran representation of symbolic expression

\section*{Syntax}
```

fortran(f)
fortran(f,Name,Value)

```

\section*{Description}
fortran(f) returns Fortran code for the symbolic expression \(f\).
fortran( f,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Generate Fortran Code from Symbolic Expression}

Generate Fortran code from the symbolic expression \(\log (1+x)\).
syms \(x\)
\(\mathrm{f}=\log (1+\mathrm{x})\);
fortran(f)
ans \(=\)
```

t0 = log(x+1.0D0)

```

Generate Fortran code for the 3-by-3 Hilbert matrix.
```

H = sym(hilb(3));
fortran(H)
ans =
H(1,1) = 1.0D0

```
```

H(1,2) = 1.0D0/2.0D0
H(1,3) = 1.0D0/3.0D0
H(2,1) = 1.0D0/2.0D0
H(2,2) = 1.0D0/3.0D0
H(2,3) = 1.0D0/4.0D0
H(3,1) = 1.0D0/3.0D0
H(3,2) = 1.0D0/4.0D0
H(3,3) = 1.0D0/5.0D0

```

\section*{Write Fortran Code to File with Comments}

Write generated Fortran code to a file by specifying the File option. When writing to a file, fort ran optimizes the code using intermediate variables named t0, t1, .... Include comments in the file by using the Comments option.
```

syms x
f = diff(tan(x));
fortran(f,'File','fortrantest')
t2 = tan(x)
t0 = t2**2+1.0D0

```

Include the comment Version: 1.1. Comment lines must be shorter than 71 characters to conform with Fortran 77.
```

fortran(f,'File','fortrantest','Comments','Version: 1.1')
*Version: 1.1
t2 = tan(x)
t0 = t2**2+1.0D0

```

\section*{Input Arguments}

\section*{f - Symbolic input}
symbolic expression
Symbolic input, specified as a symbolic expression.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.

Example: fortran(x^2,'File','fortrancode','Comments','V1.2')

\section*{File - File to write to}
character vector \(\mid\) string
File to write to, specified as a character vector or string. When writing to a file, fortran optimizes the code using intermediate variables named \(\mathrm{t} 0, \mathrm{t} 1, \ldots\).

\section*{Comments - Comments to include in file header}
character vector | cell array of character vectors \(\mid\) string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector. Comment lines must be shorter than 71 characters to conform with Fortran 77.

\section*{Tips}
- MATLAB is left-associative while Fortran is right-associative. If ambiguity exists in an expression, the fortran function must follow MATLAB to create an equivalent representation. For example, fortran represents \(a^{\wedge} b^{\wedge} c\) in MATLAB as ( \(a * * b\) ) \({ }^{* *}\) c in Fortran.

\section*{See Also}
ccode| latex|matlabFunction| pretty

\section*{Introduced before R2006a}

\section*{fourier}

Fourier transform

\section*{Syntax}
```

fourier(f)
fourier(f,transVar)
fourier(f,var,transVar)

```

\section*{Description}
fourier (f) returns the "Fourier Transform" on page 4-669 of f. By default, the function symvar determines the independent variable, and \(w\) is the transformation variable.

fourier ( \(\mathrm{f}, \mathrm{var}, \mathrm{transVar)}\) uses the independent variable var and the transformation variable transVar instead of symvar and w, respectively.

\section*{Examples}

\section*{Fourier Transform of Common Inputs}

Compute the Fourier transform of common inputs. By default, the transform is in terms of w.
\begin{tabular}{|c|c|c|}
\hline Function & Input & Output \\
\hline Rectangular pulse & ```
syms a b t
f = rectangularPulse(a,b,
f_FT = fourier(f)
``` & ```
f FT =
t);(sin(a*w) + cos(a*w)*1i
``` \\
\hline Unit impulse (Dirac delta) & \[
\begin{aligned}
& \mathrm{f}=\operatorname{dirac}(\mathrm{t}) ; \\
& \mathrm{f} \_\mathrm{FT}=\text { fourier(f) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} \_ \text {FT }= \\
& 1_{1}^{-}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Input & Output \\
\hline Absolute value & \[
\begin{aligned}
& \mathrm{f}=\mathrm{a} \text { abs(t); } \\
& \mathrm{f} \text { FT }=\text { fourier }(\mathrm{f})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} \_\mathrm{FT}= \\
& -\left(2^{*} \mathrm{a}\right) / \mathrm{w}^{\wedge} 2
\end{aligned}
\] \\
\hline Step (Heaviside) & \[
\begin{aligned}
& \mathrm{f}=\text { heaviside(t); } \\
& \mathrm{f} \text { _FT }=\text { fourier(f) }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f}=\mathrm{FT}= \\
& \mathrm{pi}{ }^{2} \text { dirac (w) - 1i/w }
\end{aligned}
\] \\
\hline Constant & ```
f = a;
f_FT = fourier(a)
``` & \[
\begin{aligned}
& \mathrm{f}-\mathrm{FT}= \\
& \mathrm{pi} * \operatorname{dirac}(1, \mathrm{w}) * 2 \mathrm{i}
\end{aligned}
\] \\
\hline Cosine & \[
\begin{aligned}
& \text { syms w0 } \\
& \mathrm{f}=\mathrm{a}=\cos (\mathrm{w} 0 * \mathrm{t}) ; \\
& \mathrm{f} _\mathrm{FT}=\operatorname{fourier}(\mathrm{f})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} \mathrm{FT}^{\mathrm{FT}}= \\
& \mathrm{a}^{*} \mathrm{pi}(\operatorname{dirac}(\mathrm{t}-\mathrm{w})+\text { dirad }
\end{aligned}
\] \\
\hline Sine & \[
\begin{aligned}
& \mathrm{f}=\mathrm{a}=\sin (\mathrm{w} 0 * \mathrm{t}) ; \\
& \mathrm{f} \text { FT }=\text { fourier }(\mathrm{f})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} _\mathrm{FT}= \\
& -\mathrm{a} * \mathrm{pi} \mathrm{~B}^{(d i r a c}(\mathrm{t} \text { - w) - dir }
\end{aligned}
\] \\
\hline Sign & \[
\begin{aligned}
& \mathrm{f}=\operatorname{sign}(\mathrm{t}) ; \\
& \mathrm{f} _\mathrm{FT}=\text { fourier }(\mathrm{f})
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{f}-\mathrm{FT}= \\
& -\overline{2} \mathrm{i} / \mathrm{w}
\end{aligned}
\] \\
\hline Triangle & ```
syms C
f = triangularPulse(a,b,c
f_FT = fourier(f)
``` & \[
\begin{aligned}
& \mathrm{f}-\mathrm{FT}= \\
& , \text {, } \mathrm{t} \cdot \mathrm{a}, \mathrm{exp}\left(-\mathrm{b} * \mathrm{w}^{*} 1 \mathrm{i}\right)-\mathrm{b} * \exp (.
\end{aligned}
\] \\
\hline Right-sided exponential & Also calculate transform with condition a > 0 . Clear assumptions.
```

f = exp(-t*abs(a))*heavis
f_FT = fourier(f)
assume(a > 0)
f_FT_condition = fourier(
assume(a,'clear')
```&```
f FT =
1/(abs(a) + w*1i) - (sign
f_FT_condition =

```

```

f)

``` \\
\hline Double-sided exponential & \begin{tabular}{l}
Assume a > 0. Clear assumptions. \\
assume (a > 0) \\
\(\mathrm{f}=\exp \left(-\mathrm{a}^{*} \mathrm{t}^{\wedge} 2\right)\); \\
f_FT = fourier(f) \\
assume(a, 'clear')
\end{tabular} & ```
f FT =
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Function & Input & Output \\
\hline Gaussian & \begin{tabular}{l}
Assume b and c are real. Simplify result and clear assumptions. \\
assume([b c],'real') \\
\(\mathrm{f}=\mathrm{a}\) *exp(-(t-b)^2/(2* \(\mathrm{c}^{\wedge} 2\) \\
f_FT = fourier(f) \\
f_FT_simplify = simplify ( assume([b c],'clear')
\end{tabular} &  \\
\hline Bessel of first kind with nu \(=1\) & \begin{tabular}{l}
Simplify the result. \\
syms x \\
\(\mathrm{f}=\operatorname{bessel}(\mathrm{l}, \mathrm{x})\); \\
f_FT = fourier(f); \\
f_FT = simplify(f_FT)
\end{tabular} & \[
\begin{array}{|l|}
\hline \mathrm{f} \underset{\left(\overline{2} * W^{*}(\text { heaviside }(w-1) * 1 i\right.}{ }
\end{array}
\] \\
\hline
\end{tabular}

\section*{Specify Independent Variable and Transformation Variable}

Compute the Fourier transform of \(\exp \left(-t^{\wedge} 2-x^{\wedge} 2\right)\). By default, symvar determines the independent variable, and \(w\) is the transformation variable. Here, symvar chooses \(x\).
```

syms t x
f = exp(-t^2-x^2);
fourier(f)
ans =
pi^(1/2)*exp(- t^2 - w^2/4)

```

Specify the transformation variable as \(y\). If you specify only one variable, that variable is the transformation variable. symvar still determines the independent variable.
```

syms y
fourier(f,y)
ans =
pi^(1/2)*exp(- t^2 - y^2/4)

```

Specify both the independent and transformation variables as \(t\) and \(y\) in the second and third arguments, respectively.
```

fourier(f,t,y)
ans =
pi^(1/2)*exp(- x^2 - y^2/4)

```

\section*{Fourier Transforms Involving Dirac and Heaviside Functions}

Compute the following Fourier transforms. The results are in terms of the Dirac and Heaviside functions.
```

syms t w
fourier(t^3, t, w)
ans =
-pi*dirac(3, w)*2i
syms t0
fourier(heaviside(t - t0), t, w)
ans =
exp(-t0*w*1i)*(pi*dirac(w) - 1i/w)

```

\section*{Specify Fourier Transform Parameters}

Specify parameters of the Fourier transform.
Compute the Fourier transform of \(f\) using the default values of the Fourier parameters c \(=1\), \(s=-1\). For details, see "Fourier Transform" on page 4-669.
syms t w
\(\mathrm{f}=\mathrm{t}^{*} \exp \left(-\mathrm{t}^{\wedge} 2\right)\);
fourier(f,t,w)
ans =
\(-\left(w^{*} \mathrm{pi}^{\wedge}(1 / 2) * \exp \left(-\mathrm{w}^{\wedge} 2 / 4\right) * 1 \mathrm{i}\right) / 2\)
Change the Fourier parameters to \(c=1, s=1\) by using sympref, and compute the transform again. The result changes.
```

sympref('FourierParameters',[1 1]);
fourier(f,t,w)
ans =
(w*pi^(1/2)*exp(-w^2/4)*1i)/2

```

Change the Fourier parameters to \(c=1 /(2 *\) pi \(), s=1\). The result changes.
```

sympref('FourierParameters', [1/(2*sym(pi)), 1]);
fourier(f,t,w)
ans =
(w* exp(-w^2/4)*1i)/(4*pi^(1/2))

```

Preferences set by sympref persist through your current and future MATLAB sessions. Restore the default values of \(c\) and \(s\) by setting FourierParameters to 'default'.
```

sympref('FourierParameters','default');

```

\section*{Fourier Transform of Array Inputs}

Find the Fourier transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, fourier acts on them element-wise.
```

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
fourier(M,vars,transVars)
ans =
[2*pi*exp(x)*dirac(a), 2*pi*dirac(b)]
[-pi*(dirac(c - 1) - dirac(c + 1))*1i, -2*pi*dirac(1, d)]

```

If fourier is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.
```

fourier(x,vars,transVars)
ans =
[2*pi*x*dirac(a), pi*dirac(1, b)*2i]
[2*pi*x*dirac(c), 2*pi*x*dirac(d)]

```

\section*{If Fourier Transform Cannot Be Found}

If fourier cannot transform the input then it returns an unevaluated call.
```

syms f(t) w
F = fourier(f,t,w)
F =
fourier(f(t), t, w)

```

Return the original expression by using ifourier.
```

ifourier(F,w,t)

```
ans \(=\)
f(t)

\section*{Input Arguments}
```

f - Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

```

Input, specified as a symbolic expression, function, vector, or matrix.

\section*{var - Independent variable}
\(x\) (default) | symbolic variable
Independent variable, specified as a symbolic variable. This variable is often called the "time variable" or the "space variable." If you do not specify the variable, then fourier uses the function symvar to determine the independent variable.

\section*{transVar - Transformation variable \\ w (default) | v | symbolic variable | symbolic expression | symbolic vector | symbolic matrix}

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. This variable is often called the "frequency variable." By default, fourier uses w. If w is the independent variable of \(f\), then fourier uses \(v\).

\section*{Definitions}

\section*{Fourier Transform}

The Fourier transform of the expression \(f=f(x)\) with respect to the variable \(x\) at the point \(w\) is
\[
F(w)=c \int_{-\infty}^{\infty} f(x) e^{i s w x} d x
\]
\(c\) and \(s\) are parameters of the Fourier transform. The fourier function uses \(c=1, s=-\) 1.

\section*{Tips}
- If any argument is an array, then fourier acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- To compute the inverse Fourier transform, use ifourier.
- fourier does not transform piecewise. Instead, try to rewrite piecewise by using the functions heaviside, rectangularPulse, or triangularPulse.

\section*{References}
[1] Oberhettinger F., "Tables of Fourier Transforms and Fourier Transforms of Distributions." Springer, 1990.

\section*{See Also}
ifourier|ilaplace|iztrans|laplace|sympref|ztrans

\section*{Topics}
"Fourier and Inverse Fourier Transforms" on page 2-225

\section*{Introduced before R2006a}

\section*{fplot}

Plot symbolic expression or function

\section*{Syntax}
```

fplot(f)
fplot(f,[xmin xmax])
fplot(xt,yt)
fplot(xt,yt,[tmin tmax])
fplot(

```
\(\qquad\)
``` , LineSpec)
fplot(,Name, Value)
fplot (ax,)
\(\mathrm{fp}=\mathrm{fplot}(\)
``` \(\qquad\)

\section*{Description}
fplot(f) plots symbolic input f over the default interval [-5 5].
fplot(f,[xmin xmax]) plots fover the interval [xmin xmax].
fplot \((x t, y t)\) plots \(x t=x(t)\) and \(y t=y(t)\) over the default range of \(t\), which is [ -55\(]\).
fplot (xt,yt,[tmin tmax]) plots \(x t=x(t)\) and \(y t=y(t)\) over the specified range [tmin tmax].
fplot(__ , LineSpec) uses LineSpec to set the line style, marker symbol, and line color.
fplot( \(\qquad\) ,Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes. Name, Value pair settings apply to all the lines plotted. To set options for individual lines, use the objects returned by fplot.
fplot(ax, \(\qquad\) ) plots into the axes specified by ax instead of the current axes gca.
\(f p=f p l o t(\ldots \quad)\) returns a function line object or parameterized line object, depending on the type of plot. Use the object to query and modify properties of a specific line. For details, see Function Line and Parameterized Function Line.

\section*{Examples}

\section*{Plot Symbolic Expression}

Plot \(\tan (x)\) over the default range of [-5 5]. fplot shows poles by default. For details, see the ShowPoles argument in "Name-Value Pair Arguments" on page 4-689.
syms x
fplot(tan(x))


\section*{Plot Symbolic Function}

Plot the symbolic function \(f(x)=\cos (x)\) over the default range [ \(\left.\begin{array}{ll}-5 & 5\end{array}\right]\).
```

syms f(x)
f(x) = cos(x);
fplot(f)

```


\section*{Plot Parametric Curve}

Plot the parameteric curve \(x=\cos (3 t)\) and \(y=\sin (2 t)\).
syms t
\(\mathrm{x}=\cos \left(3^{*} \mathrm{t}\right)\);
\(y=\sin \left(2^{*} t\right)\);
fplot( \(x, y\) )


\section*{Specify Plotting Interval}

Plot \(\sin (x)\) over \([-\pi / 2, \pi / 2]\) by specifying the plotting interval as the second input to fplot.
syms \(x\)
fplot(sin(x),[-pi/2 pi/2])


\section*{Plot Multiple Lines on Same Figure}

You can plot multiple lines either by passing the inputs as a vector or by using hold on to successively plot on the same figure. If you specify LineSpec and Name-Value arguments, they apply to all lines. To set options for individual plots, use the function handles returned by fplot.

Divide a figure into two subplots using subplot. On the first subplot, plot \(\sin ^{\sin }\) and \(\cos (x)\) using vector input. On the second subplot, plot \(\sin ^{(x)}\) and \(\cos (x)\) using hold on.
syms \(x\)
subplot (2,1,1)
fplot([sin(x) cos(x)])
title('Multiple Lines Using Vector Inputs')
subplot (2,1,2)
fplot(sin(x))
hold on
fplot( \(\cos (x))\)
title('Multiple Lines Using hold on Command')
hold off

Multiple Lines Using Vector Inputs



\section*{Change Line Properties and Display Markers}

Plot three sine curves with a phase shift between each line. For the first line, use a linewidth of 2. For the second, specify a dashed red line style with circle markers. For the third, specify a cyan, dash-dot line style with asterisk markers. Display the legend.
```

syms x
fplot(sin(x+pi/5),'Linewidth',2)
hold on
fplot(sin(x-pi/5),'--or')
fplot(sin(x),'-.*C')
legend('show','Location','best')
hold off

```


\section*{Control Resolution of Plot}

Control the resolution of a plot by using the MeshDensity option. Increasing MeshDensity can make smoother, more accurate plots, while decreasing it can increase plotting speed.

Divide a figure into two by using subplot. In the first subplot, plot a step function from \(x\) \(=2.1\) to \(x=2.15\). The plot's resolution is too low to detect the step function. Fix this issue by increasing MeshDensity to 39 in the second subplot. The plot now detects the step function and shows that by increasing MeshDensity you increased the plot's resolution.
```

syms x
stepFn = rectangularPulse(2.1, 2.15, x);
subplot(2,1,1)
fplot(stepFn);
title('Default MeshDensity = 23')
subplot(2,1,2)
fplot(stepFn,'MeshDensity',39);
title('Increased MeshDensity = 39')

```


\section*{Modify Plot After Creation}

Plot \(\sin (x)\). Specify an output to make fplot return the plot object.
syms x
h = fplot(sin(x))


Show all properties

Change the default blue line to a dashed red line by using dot notation to set properties. Similarly, add ' \(x\) ' markers and set the marker color to blue.
```

 h.LineStyle = '--';
 h.Color = 'r';
 h.Marker = 'x';
 h.MarkerEdgeColor = 'b';
    ```


\section*{Add Title and Axis Labels and Format Ticks}

For \(x\) from \(-2 \pi\) to \(2 \pi\), plot \(\sin (x)\). Add a title and axis labels. Create the x-axis ticks by spanning the x -axis limits at intervals of \(\mathrm{pi} / 2\). Display these ticks by using the XTick property. Create x-axis labels by using arrayfun to apply texlabel to S. Display these labels by using the XTickLabel property.

To use LaTeX in plots, see latex.
```

syms x
fplot(sin(x),[-2*pi 2*pi])
grid on
title('sin(x) from -2\pi to 2\pi')
xlabel('x')
ylabel('y')

```
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax. XTick = double(S);
ax. XT ickLabel \(=\) arrayfun(@texlabel, S, 'Uniform0utput',false);


\section*{Re-evaluation on Zoom}

When you zoom into a plot, fplot re-evaluates the plot automatically. This re-evaluation on zoom reveals hidden detail at smaller scales.

Plot \(x^{\wedge} 3^{*} \sin (1 / x)\) for \(-2<x<2\) and \(-0.02<y<0.02\). Zoom in on the plot using zoom and redraw the plot using drawnow. Because of re-evaluation on zoom, fplot reveals smaller-scale detail. Repeat the zoom 6 times to view smaller-scale details. To play the animation, click the image.
```

syms x
fplot(x^3*sin(1/x));
axis([-2 2 -0.02 0.02]);
for i=1:6
zoom(1.7)
pause(0.5)
end

```


\section*{Create Animations}

Create animations by changing the displayed expression using the Function, XFunction, and YFunction properties and then by using drawnow to update the plot. To export to GIF, see imwrite.

By varying the variable \(i\) from 0.1 to 3 , animate the parametric curve
\[
\begin{aligned}
& x=i t \sin (i t) \\
& y=i t \cos (i t) .
\end{aligned}
\]

To play the animation, click the image.

\section*{syms t}
\(\mathrm{fp}=\mathrm{fplot}(\mathrm{t}, \mathrm{t})\);
axis([-15 15 -15 15])
for i=0.1:0.05:3
fp.XFunction = i.*t.*sin(i*t);
fp. YFunction = i.*t.*cos(i*t); drawnow
end


\section*{Input Arguments}

\section*{f - Expression or function to plot \\ symbolic expression | symbolic function}

Expression or function to plot, specified as a symbolic expression or function.

\section*{[xmin xmax] - Plotting interval for x-coordinates}
[-5 5] (default) | vector of two numbers
Plotting interval for x-coordinates, specified as a vector of two numbers. The default range is [-5 5]. However, if fplot detects a finite number of discontinuities in \(f\), then fplot expands the range to show them.

\section*{xt - Parametric input for x-coordinates}
symbolic expression | symbolic function
Parametric input for \(x\)-coordinates, specified as a symbolic expression or function. fplot uses symvar to find the parameter.

\section*{yt - Parametric input for y-axis}
symbolic expression | symbolic function
Parametric input for y-axis, specified as a symbolic expression or function. fplot uses symvar to find the parameter.

\section*{[tmin tmax] - Range of values of parameter \(t\) [-5 5] (default) | vector of two numbers}

Range of values of parameter \(t\), specified as a vector of two numbers. The default range is [-5 5].

\section*{ax - Axes object}
axes object
Axes object. If you do not specify an axes object, then fplot uses the current axes gca.

\section*{LineSpec - Line specification}
character vector \(\mid\) string

Line specification, specified as a character vector or string with a line style, marker, and color. The elements can appear in any order, and you can omit one or more options. To show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o'specifies a red color, a dashed line, and circle markers
\begin{tabular}{|l|l|}
\hline Line Style Specifier & Description \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Marker Specifier & Description \\
\hline o & Circle \\
\hline+ & Plus sign \\
\hline\(*\) & Asterisk \\
\hline. & Point \\
\hline x & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline ^ & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline\(>\) & Right-pointing triangle \\
\hline < & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color Specifier & Description \\
\hline\(y\) & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color Specifier & Description \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

The function line properties listed here are only a subset. For a complete list, see Function Line.

Example: 'Marker', 'o','MarkerFaceColor','red'
MeshDensity - Number of evaluation points
23 (default) | number
Number of evaluation points, specified as a number. The default is 23 . Because fplot uses adaptive evaluation, the actual number of evaluation points is greater.

\section*{ShowPoles - Display asymptotes at poles}
'on' (default) |'off'
Display asymptotes at poles, specified as 'on' (default) or 'off'. The asymptotes display as gray, dashed vertical lines. fplot displays asymptotes only with the fplot ( f ) syntax or variants, and not with the fplot ( \(x t, y t\) ) syntax.

\section*{Color - Line color}
```

[0 0.4470 0.7410] (default)|RGB triplet|'r'|'g'|'b' | ...

```

Line color, specified as an RGB triplet or one of the color options listed in the table.
For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\(\left.\begin{array}{|l|l|l|}\hline \text { Option } & \text { Description } & \text { Equivalent RGB Triplet } \\ \hline \text { 'red' or 'r' } & \text { Red } & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\ \hline \text { 'green' or 'g' } & \text { Green } & {\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]} \\ \hline \text { 'blue' or 'b' } & \text { Blue } & {\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} \\ \hline \text { 'yellow' or 'y' } & \text { Yellow } & {\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]} \\ \hline \text { 'magenta' or 'm' } & \text { Magenta } & {\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]} \\ \hline \text { 'cyan' or 'c' } & \text { Cyan } & {\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]} \\ \hline \text { 'white' or 'w' } & \text { l } 1\end{array}\right]\).

Example: 'blue'
Example: [0 0 1]

\section*{LineStyle - Line style}
'-' (default)|'--'|':'|' - .'|'none'
Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline ' - - ' & Dashed line & - - - - - \\
\hline ':' & Dotted line & ............... \\
\hline ' - . ' & Dash-dotted line & --------- \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width}
0.5 (default) | positive value

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.

\section*{Example: 0.75}

\section*{Marker - Marker symbol}
'none' (default) |'o'|'+'|'*'|'.'|'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline '0' & Circle \\
\hline '+' & Plus sign \\
\hline '*' & Asterisk \\
\hline '.' & Point \\
\hline 'x' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond' or 'd' & Diamond \\
\hline '^1 & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline '>' & Right-pointing triangle \\
\hline '<' & Left-pointing triangle \\
\hline 'pentagram' or 'p' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}

\section*{MarkerEdgeColor - Marker outline color}
'auto' (default)|RGB triplet|'r'| 'g'|'b'|...
Marker outline color, specified as 'auto ' , an RGB triplet, or one of the color options listed in the table. The default value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|c|c|c|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & [1 0 0 0] \\
\hline 'green' or 'g' & Green & \(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\) \\
\hline 'blue' or 'b' & Blue & [0 0 0 1] \\
\hline 'yellow' or 'y' & Yellow & \(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\) \\
\hline 'magenta' or 'm' & Magenta & \(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\) \\
\hline 'cyan' or 'c' & Cyan & \(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\) \\
\hline 'white' or 'w' & White & \(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\) \\
\hline 'black' or 'k' & Black & [0 0 0 0] \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]

\section*{Example: 'blue'}

\section*{MarkerFaceColor - Marker fill color}
'none' (default) | 'auto' | RGB triplet | 'r' | 'g' | 'b' | ...
Marker fill color, specified as 'auto ' , an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [ 0,1 ]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.3 0.2 0.1]
Example: 'green'

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.
Example: 10

\section*{Output Arguments}

\section*{fp - One or more function or parameterized line objects}
scalar | vector
One or more function or parameterized function line objects, returned as a scalar or a vector.
- If you use the fplot(f) syntax or a variation of this syntax, then fplot returns function line objects.
- If you use the fplot (xt,yt) syntax or a variation of this syntax, then fplot returns parameterized line objects.

You can use these objects to query and modify properties of a specific line. For a list of properties, see Function Line and Parameterized Function Line.

\section*{Tips}
- If fplot detects a finite number of discontinuities in \(f\), then fplot expands the range to show them.

\section*{See Also}

\section*{Functions}
fcontour| fimplicit|fimplicit3|fmesh|fplot3|fsurf

\section*{Properties}

Function Line | Parameterized Function Line

\section*{Topics}
"Create Plots" on page 2-245

Introduced in R2016a

\section*{fplot3}

Plot 3-D parametric curve

\section*{Syntax}
```

fplot3(xt,yt,zt)
fplot3(xt,yt,zt,[tmin tmax])
fplot3(___,LineSpec)
fplot3(___,Name,Value)
fplot3(ax,
)
fp = fplot3(___)

```

\section*{Description}
fplot3(xt,yt,zt) plots the parametric curve \(x t=x(t), y t=y(t)\), and \(z t=z(t)\) over the default interval \(-5<t<5\).
fplot3(xt,yt,zt,[tmin tmax]) plots \(x t=x(t), y t=y(t)\), and \(z t=z(t)\) over the interval \(t\) min \(<t<t m a x\).
fplot3( __ , LineSpec) uses LineSpec to set the line style, marker symbol, and line color.
fplot3( \(\qquad\) , Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes. Name, Value pair settings apply to all the lines plotted. To set options for individual lines, use the objects returned by fplot3.
fplot3(ax,__ ) plots into the axes object ax instead of the current axes gca.
\(f p=f p l o t 3(\ldots \quad)\) returns a parameterized function line object. Use the object to query and modify properties of a specific parameterized line. For details, see Parameterized Function Line.

\section*{Examples}

\section*{Plot 3-D Parametric Line}

Plot the 3-D parametric line
\[
\begin{gathered}
x=\sin (t) \\
y=\cos (t) \\
z=t
\end{gathered}
\]
over the default parameter range [-5 5].
syms t
\(x t=\sin (t) ;\)
\(y t=\cos (t)\);
zt = t;
fplot3(xt,yt,zt)


\section*{Specify Parameter Range}

Plot the parametric line
\[
\begin{gathered}
x=e^{-t / 10} \sin (5 t) \\
y=e^{-t / 10} \cos (5 t) \\
z=t
\end{gathered}
\]
over the parameter range [-10 10] by specifying the fourth argument of fplot3.
```

syms t
xt = exp(-t/10).*sin(5*t);
yt = exp(-t/10).*\operatorname{cos(5*t);}
zt = t;
fplot3(xt,yt,zt,[-10 10])

```


\section*{Change Line Properties and Display Markers}

Plot the same 3-D parametric curve three times over different intervals of the parameter. For the first curve, use a linewidth of 2 . For the second, specify a dashed red line style with circle markers. For the third, specify a cyan, dash-dot line style with asterisk markers.
syms t
fplot3(sin(t), cos(t), t, [0 2*pi], 'LineWidth', 2)
hold on
fplot3(sin(t), cos(t), t, [2*pi 4*pi], '--or')
fplot3(sin(t), cos(t), t, [4*pi 6*pi], '-.*c')


\section*{Plot 3-D Parametric Line Using Symbolic Functions}

Plot the 3-D parametric line
\[
\begin{gathered}
x(t)=\sin (t) \\
y(t)=\cos (t) \\
z(t)=\cos (2 t) .
\end{gathered}
\]
\[
\text { syms } x(t) y(t) z(t)
\]
\[
x(t)=\sin (t) ;
\]
\[
y(t)=\cos (t) ;
\]
\[
z(t)=\cos (2 * t) ;
\]
fplot3(x,y,z)


\section*{Plot Multiple Lines on Same Figure}

Plot multiple lines either by passing the inputs as a vector or by using hold on to successively plot on the same figure. If you specify LineSpec and Name-Value arguments, they apply to all lines. To set options for individual lines, use the function handles returned by fplot3.

Divide a figure into two subplots using subplot. On the first subplot, plot two parameterized lines using vector input. On the second subplot, plot the same lines using hold on.
```

syms t
subplot(2,1,1)
fplot3([t -t], t, [t -t])
title('Multiple Lines Using Vector Inputs')
subplot(2,1,2)
fplot3(t, t, t)
hold on
fplot3(-t, t, -t)
title('Multiple Lines Using Hold On Command')
hold off

```


Multiple Lines Using Hold On Command


\section*{Modify 3-D Parametric Line After Creation}

Plot the parametric line
\[
\begin{aligned}
& x=e^{-|t| / 10} \sin (5|t|) \\
& y=e^{-|t| / / 10} \cos (5|t|) \\
& z=t .
\end{aligned}
\]

Provide an output to make fplot return the plot object.
syms t
\(x t=\exp (-a b s(t) / 10) . * \sin (5 * a b s(t)) ;\)
\(y t=\exp (-a b s(t) / 10) . * \cos \left(5^{*} a b s(t)\right) ;\)
\(z t=t ;\)
fp = fplot3(xt,yt,zt)

fp =
ParameterizedFunctionLine with properties:
XFunction: [1x1 sym]
YFunction: [1x1 sym]
ZFunction: [1x1 sym]
Color: [0 0.4470 0.7410]
LineStyle: '-'

\section*{LineWidth: 0.5000}

Show all properties

Change the range of parameter values to [-10 10] and the line color to red by using the TRange and Color properties of \(f p\) respectively.
fp.TRange = [-10 10];
fp.Color = 'r';


\section*{Add Title and Axis Labels and Format Ticks}

For \({ }^{t}\) values in the range \(-2 \pi\) to \(2 \pi\), plot the parametric line
\[
\begin{gathered}
x=t \\
y=t / 2 \\
z=\sin (6 t) .
\end{gathered}
\]

Add a title and axis labels. Create the x -axis ticks by spanning the x -axis limits at intervals of pi/2. Display these ticks by using the XTick property. Create x-axis labels by using arrayfun to apply texlabel to S . Display these labels by using the XTickLabel property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.
```

syms t
xt = t;
yt = t/2;
zt = sin(6*t);
fplot3(xt,yt,zt,[-2*pi 2*pi],'MeshDensity',30)
view(52.5,30)
xlabel('x')
ylabel('y')
title('x=t, y=t/2, z=sin(6t) for -2\pi < t < 2\pi')
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);
S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

```


\section*{Create Animations}

Create animations by changing the displayed expression using the XFunction, YFunction, and ZFunction properties and then by using drawnow to update the plot. To export to GIF, see imwrite.

By varying the variable \(i\) from 0 to \(4 \pi\), animate the parametric curve
\[
\begin{aligned}
& x=t+\sin (40 t) \\
& y=-t+\cos (40 t) \\
& z=\sin (t+i) .
\end{aligned}
\]

To play the animation, click the image.
syms t
fp = fplot3(t+sin(40*t),-t+cos(40*t), sin(t));
for i=0:pi/10:4*pi
fp.ZFunction \(=\sin (t+i) ;\)
drawnow
end


\section*{Input Arguments}

\section*{xt - Parametric input for \(\mathbf{x}\)-axis}
symbolic expression | symbolic function

Parametric input for x -axis, specified as a symbolic expression or function. fplot3 uses symvar to find the parameter.

\section*{yt - Parametric input for \(\mathbf{y}\)-axis}
symbolic expression | symbolic function
Parametric input for y-axis, specified as a symbolic expression or function. fplot3 uses symvar to find the parameter.

\section*{zt - Parametric input for z-axis}
symbolic expression | symbolic function
Parametric input for z-axis, specified as a symbolic expression or function. fplot3 uses symvar to find the parameter.

\section*{[tmin tmax] - Range of values of parameter \\ [-5 5] (default) | vector of two numbers}

Range of values of parameter, specified as a vector of two numbers. The default range is [-5 5].

\section*{ax - Axes object}
axes object
Axes object. If you do not specify an axes object, then fplot3 uses the current axes.

\section*{LineSpec - Line specification}
character vector \(\mid\) string
Line specification, specified as a character vector or string with a line style, marker, and color. The elements can appear in any order, and you can omit one or more options. To show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers
\begin{tabular}{|l|l|}
\hline Line Style Specifier & Description \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Marker Specifier & Description \\
\hline o & Circle \\
\hline+ & Plus sign \\
\hline * & Asterisk \\
\hline\(\cdot\) & Point \\
\hline x & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline 人 & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline > & Right-pointing triangle \\
\hline < & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline Color Specifier & Description \\
\hline y & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline w & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

\section*{Example: 'Marker', 'o','MarkerFaceColor','red'}

The properties listed here are only a subset. For a complete list, see Parameterized Function Line.

\section*{MeshDensity - Number of evaluation points}

\section*{23 (default) | number}

Number of evaluation points, specified as a number. The default is 23 . Because fplot3 uses adaptive evaluation, the actual number of evaluation points is greater.

\section*{Color - Line color}
[0 0.4470 0.7410] (default) |RGB triplet|'r'|'g'|'b'|...
Line color, specified as an RGB triplet or one of the color options listed in the table.
For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\(\left.\begin{array}{|l|l|l|}\hline \text { Option } & \text { Description } & \text { Equivalent RGB Triplet } \\ \hline \text { 'red' or 'r' } & \text { Red } & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\ \hline \text { 'green' or 'g' } & \text { Green } & {\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]} \\ \hline \text { 'blue' or 'b' } & \text { Blue } & {\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} \\ \hline \text { 'yellow' or 'y' } & \text { Yellow } & {\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]} \\ \hline \text { 'magenta' or 'm' } & \text { Magenta } & {\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]} \\ \hline \text { 'cyan' or 'c' } & \text { Cyan } & {\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]} \\ \hline \text { 'white' or 'w' } & \text { White } & {\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]} \\ \hline \text { 'black' or 'k' } & \text { Black } & 0\end{array}\right]\)

Example: 'blue'
Example: [0 0 1]

\section*{LineStyle - Line style}
'-' (default)|'--'|':'|' - .'|'none'
Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline '--' & Dashed line & - - - - \\
\hline ':' & Dotted line & ... \\
\hline ' & Dash-dotted line & -.-----* \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width}

\section*{0.5 (default) | positive value}

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.
Example: 0.75

\section*{Marker - Marker symbol}
'none' (default) |'o'|'+'|'*'|'.'|'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline ' o' & Circle \\
\hline ' + ' & Plus sign \\
\hline\('^{*}\) ' & Asterisk \\
\hline ' .' \(^{\prime}\) & Point \\
\hline ' x ' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond' or 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline ' \(>\) ' & Right-pointing triangle \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline ' <' & Left-pointing triangle \\
\hline 'pentagram ' or ' p ' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}

\section*{MarkerEdgeColor - Marker outline color}
'auto' (default) | RGB triplet| 'r' | 'g' | 'b' | ...
Marker outline color, specified as 'auto' , an RGB triplet, or one of the color options listed in the table. The default value of 'auto' uses the same color as the Color property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].
Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white ' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]
Example: 'blue'

\section*{MarkerFaceColor - Marker fill color}
'none' (default) | 'auto'|RGB triplet|'r'|'g'|'b'|...

Marker fill color, specified as 'auto', an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\(\left.\begin{array}{|l|l|l|}\hline \text { Option } & \text { Description } & \text { Equivalent RGB Triplet } \\ \hline \text { 'red ' or 'r' } & \text { Red } & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\ \hline \text { 'green' or 'g' } & \text { Green } & {\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]} \\ \hline \text { 'blue' or 'b' } & \text { Blue } & {\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} \\ \hline \text { 'yellow' or 'y' } & \text { Yellow } & {\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]} \\ \hline \text { 'magenta' or 'm' } & \text { Magenta } & {\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]} \\ \hline \text { 'cyan' or 'c' } & \text { Cyan } & {\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]} \\ \hline \text { 'white' or 'w' } & \text { White } & {\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]} \\ \hline \text { 'black' or 'k' } & \text { Black } & {[0} \\ 0 & 0 & 0\end{array}\right]\).

Example:[0.3 0.2 0.1]
Example: 'green'

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.
Example: 10

\section*{Output Arguments}

\section*{fp - One or more parameterized function line objects}
scalar | vector

One or more parameterized line objects, returned as a scalar or a vector. You can use these objects to query and modify properties of a specific parameterized line. For details, see Parameterized Function Line.

\section*{See Also}

\section*{Functions}
fcontour|fimplicit|fimplicit3|fmesh|fplot|fsurf

\section*{Properties}

Parameterized Function Line

\section*{Topics}
"Create Plots" on page 2-245

\section*{Introduced in R2016a}

\section*{fresnelc}

Fresnel cosine integral function

\section*{Syntax}
```

fresnelc(z)

```

\section*{Description}
fresnelc (z) returns the Fresnel cosine integral on page 4-719 of \(z\).

\section*{Examples}

\section*{Fresnel Cosine Integral Function for Numeric and Symbolic Input Arguments}

Find the Fresnel cosine integral function for these numbers. Since these are not symbolic objects, you receive floating-point results.
```

fresnelc([-2 0.001 1.22+0.31i])
ans =
-0.4883 + 0.0000i 0.0010 + 0.0000i 0.8617 - 0.2524i

```

Find the Fresnel cosine integral function symbolically by converting the numbers to symbolic objects:
```

y = fresnelc(sym([-2 0.001 1.22+0.31i]))
y =
[-fresnelc(2), fresnelc(1/1000), fresnelc(61/50 + 31i/100)]

```

Use vpa to approximate results:
vpa(y)

\section*{ans \(=\)}
[ -0.48825340607534075450022350335726, 0.00099999999999975325988997279422003, ...
\(0.86166573430841730950055370401908-0.25236540291386150167658349493972 i]\)

\section*{Fresnel Cosine Integral Function for Special Values}

Find the Fresnel cosine integral function for special values:
```

fresnelc([0 Inf -Inf i*Inf -i*Inf])
ans =
0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i...
0.0000 + 0.5000i 0.0000 - 0.5000i

```

\section*{Fresnel Cosine Integral for Symbolic Functions}

Find the Fresnel cosine integral for the function \(\exp (x)+2^{*} x\) :
```

syms f(x)
f = exp(x)+2*x;
fresnelc(f)
ans =
fresnelc(2*x + exp(x))

```

\section*{Fresnel Cosine Integral for Symbolic Vectors and Arrays}

Find the Fresnel cosine integral for elements of vector V and matrix M :
```

syms x
V = [sin(x) 2i -7];
M = [0 2; i exp(x)];
fresnelc(V)
fresnelc(M)
ans =
[fresnelc(sin(x)), fresnelc(2i), -fresnelc(7)]
ans =
[0, fresnelc(2)]
[fresnelc(1i), fresnelc(exp(x))]

```

\section*{Plot Fresnel Cosine Integral Function}

Plot the Fresnel cosine integral function from \(x=-5\) to \(x=5\). Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(fresnelc(x),[-5,5])
grid on


\section*{Differentiate and Find Limits of Fresnel Cosine Integral}

The functions diff and limit handle expressions containing fresnelc.

Find the third derivative of the Fresnel cosine integral function:
```

syms x
diff(fresnelc(x),x,3)
ans =

- pi*sin((pi*x^2)/2) - x^2*pi^2*cos((pi*x^2)/2)

```

Find the limit of the Fresnel cosine integral function as \(x\) tends to infinity:
syms \(x\)
limit(fresnelc(x),Inf)
ans =
\(1 / 2\)

\section*{Taylor Series Expansion of Fresnel Cosine Integral}

Use taylor to expand the Fresnel cosine integral in terms of the Taylor series:
```

syms x

```
taylor(fresnelc(x))
ans \(=\)
x - ( \(\left.x^{\wedge} 5^{*} \mathrm{pi}^{\wedge} 2\right) / 40\)

\section*{Simplify Expressions Containing fresnelc}

Use simplify to simplify expressions:
```

syms x
simplify(3*fresnelc(x)+2*fresnelc(-x))
ans =
fresnelc(x)

```

\section*{Input Arguments}

\section*{z - Upper limit on Fresnel cosine integral}
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel cosine integral, specified as a numeric value, vector, matrix, or as a multidimensional array, or a symbolic variable, expression, vector, matrix, or function.

\section*{Definitions}

\section*{Fresnel Cosine Integral}

The Fresnel cosine integral of \(z\) is
\[
\operatorname{fresnelc}(z)=\int_{0}^{z} \cos \left(\frac{\pi t^{2}}{2}\right) d t
\]

\section*{Algorithms}
fresnelc is analytic throughout the complex plane. It satisfies fresnelc \((-z)=-\operatorname{fresnelc}(z)\), \(\operatorname{conj}(\operatorname{fresnelc}(z))=\operatorname{fresnelc}(\operatorname{conj}(z))\), and fresnelc \(\left(i^{*} z\right)=\mathrm{i}^{*} \operatorname{fresnelc}(z)\) for all complex values of \(z\).
fresnelc returns special values for \(z=0, z= \pm \infty\), and \(z= \pm \mathrm{i} \infty\) which are \(0, \pm 5\), and \(\pm 0.5 \mathrm{i}\). fresnelc( \(z\) ) returns symbolic function calls for all other symbolic values of \(z\).

\section*{See Also}
erf|fresnels

\section*{Introduced in R2014a}

\section*{fresnels}

Fresnel sine integral function

\section*{Syntax}

\section*{fresnels(z)}

\section*{Description}
fresnels (z) returns the Fresnel sine integral on page 4-724 of \(z\).

\section*{Examples}

\section*{Fresnel Sine Integral Function for Numeric and Symbolic Arguments}

Find the Fresnel sine integral function for these numbers. Since these are not symbolic objects, you receive floating-point results.
```

fresnels([-2 0.001 1.22+0.31i])
ans =
-0.3434 + 0.0000i 0.0000 + 0.0000i 0.7697 + 0.2945i

```

Find the Fresnel sine integral function symbolically by converting the numbers to symbolic objects:
```

y = fresnels(sym([-2 0.001 1.22+0.31i]))
y =
[-fresnels(2), fresnels(1/1000), fresnels(61/50 + 31i/100)]

```

Use vpa to approximate the results:
vpa(y)
[ - 0.34341567836369824219530081595807, 0.00000000052359877559820659249174920261227,...
\(0.76969209233306959998384249252902+0.29449530344285433030167256417637\) i]

\section*{Fresnel Sine Integral for Special Values}

Find the Fresnel sine integral function for special values:
```

fresnels([0 Inf -Inf i*Inf -i*Inf])
ans =
0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i 0.0000-0.5000i...
0.0000 + 0.5000i

```

\section*{Fresnel Sine Integral for Symbolic Functions}
```

Find the Fresnel sine integral for the function }\operatorname{exp}(x)+2*x

```

\section*{syms \(x\)}
```

f = symfun(exp(x)+2*x,x);

```
fresnels(f)
```

ans(x)=
fresnels(2*x + exp(x))

```

\section*{Fresnel Sine Integral for Symbolic Vectors and Arrays}

Find the Fresnel sine integral for elements of vector V and matrix M :
```

syms x
V = [sin(x) 2i -7];
M = [0 2; i exp(x)];
fresnels(V)
fresnels(M)
ans =
[fresnels(sin(x)), fresnels(2i), -fresnels(7)]
ans =
[0, fresnels(2)]
[fresnels(li), fresnels(exp(x))]

```

\section*{Plot Fresnel Sine Integral Function}

Plot the Fresnel sine integral function from \(x=-5\) to \(x=5\). Prior to R2016a, use ezplot instead of fplot.
syms \(x\)
fplot(fresnels(x), [-5,5])
grid on


\section*{Differentiate and Find Limits of Fresnel Sine Integral}

The functions diff and limit handle expressions containing fresnels.

Find the fourth derivative of the Fresnel sine integral function:
```

syms x
diff(fresnels(x),x,4)
ans =

- 3*x*pi^2*}\operatorname{sin}((pi*\mp@subsup{x}{}{\wedge}2)/2) - x^3*pi^3* cos((pi*x^2)/2

```

Find the limit of the Fresnel sine integral function as \(x\) tends to infinity:
syms \(x\)
limit(fresnels(x), Inf)
ans =
\(1 / 2\)

\section*{Taylor Series Expansion of Fresnel Sine Integral}

Use taylor to expand the Fresnel sine integral in terms of the Taylor series:
syms x
taylor(fresnels(x))
ans =
\(\left(p i^{*} x^{\wedge} 3\right) / 6\)

\section*{Simplify Expressions Containing fresnels}

Use simplify to simplify expressions:
```

syms x
simplify(3*fresnels(x)+2*fresnels(-x))
ans =
fresnels(x)

```

\section*{Input Arguments}

\section*{z - Upper limit on the Fresnel sine integral}
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel sine integral, specified as a numeric value, vector, matrix, or a multidimensional array or as a symbolic variable, expression, vector, matrix, or function.

\section*{Definitions}

\section*{Fresnel Sine Integral}

The Fresnel sine integral of \(z\) is
\[
\text { fresnels }(z)=\int_{0}^{z} \sin \left(\frac{\pi t^{2}}{2}\right) d t
\]

\section*{Algorithms}

The fresnels(z) function is analytic throughout the complex plane. It satisfies fresnels(-z) \(=\)-fresnels(z), conj(fresnels(z)) \(=\) fresnels(conj(z)), and fresnels(i*z) = \(i^{*}\) fresnels(z) for all complex values of \(z\).
\(\mathrm{fresnels}(z)\) returns special values for \(z=0, z= \pm \infty\), and \(z= \pm \mathrm{i} \infty\) which are \(0, \pm 5\), and \(\mp 0.5 \mathrm{i}\). fresnels( \(z\) ) returns symbolic function calls for all other symbolic values of \(z\).

\author{
See Also \\ erf|fresnelc
}

\section*{Introduced in R2014a}

\section*{fsurf}

Plot 3-D surface

\section*{Syntax}
```

fsurf(f)
fsurf(f,[min max])
fsurf(f,[xmin xmax ymin ymax])
fsurf(funx,funy,funz)
fsurf(funx,funy,funz,[uvmin uvmax])
fsurf(funx,funy,funz,[umin umax vmin vmax])
fsurf(___,LineSpec)
fsurf(___,Name,Value)
fsurf(ax,

```
\(\qquad\)
```

fs = fsurf(

```
\(\qquad\)

\section*{Description}
fsurf( \(f\) ) creates a surface plot of the symbolic expression \(f(x, y)\) over the default interval [-5 5] for \(x\) and \(y\).
fsurf(f,[min max]) plots \(f(x, y)\) over the interval [min max] for \(x\) and \(y\).
fsurf(f,[xmin xmax ymin ymax]) plots \(f(x, y)\) over the interval [xmin xmax] for \(x\) and [ymin \(y m a x\) ] for \(y\).
fsurf(funx,funy,funz) plots the parametric surface \(x=x(u, v), y=y(u, v), z=\) \(z(u, v)\) over the interval [-5 5] for \(u\) and \(v\).
fsurf(funx,funy,funz,[uvmin uvmax]) plots the parametric surface \(x=x(u, v)\), \(y=y(u, v), z=z(u, v)\) over the interval [uvmin uvmax] for \(u\) and \(v\).
fsurf(funx,funy,funz,[umin umax vmin vmax]) plots the parametric surface \(x=\) \(x(u, v), y=y(u, v), z=z(u, v)\) over the interval [umin umax] for \(u\) and [vmin vmax] for \(v\).
fsurf (__ , LineSpec) uses LineSpec to set the line style, marker symbol, and face color.
fsurf( ,Name, Value) specifies line properties using one or more Name, Value pair arguments. Use this option with any of the input argument combinations in the previous syntaxes.
fsurf(ax, ___ ) plots into the axes with the object ax instead of the current axes object gca.
fs \(=\) fsurf (__ ) returns a function surface object or parameterized function surface object, depending on the type of surface. Use the object to query and modify properties of a specific surface. For details, see Function Surface and Parameterized Function Surface.

\section*{Examples}

\section*{3-D Surface Plot of Symbolic Expression}

Plot the input \(\sin (x)+\cos (y)\) over the default range \(-5<x<5\) and \(-5<y<5\).
syms x y
fsurf(sin(x)+cos(y))


\section*{3-D Surface Plot of Symbolic Function}

Plot the real part of \(\tan ^{-1}(x+i y)\) over the default range \(-5<x<5\) and \(-5<y<5\).
syms \(f(x, y)\)
\(f(x, y)=\operatorname{real}(\operatorname{atan}(x+i * y)) ;\)
fsurf(f)


\section*{Specify Plotting Interval of Surface Plot}

Plot \(\sin (x)+\cos (y)\) over \(-\pi<x<\pi\) and \(-5<y<5\) by specifying the plotting interval as the second argument of fsurf.
syms \(x\) y
\(f=\sin (x)+\cos (y) ;\)
fsurf(f, [-pi pi -5 5])


\section*{Parameterized Surface Plot}

Plot the parameterized surface
\[
\text { for } 0<s<2 \pi \text { and } 0<t<\pi \text {. }
\]
\[
\begin{aligned}
& x=r \cos (s) \sin (t) \\
& y=r \sin (s) \sin (t) \\
& z=r \cos (t) \\
& \text { where } \quad r=2+\sin (7 s+5 t)
\end{aligned}
\]

Improve the plot's appearance by using camlight.
```

 syms s t
 r = 2 + sin(7*s + 5*t);
 x = r*}\operatorname{cos(s)*sin(t);
 y = r*sin(s)*sin(t);
 z = r*}\operatorname{cos(t);
 fsurf(x, y, z, [0 2*pi 0 pi])
 camlight
 view(46,52)

```


\section*{Add Title and Axis Labels and Format Ticks}

For \(x\) and \(y\) from \(-2 \pi\) to \(2 \pi\), plot the 3-D surface \(y \sin (x)-x \cos (y)\). Add a title and axis labels.

Create the x -axis ticks by spanning the x -axis limits at intervals of pi/2. Convert the axis limits to precise multiples of \(\mathrm{pi} / 2\) by using round and get the symbolic tick values in S . Display these ticks by using the XTick property. Create x -axis labels by using arrayfun to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.
```

syms x y
fsurf(y.*sin(x)-x.*\operatorname{cos(y), [-2*pi 2*pi])}
title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]')
xlabel('x')
ylabel('y')
zlabel('z')
ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);
S = sym(ax.YLim(1):pi/2:ax.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);

```

\section*{\(y \sin (x)-x \cos (y)\) for \(x\) and \(y\) in \([-2 \pi, 2 \pi]\)}


\section*{Line Style and Width for Surface Plot}

Plot the parametric surface \(x=s \sin (t), y=-s \cos (t), z=t\) with different line styles for different values of \(t\). For \(-5<t<-2\), use a dashed line with green dot markers. For \(-2<t<2\), use a LineWidth of 1 and a green face color. For \(2<t<5\), turn off the lines by setting EdgeColor to none.
```

syms s t
fsurf(s*sin(t),-s*\operatorname{cos(t),t,[-5 5 -5 -2],'--.','MarkerEdgeColor','g')}
hold on

```
```

 fsurf(s*sin(t),-s*cos(t),t,[-5 5 -2 2],'LineWidth',1,'FaceColor','g')
 fsurf(s*sin(t),-s*cos(t),t,[-5 5 2 5],'EdgeColor','none')
    ```


\section*{Modify Surface After Creation}

Plot the parametric surface
\[
\begin{gathered}
x=e^{-|u| / 10} \sin (5|v|) \\
y=e^{-|u| / 10} \cos (5|v|) \\
z=u .
\end{gathered}
\]

Specify an output to make fcontour return the plot object.
```

 syms u v
 x = exp(-abs(u)/10).*sin(5*abs(v));
 y = exp(-abs(u)/10).*cos(5*abs(v));
z = u;
fs = fsurf(x,y,z)

```

fs \(=\)
ParameterizedFunctionSurface with properties:
XFunction: [ \(1 \times 1\) sym]
YFunction: \(\left[\begin{array}{ll}1 \times 1 & \text { sym }\end{array}\right]\)
ZFunction: \(\left[\begin{array}{ll}1 \times 1 & \text { sym }\end{array}\right]\)
```

EdgeColor: [0 0 0]
LineStyle: '-'
FaceColor: 'interp'

```
```

Show all properties

```

Change the range of \(u\) to [-30 30] by using the URange property of fs. Set the line color to blue by using the EdgeColor property and specify white, dot markers by using the Marker and MarkerEdgeColor properties.
fs.URange = [-30 30];
fs.EdgeColor = 'b';
fs.Marker = '.';
fs.MarkerEdgeColor = 'w';


\section*{Multiple Surface Plots and Transparent Surfaces}

Plot multiple surfaces using vector input to fsurf. Alternatively, use hold on to plot successively on the same figure. When displaying multiple surfaces on the same figure, transparency is useful. Adjust the transparency of surface plots by using the FaceAlpha property. FaceAlpha varies from 0 to 1 , where 0 is full transparency and 1 is no transparency.

Plot the planes \(x+y\) and \(x-y\) using vector input to fsurf. Show both planes by making them half transparent using FaceAlpha.
```

 syms x y
 h = fsurf([x+y x-y]);
 h(1).FaceAlpha = 0.5;
 h(2).FaceAlpha = 0.5;
 title('Planes (x+y) and (x-y) at half transparency')
    ```

\section*{Planes ( \(x+y\) ) and ( \(x-y\) ) at half transparency}


\section*{Control Resolution of Surface Plot}

Control the resolution of a surface plot using the 'MeshDensity ' option. Increasing 'MeshDensity ' can make smoother, more accurate plots while decreasing it can increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the parametric surface \(x=\sin (s), y=\cos (s)\), and \(z=(t / 10) \sin (1 / s)\). The surface has a large gap. Fix this issue by increasing the 'MeshDensity' to 40 in the second subplot. fsurf fills the gap showing that by increasing 'MeshDensity ' you increased the plot's resolution.
```

syms s t

```
subplot (2,1,1)
fsurf(sin(s), cos(s), t/10.*sin(1./s))
view(-172,25)
title('Default MeshDensity = 35')
subplot (2,1,2)
fsurf(sin(s), cos(s), t/10.*sin(1./s),'MeshDensity',40)
view (-172,25)
title('Increased MeshDensity = 40')


\section*{Show Contours Below Surface Plot}

Show contours for the surface plot of the expression \(f\) by setting the 'ShowContours ' option to ' on'.
syms \(x\) y
f = 3* (1-x \()^{\wedge} 2^{*} \exp \left(-\left(x^{\wedge} 2\right)-(y+1)^{\wedge} 2\right) \ldots\)
- 10* \(\left(x / 5-x^{\wedge} 3-y^{\wedge} 5\right) * \exp \left(-x^{\wedge} 2-y^{\wedge} 2\right) \ldots\)
\(-1 / 3 * \exp \left(-(x+1)^{\wedge} 2-y^{\wedge} 2\right)\);
fsurf(f,[-3 3],'ShowContours','on')


\section*{Create Animations of Surface Plots}

Create animations by changing the displayed expression using the Function, XFunction, YFunction, and ZFunction properties and then by using drawnow to update the plot. To export to GIF, see imwrite.

By varying the variable \(i\) from 1 to 3 , animate the parametric surface
\[
\begin{aligned}
& x=t \sin (s) \\
& y=\cos (s) \\
& z=\sin \left(\frac{i}{s}\right) .
\end{aligned}
\]
for \(-0.1<u<0.1\) and \(0<v<1\). Increase plotting speed by reducing MeshDensity to 9 .
```

syms s t
h = fsurf(t.*sin(s), cos(s), sin(1./s), [-0.1 0.1 0 1]);
h.MeshDensity = 9;
for i=1:0.05:3
h.ZFunction = sin(i./s);
drawnow
end

```


\section*{Improve Appearance of Surface Plot}

Plot the expression f. Improve the appearance of the surface plot by using the properties of the handle returned by fsurf, the lighting properties, and the colormap.

Create a light by using camlight. Increase brightness by using brighten. Remove the lines by setting EdgeColor to ' none'. Increase the ambient light using AmbientStrength. For details, see "Lighting Overview" (MATLAB). Turn the axes box on. For the title, convert \(f\) to LaTeX using latex. Finally, to improve the appearance of the axes ticks, axes labels, and title, set 'Interpreter' to 'latex'.
```

syms x y
f=3*(1-x)^2*exp(-(x^2)-(y+1)^2)...

```
```

 - 10*(x/5 - x^3 - y^5)*exp(-x^2- y^2)...
 - 1/3*exp(-(x+1)^2 - y^2);
 h = fsurf(f,[-3 3]);
camlight(110,70)
brighten(0.6)
h.EdgeColor = 'none';
h.AmbientStrength = 0.4;
a = gca;
a.TickLabelInterpreter = 'latex';
a.Box = 'on';
a.BoxStyle = 'full';
xlabel('x','Interpreter','latex')
ylabel('y','Interpreter','latex')
zlabel('z','Interpreter','latex')
title_latex = ['$' latex(f) '$'];
title(title_latex,'Interpreter','latex')

```


\section*{Input Arguments}
\(f\) - 3-D expression or function to be plotted
symbolic expression | symbolic function
Expression or function to be plotted, specified as a symbolic expression or function.

\section*{[min max] - Plotting interval for \(x\) - and \(y\)-axes}
[-5 5] (default) | vector of two numbers
Plotting interval for x - and y -axes, specified as a vector of two numbers. The default is [-5 5].

\section*{[xmin xmax ymin ymax] - Plotting interval for \(x\) - and \(y\)-axes [-5 5-5 5] (default) | vector of four numbers}

Plotting interval for x - and y -axes, specified as a vector of four numbers. The default is \(\left[\begin{array}{llll}-5 & 5 & -5 & 5\end{array}\right.\).

\section*{funx, funy, funz - Parametric functions of \(u\) and \(v\)}
symbolic expressions | symbolic functions
Parametric functions of \(u\) and \(v\), specified as a symbolic expression or function.

\section*{[uvmin uvmax] - Plotting interval for \(u\) and \(v\) [-5 5] (default) | vector of two numbers}

Plotting interval for \(u\) and \(v\) axes, specified as a vector of two numbers. The default is [-5 5].

\section*{[umin umax vmin vmax] - Plotting interval for \(u\) and \(v\) [-5 5-5 5] (default) | vector of four numbers}

Plotting interval for \(u\) and \(v\), specified as a vector of four numbers. The default is [-5 5 -5 5].
ax - Axes object
axes object
Axes object. If you do not specify an axes object, then fsurf uses the current axes.

\section*{LineSpec - Line style, marker symbol, and face color character vector}

Line style, marker symbol, and color, specified as a character vector. The elements of the character vector can appear in any order, and you can omit one or more options from the character vector specifier.
Example: ' - - or' is a red surface with circle markers and dashed lines
\begin{tabular}{|l|l|}
\hline Specifier & Line Style \\
\hline- & Solid line (default) \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Line Style \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Marker \\
\hline o & Circle \\
\hline+ & Plus sign \\
\hline\(*\) & Asterisk \\
\hline . & Point \\
\hline x & Cross \\
\hline s & Square \\
\hline d & Diamond \\
\hline n & Upward-pointing triangle \\
\hline v & Downward-pointing triangle \\
\hline\(>\) & Right-pointing triangle \\
\hline\(<\) & Left-pointing triangle \\
\hline p & Pentagram \\
\hline h & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Specifier & Color \\
\hline y & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.
```

Example:'Marker','o','MarkerFaceColor','red'

```

The properties listed here are only a subset. For a complete list, see Function Surface.

\section*{MeshDensity - Number of evaluation points per direction 35 (default) | number}

Number of evaluation points per direction, specified as a number. The default is 35 . Because fsurf objects use adaptive evaluation, the actual number of evaluation points is greater.

Example: 100

\section*{ShowContours - Display contour plot under plot \\ 'off' (default)|'on'}

Display contour plot under plot, specified as 'off' (default) or 'on'.

\section*{EdgeColor - Line color}
```

[0 0 0] (default)|'interp'|'none'|RGB triplet|'r'|'g'|'b'|...

```

Line color, specified as 'interp ', an RGB triplet, or one of the color options listed in the table. The default RGB triplet value of [0 0 0] corresponds to black. The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red ' or ' \(r^{\prime}\) & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green ' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white ' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

\section*{LineStyle - Line style}
'- ' (default)|'--'|':'|' - .' | 'none'
Line style, specified as one of the options listed in this table.
\begin{tabular}{|c|c|c|}
\hline Line Style & Description & Resulting Line \\
\hline ' - ' & Solid line & \\
\hline '--' & Dashed line & - - - - \\
\hline ':' & Dotted line & ................ \\
\hline . ' & Dash-dotted line & --------- \\
\hline 'none' & No line & No line \\
\hline
\end{tabular}

\section*{LineWidth - Line width}
0.5 (default) | positive value

Line width, specified as a positive value in points. If the line has markers, then the line width also affects the marker edges.

Example: 0.75

\section*{Marker - Marker symbol}
'none' (default) |'o'|'+'|'*'|'.'|'x'|'s'|'d'|...
Marker symbol, specified as one of the values in this table. By default, a line does not have markers. Add markers at selected points along the line by specifying a marker.
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline 'o' & Circle \\
\hline '+' & Plus sign \\
\hline '*' & Asterisk \\
\hline '.' & Point \\
\hline 'x' & Cross \\
\hline 'square' or 's' & Square \\
\hline 'diamond ' or 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline '>' & Right-pointing triangle \\
\hline '<' & Left-pointing triangle \\
\hline 'pentagram' or 'p' & Five-pointed star (pentagram) \\
\hline 'hexagram' or 'h' & Six-pointed star (hexagram) \\
\hline 'none' & No markers \\
\hline
\end{tabular}

\section*{MarkerEdgeColor - Marker outline color}
'auto' (default)|RGB triplet|'r'|'g'|'b'|...
Marker outline color, specified as 'auto' , an RGB triplet, or one of the color options listed in the table. The default value of 'auto' uses the same color as the EdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'red' or 'r' & Red & {\(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\)} \\
\hline 'green' or 'g' & Green & {\(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\)} \\
\hline 'blue' or 'b' & Blue & {\(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\)} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Option & Description & Equivalent RGB Triplet \\
\hline 'yellow' or 'y' & Yellow & {\(\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]\)} \\
\hline 'magenta' or 'm' & Magenta & {\(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]\)} \\
\hline 'cyan' or 'c' & Cyan & {\(\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\)} \\
\hline 'white' or 'w' & White & {\(\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\)} \\
\hline 'black' or 'k' & Black & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\)} \\
\hline 'none' & No color & Not applicable \\
\hline
\end{tabular}

Example: [0.5 0.5 0.5]
Example: 'blue'

\section*{MarkerFaceColor - Marker fill color}
' none' (default) | 'auto' | RGB triplet \| 'r' | 'g' | 'b' | ...
Marker fill color, specified as 'auto', an RGB triplet, or one of the color options listed in the table. The 'auto' value uses the same color as the MarkerEdgeColor property.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by name. This table lists the long and short color name options and the equivalent RGB triplet values.
\(\left.\begin{array}{|l|l|l|}\hline \text { Option } & \text { Description } & \text { Equivalent RGB Triplet } \\ \hline \text { 'red' or 'r' } & \text { Red } & {\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]} \\ \hline \text { 'green ' or 'g' } & \text { Green } & {\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]} \\ \hline \text { 'blue' or 'b' } & \text { Blue } & {\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]} \\ \hline \text { 'yellow' or 'y' } & 1 & 0\end{array}\right]\)

Example: [0.3 0.2 0.1]

\section*{Example: 'green'}

\section*{MarkerSize - Marker size}

6 (default) | positive value
Marker size, specified as a positive value in points.

\section*{Example: 10}

\section*{Output Arguments}

\section*{fs - One or more objects}
scalar | vector
One or more objects, returned as a scalar or a vector. The object is either a function surface object or parameterized surface object, depending on the type of plot. You can use these objects to query and modify properties of a specific line. For details, see Function Surface and Parameterized Function Surface.

\section*{See Also}

\section*{Functions}
fcontour| fimplicit|fimplicit3|fmesh|fplot|fplot3

\section*{Properties}

Function Surface | Parameterized Function Surface

\section*{Topics}
"Create Plots" on page 2-245

\section*{Introduced in R2016a}

\section*{functionalDerivative}

\author{
Functional derivative
}

\section*{Syntax}

D = functionalDerivative(f,y)

\section*{Description}

D = functionalDerivative( \(\mathrm{f}, \mathrm{y}\) ) returns the "Functional Derivative" on page 4-756
of the functional \(F=\int f\left(x, y(x), y^{\prime}(x) \ldots\right) d x\) with respect to the function \(y=y(x)\), where \(x\) represents one or more independent variables. If y is a vector of symbolic functions, functionalDerivative returns a vector of functional derivatives with respect to the functions in \(y\), where all functions in \(y\) must depend on the same independent variables.

\section*{Examples}

\section*{Find Functional Derivative}

Find the functional derivative of the function given by \(f(y)=y(x) \sin (y(x))\) with respect to the function \(y\).
```

syms y(x)
f = y*sin(y);
D = functionalDerivative(f,y)
D(x) =
sin(y(x)) + cos(y(x))*y(x)

```

\section*{Find Functional Derivative of Vector of Functionals}

Find the functional derivative of the function given by \(H(u, v)=u^{2} \frac{d v}{d x}+v \frac{d^{2} u}{d x^{2}}\) with
respect to the functions u and v .
```

syms u(x) v(x)
H = u^2*diff(v,x)+v*diff(u,x,x);
D = functionalDerivative(H,[u v])
D(x) =
2*u(x)*diff(v(x), x) + diff(v(x), x, x)
diff(u(x), x, x) - 2*u(x)*diff(u(x), x)

```
functionalDerivative returns a vector of symbolic functions containing the functional derivatives of H with respect to u and v , respectively.

\section*{Find Euler-Lagrange Equation for Spring}

First find the Lagrangian for a spring with mass \(m\) and spring constant \(k\), and then derive the Euler-Lagrange equation. The Lagrangian is the difference of kinetic energy T and potential energy \(V\) which are functions of the displacement \(x(t)\).
```

syms m k x(t)
T = sym(1)/2*m*diff(x,t)^2;
V = sym(1)/2*k*x^2;
L = T - V
L(t) =
(m*diff(x(t), t)^2)/2 - (k*x(t)^2)/2

```

Find the Euler-Lagrange equation by finding the functional derivative of \(L\) with respect to \(x\), and equate it to 0 .
```

eqn = functionalDerivative(L,x) == 0
eqn(t) =

- m*diff(x(t), t, t) - k*x(t) == 0

```
\(\operatorname{diff}(x(t), t, t)\) is the acceleration. The equation eqn represents the expected differential equation that describes spring motion.

Solve eqn using dsolve. Obtain the expected form of the solution by assuming mass \(m\) and spring constant k are positive.
```

assume(m,'positive')
assume(k,'positive')
xSol = dsolve(eqn,x(0) == 0)
xSol =
-C3*sin((k^(1/2)*t)/m^(1/2))

```

Clear assumptions for further calculations.
```

assume([k m],'clear')

```

\section*{Find Differential Equation for Brachistochrone Problem}

The Brachistochrone problem is to find the quickest path of descent under gravity. The time for a body to move along a curve \(y(x)\) under gravity is given by
\[
f=\sqrt{\frac{1+y^{, 2}}{2 g y}}
\]
where \(g\) is the acceleration due to gravity.
Find the quickest path by minimizing \(f\) with respect to the path \(y\). The condition for \(a\) minimum is
\[
\frac{\delta f}{\delta y}=0
\]

Compute this condition to obtain the differential equation that describes the Brachistochrone problem. Use simplify to simplify the solution to its expected form.
```

syms g y(x)
assume(g,'positive')
f = sqrt((1+diff(y)^2)/(2*g*y));
eqn = functionalDerivative(f,y) == 0;
eqn = simplify(eqn)
eqn(x) =
diff(y(x), x)^2 + 2*y(x)*diff(y(x), x, x) == -1

```

This equation is the standard differential equation for the Brachistochrone problem.

\section*{Find Minimal Surface in 3-D Space}

If the function \(u(x, y)\) describes a surface in 3-D space, then the surface area is found by the functional
\[
F(u)=\iint f\left(x, y, u, u_{x}, u_{y}\right) d x d y=\iint \sqrt{1+u_{x}^{2}+u_{y}^{2}} d x d y
\]
where \(u_{x}\) and \(u_{y}\) are the partial derivatives of \(u\) with respect to \(x\) and \(y\).
Find the equation that describes the minimal surface for a 3-D surface described by the function \(u(x, y)\) by finding the functional derivative of \(f\) with respect to \(u\).
```

syms u(x,y)
f = sqrt(1 + diff(u,x)^2 + diff(u,y)^2);
D = functionalDerivative(f,u)
D(x, y) =
-(diff(u(x, y), y)^2*diff(u(x, y), x, x)...

+ diff(u(x, y), x)^2*diff(u(x, y), y, y)...
 - 2*diff(u(x, y), x)*diff(u(x, y), y)*diff(u(x, y), x, y)...
 + diff(u(x, y), x, x)...
 + diff(u(x, y), y, y))/(diff(u(x, y), x)^2...
 + diff(u(x, y), y)^2 + 1)^(3/2)

```

The solutions to this equation D describe minimal surfaces in 3-D space such as soap bubbles.

\section*{Input Arguments}

\section*{f - Expression to find functional derivative of \\ symbolic variable | symbolic function | symbolic expression}

Expression to find functional derivative of, specified as a symbolic variable, function, or expression. The argument f represents the density of the functional.

\section*{y - Differentiation function}
symbolic function | vector of symbolic functions | matrix of symbolic functions | multidimensional array of symbolic functions

Differentiation function, specified as a symbolic function or a vector, matrix, or multidimensional array of symbolic functions. The argument y can be a function of one or more independent variables. If \(y\) is a vector of symbolic functions, functionalDerivative returns a vector of functional derivatives with respect to the functions in \(y\), where all functions in \(y\) must depend on the same independent variables.

\section*{Output Arguments}

\section*{D - Functional derivative}

\section*{symbolic function | vector of symbolic functions}

Functional derivative, returned as a symbolic function or a vector of symbolic functions. If input y is a vector, then D is a vector.

\section*{Definitions}

\section*{Functional Derivative}

Consider functionals
\[
F(y)=\int_{\Omega} f\left(x, y(x), y^{\prime}(x), y^{\prime}(x), \ldots\right) d x
\]
where \(\Omega\) is a region in \(x\)-space.
For a small change in the value of \(y, \delta y\), the change in the functional \(F\) is
\[
\frac{\delta F}{\delta y}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} F(y+\varepsilon \delta y)=\int_{\Omega} \frac{\delta f(x)}{\delta y} \delta y(x) d x+\text { boundary terms }
\]

The expression \(\frac{\delta f(x)}{\delta y}\) is the functional derivative of \(f\) with respect to \(y\).

\section*{See Also}
diff|dsolve|int

\section*{Topics}
"Functional Derivatives Tutorial" on page 2-46

Introduced in R2015a

\section*{funm}

General matrix function

\section*{Syntax}
\[
F=f u n m(A, f)
\]

\section*{Description}
\(F=\) funm \((A, f)\) computes the function \(f(A)\) for the square matrix \(A\). For details, see "Matrix Function" on page 4-763.

\section*{Examples}

\section*{Matrix Cube Root}

Find matrix \(B\), such that \(B^{3}=A\), where \(A\) is a 3 -by- 3 identity matrix.
To solve \(B^{3}=A\), compute the cube root of the matrix \(A\) using the funm function. Create the symbolic function \(f(x)=x^{\wedge}(1 / 3)\) and use it as the second argument for funm. The cube root of an identity matrix is the identity matrix itself.
```

A = sym(eye(3))

```
```

syms f(x)
f(x) = x^(1/3);
B = funm(A,f)
A =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
B =

```
```

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

```

Replace one of the 0 elements of matrix \(A\) with 1 and compute the matrix cube root again.
```

A(1,2) = 1
B = funm(A,f)
A =
[1, 1, 0]
[0, 1, 0]
[0, 0, 1]
B =
[1, 1/3, 0]
[0, 1, 0]
[0, 0, 1]

```

Now, compute the cube root of the upper triangular matrix.
```

A(1:2,2:3) = 1
B = funm(A,f)
A =
[1, 1, 1]
[0, 1, 1]
[0, 0, 1]
B =
[1, 1/3, 2/9]
[0, 1, 1/3]
[0, 0, 1]

```

Verify that \(B^{3}=A\).
B^3
```

ans =
[1, 1, 1]
[0, 1, 1]
[0, 0, 1]

```

\section*{Matrix Lambert W Function}

Find the matrix Lambert W function.
First, create a 3-by-3 matrix A using variable-precision arithmetic with five digit accuracy. In this example, using variable-precision arithmetic instead of exact symbolic numbers lets you speed up computations and decrease memory usage. Using only five digits helps the result to fit on screen.
```

savedefault = digits(5);
A = vpa(magic(3))
A =
[8.0, 1.0, 6.0]
[3.0, 5.0, 7.0]
[4.0, 9.0, 2.0]

```

Create the symbolic function \(f(x)=\) lambertw \((x)\).
```

syms f(x)
f(x) = lambertw(x);

```

To find the Lambert W function ( \(W_{0}\) branch) in a matrix sense, callfunm using \(f(x)\) as its second argument.
```

W0 = funm(A,f)
W0 =
[1.5335 + 0.053465i, 0.11432 + 0.47579i, 0.36208 - 0.52925i]
[0.21343 + 0.073771i, 1.3849 + 0.65649i, 0.41164 - 0.73026i]
[0.26298 - 0.12724i, 0.51074 - 1.1323i, 1.2362 + 1.2595i]

```

Verify that this result is a solution of the matrix equation \(A=W 0 \cdot e^{W 0}\) within the specified accuracy.
```

W0*expm(W0)
ans =
[8.0, 1.0 - 5.6843e-13i, 6.0 + 1.1369e-13i]
[3.0 - 2.2737e-13i, 5.0 - 2.8422e-14i, 7.0 - 4.1211e-13i]
[4.0 - 2.2737e-13i, 9.0 - 9.9476e-14i, 2.0 + 1.4779e-12i]

```

Now, create the symbolic function \(f(x)\) representing the branch \(W_{-1}\) of the Lambert W function.
```

f(x) = lambertw(-1,x);

```

Find the \(W_{-1}\) branch for the matrix \(A\).
```

Wm1 = funm(A,f)
Wm1 =
[0.40925 - 4.7154i, 0.54204 + 0.5947i, 0.13764 - 0.80906i]
[0.38028 + 0.033194i, 0.65189 - 3.8732i, 0.056763 - 1.0898i]
[0.2994 - 0.24756i, - 0.105 - 1.6513i, 0.89453 - 3.0309i]

```

Verify that this result is the solution of the matrix equation \(A=W m 1 \cdot \mathrm{e}^{W m 1}\) within the specified accuracy.
```

Wm1*expm(Wm1)
ans =
[8.0 - 8.3844e-13i, 1.0 - 3.979e-13i, 6.0 - 9.0949e-13i]
[3.0 - 9.6634e-13i, 5.0 + 1.684e-12i, 7.0 + 4.5475e-13i]
[4.0 - 1.3642e-12i, 9.0 + 1.6698e-12i, 2.0 + 1.7053e-13i]

```

\section*{Matrix Exponential, Logarithm, and Square Root}

You can use funm with appropriate second arguments to find matrix exponential, logarithm, and square root. However, the more efficient approach is to use the functions expm, logm, and sqrtm for this task.

Create this square matrix and find its exponential, logarithm, and square root.
```

syms x
A = [1 -1; 0 x]
expA = expm(A)
logA = logm(A)
sqrtA = sqrtm(A)
A =
[1, -1]
[0, x]
expA =
[exp(1), (exp(1) - exp(x))/(x - 1)]
[0, exp(x)]
logA =

```
```

[0, -log(x)/(x - 1)]
[0, log(x)]
sqrtA =
[1, 1/(x - 1) - x^(1/2)/(x - 1)]
[0, x^(1/2)]

```

Find the matrix exponential, logarithm, and square root of A using funm. Use the symbolic expressions \(\exp (x), \log (x)\), and sqrt ( \(x\) ) as the second argument of funm. The results are identical.
```

expA = funm(A, exp(x))
logA = funm(A, log(x))
sqrtA = funm(A,sqrt(x))
expA =
[exp(1), exp(1)/(x - 1) - exp(x)/(x - 1)]
[0, exp(x)]
logA =
[0, -log(x)/(x - 1)]
[0, log(x)]
sqrtA =
[1, 1/(x - 1) - x^(1/2)/(x - 1)]
[0, x^(1/2)]

```

\section*{Input Arguments}

\section*{A - Input matrix}

\section*{square matrix}

Input matrix, specified as a square symbolic or numeric matrix.

\section*{f - Function}
symbolic function | symbolic expression
Function, specified as a symbolic function or expression.

\section*{Output Arguments}

\section*{F - Resulting matrix}
symbolic matrix
Resulting function, returned as a symbolic matrix.

\section*{Definitions}

\section*{Matrix Function}

Matrix function is a scalar function that maps one matrix to another.
Suppose, \(f(x)\), where \(x\) is a scalar, has a Taylor series expansion. Then the matrix function \(f(A)\), where \(A\) is a matrix, is defined by the Taylor series of \(f(A)\), with addition and multiplication performed in the matrix sense.

If \(A\) can be represented as \(A=P \cdot D \cdot P^{-1}\), where \(D\) is a diagonal matrix, such that
\[
D=\left(\begin{array}{ccc}
d_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & d_{n}
\end{array}\right)
\]
then the matrix function \(f(A)\) can be computed as follows:
\[
\mathrm{f}(A)=P \cdot\left(\begin{array}{ccc}
\mathrm{f}\left(d_{1}\right) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathrm{f}\left(d_{n}\right)
\end{array}\right) \cdot P^{-1}
\]

Non-diagonalizable matrices can be represented as \(\mathrm{A}=\mathrm{P} \cdot \mathrm{J} \cdot \mathrm{P}^{-1}\), where J is a Jordan form of the matrix \(A\). Then, the matrix function \(f(A)\) can be computed by using the following definition on each Jordan block:
\[
\mathrm{f}\left(\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & \lambda
\end{array}\right)\right)=\left(\begin{array}{ccccc}
\frac{\mathrm{f}(\lambda)}{0!} & \frac{\mathrm{f}^{\prime}(\lambda)}{1!} & \frac{\mathrm{f}^{\prime}(\lambda)}{2!} & \cdots & \frac{\mathrm{f}^{(n-1)}(\lambda)}{(n-1)!} \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \frac{\mathrm{f}^{\prime \prime}(\lambda)}{2!} \\
\vdots & \ddots & \ddots & \ddots & \frac{\mathrm{f}^{\prime}(\lambda)}{1!} \\
0 & \cdots & \cdots & 0 & \frac{\mathrm{f}(\lambda)}{0!}
\end{array}\right)
\]

\section*{Tips}
- For compatibility with the MATLAB funm function, funm accepts the following arguments:
- Function handles such as @exp and @sin, as its second input argument.
- The options input argument, such as funm(A,f,options).
- Additional input arguments of the function \(f\), such as funm(A,f,options,p1,p2,...)
- The exitflag output argument, such as [F,exitflag] = funm(A,f). Here, exitflag is 1 only if the funm function call errors, for example, if it encounters a division by zero. Otherwise, exitflag is 0 .

For more details and a list of all acceptable function handles, see the MATLAB funm function.
- If the input matrix \(A\) is numeric (not a symbolic object) and the second argument f is a function handle, then the funm call invokes the MATLAB funm function.

\section*{See Also}
eig | expm|jordan | logm| sqrtm

\section*{Introduced in R2014b}

\section*{funtool}

\author{
Function calculator
}

\section*{Syntax}
funtool

\section*{Description}
funtool is a visual function calculator that manipulates and displays functions of one variable. At the click of a button, for example, funtool draws a graph representing the sum, product, difference, or ratio of two functions that you specify. funtool includes a function memory that allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, \(f(x)=x\) and \(g(x)=1\). The graphs plot the functions over the domain [-2*pi, 2*pi]. funtool also displays a control panel that lets you save, retrieve, redefine, combine, and transform \(f\) and \(g\).


The top of the control panel contains a group of editable text fields.
\begin{tabular}{|l|l|}
\hline \(\mathbf{f =}\) & \begin{tabular}{l} 
Displays a symbolic expression representing f. Edit this field to \\
redefine f.
\end{tabular} \\
\hline \(\mathbf{g =}\) & \begin{tabular}{l} 
Displays a symbolic expression representing g. Edit this field to \\
redefine g.
\end{tabular} \\
\hline \(\mathbf{x =}\) & \begin{tabular}{l} 
Displays the domain used to plot f and g. Edit this field to specify a \\
different domain.
\end{tabular} \\
\hline \(\mathbf{a =}\) & \begin{tabular}{l} 
Displays a constant factor used to modify f (see button \\
descriptions in the next section). Edit this field to change the value \\
of the constant factor.
\end{tabular} \\
\hline
\end{tabular}
funtool redraws \(f\) and \(g\) to reflect any changes you make to the contents of the control panel's text fields.

The bottom part of the control panel contains an array of buttons that transform \(f\) and perform other operations.

The first row of control buttons replaces \(f\) with various transformations of \(f\).
\begin{tabular}{|l|l|}
\hline df/dx & Derivative of \(\mathbf{f}\) \\
\hline int \(\mathbf{f}\) & Integral of f \\
\hline simplify \(\mathbf{f}\) & Simplified form of f , if possible \\
\hline num \(\mathbf{f}\) & Numerator of f \\
\hline den \(\mathbf{f}\) & Denominator of f \\
\hline \(\mathbf{1 / f}\) & Reciprocal of f \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{18}{*}{finv} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The operators int \(\mathbf{f}\) and finv can fail if the corresponding symbolic expressions do not exist in closed form. \\
The second row of buttons translates and scales \(f\) and the domain of \(f\) by a constant factor. To specify the factor, enter its value in the field labeled \(\mathbf{a}=\) on the calculator control panel. The operations are
\end{tabular}} \\
\hline & f+a & Replaces \(f(x)\) by \(f(x)+\) a. \\
\hline & f-a & Replaces \(f(x)\) by \(f(x)\) - a. \\
\hline & f*a & Replaces \(f(x)\) by \(f(x) *\) a. \\
\hline & f/a & Replaces \(f(x)\) by \(f(x)\) / a. \\
\hline & \(\mathbf{f}^{\wedge} \mathbf{a}\) & Replaces \(f(x)\) by \(f(x){ }^{\wedge}\) a. \\
\hline & f(x+a) & Replaces \(f(x)\) by \(f(x+a)\). \\
\hline & f(x*a) & Replaces \(f(x)\) by \(f(x * a)\). \\
\hline & \multicolumn{2}{|l|}{The first four buttons of the third row replace \(f\) with a combination of \(f\) and \(g\).} \\
\hline & f+g & Replaces \(f(x)\) by \(f(x)+g(x)\). \\
\hline & f-g & Replaces \(f(x)\) by \(f(x)-g(x)\). \\
\hline & \(\mathbf{f}^{*} \mathbf{g}\) & Replaces \(f(x)\) by \(f(x) * g(x)\). \\
\hline & f/g & Replaces \(f(x)\) by \(f(x) / \mathrm{g}(\mathrm{x})\). \\
\hline & \multicolumn{2}{|l|}{The remaining buttons on the third row interchange \(f\) and \(g\).} \\
\hline & \(\mathrm{g}=\mathrm{f}\) & Replaces g with f . \\
\hline & swap & Replaces f with g and g with f . \\
\hline & \multicolumn{2}{|l|}{The first three buttons in the fourth row allow you to store and retrieve functions from the calculator's function memory.} \\
\hline & Insert & Adds f to the end of the list of stored functions. \\
\hline
\end{tabular}
\begin{tabular}{|l||l|l|}
\hline Cycle & \begin{tabular}{l} 
Replaces f with the next item on the function \\
list.
\end{tabular} \\
\hline Delete & Deletes f from the list of stored functions. \\
\begin{tabular}{ll} 
The other four buttons on the fourth row perform miscellaneous \\
functions:
\end{tabular} \\
\begin{tabular}{|l|l|}
\hline Reset & Resets the calculator to its initial state. \\
\hline Help & Displays the online help for the calculator. \\
\hline Demo & Runs a short demo of the calculator. \\
\hline Close & Closes the calculator's windows. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
fplot|syms

Introduced before R2006a

\section*{gamma}

Gamma function

\section*{Syntax}
gamma(X)

\section*{Description}
gamma (X) returns the gamma function on page 4-773 of a symbolic variable or symbolic expression \(X\).

\section*{Examples}

\section*{Gamma Function for Numeric and Symbolic Arguments}

Depending on its arguments, gamma returns floating-point or exact symbolic results.
Compute the gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
```

A = gamma([-11/3, -7/5, -1/2, 1/3, 1, 4])
A =

```
0.2466
2.6593
-3.5449
2.6789
1.0000
6.0000

Compute the gamma function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, gamma returns unresolved symbolic calls.
```

symA = gamma(sym([-11/3, -7/5, -1/2, 1/3, 1, 4]))
symA =
[(27*pi*3^(1/2))/(440*gamma(2/3)), gamma(-7/5),...
-2*pi^(1/2), (2*pi*3^(1/2))/(3*gamma(2/3)), 1, 6]

```

Use vpa to approximate symbolic results with floating-point numbers:
```

vpa(symA)
ans =
[0.24658411512650858900694446388517,...
2.6592718728800305399898810505738,...
-3.5449077018110320545963349666823,...
2.6789385347077476336556929409747,...
1.0, 6.0]

```

\section*{Plot Gamma Function}

Plot the gamma function and add grid lines. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(gamma(x))
grid on


\section*{Handle Expressions Containing Gamma Function}

Many functions, such as diff, limit, and simplify, can handle expressions containing gamma.

Differentiate the gamma function, and then substitute the variable \(t\) with the value 1:
```

syms t
u = diff(gamma(t^3 + 1))
ul = subs(u, t, 1)
u =
3*t^2*gamma(t^3 + 1)*psi(t^3 + 1)

```
```

u1 =
3 - 3*eulergamma

```

Approximate the result using vpa:
```

vpa(u1)

```
ans \(=\)
1.2683530052954014181804637297528

Compute the limit of the following expression that involves the gamma function:
```

syms x
limit(x/gamma(x), x, inf)
ans =
0

```

Simplify the following expression:

\section*{syms x}
simplify(gamma(x)*gamma(1 - x))
ans \(=\)
pi/sin(pi*x)

\section*{Input Arguments}

\section*{X - Input}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

\section*{Definitions}

\section*{Gamma Function}

The following integral defines the gamma function:
\[
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
\]

\section*{See Also \\ Introduced before R2006a}
beta|factorial|gammaln|igamma|nchoosek| pochhammer|psi

\section*{gammaln}

Logarithmic gamma function

\section*{Syntax}
```

gammaln(X)

```

\section*{Description}
gammaln \((X)\) returns the logarithmic gamma function for each element of \(X\).

\section*{Examples}

\section*{Logarithmic Gamma Function for Numeric and Symbolic Arguments}

Depending on its arguments, gammaln returns floating-point or exact symbolic results.
Compute the logarithmic gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
```

A = gammaln([1/5, 1/2, 2/3, 8/7, 3])

```
\(A=\)
    \(1.5241 \quad 0.5724 \quad 0.3032 \quad-0.0667 \quad 0.6931\)

Compute the logarithmic gamma function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, gammaln returns results in terms of the gammaln, log , and gamma functions.
```

symA = gammaln(sym([1/5, 1/2, 2/3, 8/7, 3]))
symA =
[gammaln(1/5), log(pi^(1/2)), gammaln(2/3),...
log(gamma(1/7)/7), log(2)]

```

Use vpa to approximate symbolic results with floating-point numbers:
```

vpa(symA)
ans =
[1.5240638224307845248810564939263,...
0.57236494292470008707171367567653,...
0.30315027514752356867586281737201,...
-0.066740877459477468649396334098109,...
0.69314718055994530941723212145818]

```

\section*{Definition of the Logarithmic Gamma Function on Complex Plane}
gammaln is defined for all complex arguments, except negative infinity.
Compute the logarithmic gamma function for positive integer arguments. For such arguments, the logarithmic gamma function is defined as the natural logarithm of the gamma function, gammaln(x) \(=\log (g a m m a(x))\).
```

pos = gammaln(sym([1/4, 1/3, 1, 5, Inf]))
pos =
[log((pi*2^(1/2))/gamma(3/4)), log((2*pi*3^(1/2))/(3*gamma(2/3))), 0, log(24), Inf]

```

Compute the logarithmic gamma function for nonpositive integer arguments. For nonpositive integers, gammaln returns Inf.
```

nonposint = gammaln(sym([0, -1, -2, -5, -10]))
nonposint =
[Inf, Inf, Inf, Inf, Inf]

```

Compute the logarithmic gamma function for complex and negative rational arguments. For these arguments, gammaln returns unresolved symbolic calls.
```

complex = gammaln(sym([i, -1 + 2*i , -2/3, -10/3]))
complex =
[gammaln(li), gammaln(- 1 + 2i), gammaln(-2/3), gammaln(-10/3)]

```

Use vpa to approximate symbolic results with floating-point numbers:
```

vpa(complex)

```
```

ans =
[- 0.65092319930185633888521683150395 - 1.8724366472624298171188533494366i,...

- 3.3739449232079248379476073664725 - 3.4755939462808110432931921583558i,...
1.3908857550359314511651871524423 - 3.1415926535897932384626433832795i,...
- 0.93719017334928727370096467598178 - 12.566370614359172953850573533118i]

```

Compute the logarithmic gamma function of negative infinity:
```

gammaln(sym(-Inf))

```
ans \(=\)
NaN

\section*{Plot Logarithmic Gamma Function}

Plot the logarithmic gamma function on the interval from 0 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(gammaln(x), [0 10])
grid on


To see the negative values better, plot the same function on the interval from 1 to 2 . fplot(gammaln(x), [1 2]) grid on


\section*{Handle Expressions Containing Logarithmic Gamma Function}

Many functions, such as diff and limit, can handle expressions containing lngamma.
Differentiate the logarithmic gamma function:
```

syms x
diff(gammaln(x), x)
ans =
psi(x)

```

Compute the limits of these expressions containing the logarithmic gamma function:
```

syms x
limit(1/gammaln(x), x, Inf)
ans =
0
limit(gammaln(x - 1) - gammaln(x - 2), x, 0)
ans =
log(2) + pi*1i

```

\section*{Input Arguments}

\section*{X - Input}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

\section*{Algorithms}

For single or double input to gammaln(x), \(x\) must be real and positive.
For symbolic input,
- gammaln \((x)\) is defined for all complex \(x\) except the singular points \(0,-1,-2, \ldots\).
- For positive real \(x\), gammaln \((x)\) represents the logarithmic gamma function log(gamma(x)).
- For negative real \(x\) or for complex \(x, \operatorname{gammaln}(x)=\log (\operatorname{gamma}(x))+f(x) 2\) ni where \(f(x)\) is some integer valued function. The integer multiples of \(2 п i\) are chosen such that gammaln( \(x\) ) is analytic throughout the complex plane with a branch cut along the negative real semi axis.
- For negative real \(x\), gammaln \((x)\) is equal to the limit of \(\log (\operatorname{gamma}(x))\) from 'above'.

\section*{See Also}
beta | gamma|log|nchoosek|psi

\section*{Introduced in R2014a}

\section*{gcd}

GCD of numbers and polynomials

\section*{Syntax}
\(G=\operatorname{gcd}(A)\)
\(G=\operatorname{gcd}(A, B)\)
\([G, M]=\operatorname{gcd}(A)\)
\([G, C, D]=\operatorname{gcd}(A, B, X)\)

\section*{Description}
\(G=\operatorname{gcd}(A)\) finds the greatest common divisor of all elements of \(A\).
\(G=\operatorname{gcd}(A, B)\) finds the greatest common divisor of \(A\) and \(B\).
\([G, M]=\operatorname{gcd}(A)\) returns the \(G C D G\) of all elements of \(A\), and returns in \(M\) the linear combination of \(A\) that equals \(G\).
\([G, C, D]=\operatorname{gcd}(A, B, X)\) finds the greatest common divisor of \(A\) and \(B\), and also returns the Bézout coefficients, \(C\) and \(D\), such that \(G=A * C+B * D\), and \(X\) does not appear in the denominator of Cand \(D\). If you do not specify \(X\), then gcd uses the default variable determined by symvar.

\section*{Examples}

\section*{Greatest Common Divisor of Four Integers}

To find the greatest common divisor of three or more values, specify those values as a symbolic vector or matrix.

Find the greatest common divisor of these four integers, specified as elements of a symbolic vector.
```

A = sym([4420, - 128, 8984, -488])
gcd(A)
A =
[4420, -128, 8984, -488]
ans =
4

```

Alternatively, specify these values as elements of a symbolic matrix.
```

A = sym([4420, -128; 8984, -488])
gcd(A)
A =
[4420, -128]
[8984, -488]
ans =
4

```

\section*{Greatest Common Divisor of Rational Numbers}

The greatest common divisor of rational numbers \(a_{1}, a_{2}, \ldots\) is a number \(g\), such that \(\mathrm{g} / \mathrm{a}_{1}, \mathrm{~g} / \mathrm{a}_{2}, \ldots\) are integers, and \(\mathrm{gcd}(\mathrm{g})=1\).

Find the greatest common divisor of these rational numbers, specified as elements of a symbolic vector.
```

gcd(sym([1/4, 1/3, 1/2, 2/3, 3/4]))

```
ans \(=\)
1/12

\section*{Greatest Common Divisor of Complex Numbers}
gcd computes the greatest common divisor of complex numbers over the Gaussian integers (complex numbers with integer real and imaginary parts). It returns a complex number with a positive real part and a nonnegative imaginary part.

Find the greatest common divisor of these complex numbers.
```

gcd(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))

```

\section*{Greatest Common Divisor of Elements of Matrices}

For vectors and matrices, gcd finds the greatest common divisors element-wise. Nonscalar arguments must be the same size.

Find the greatest common divisors for the elements of these two matrices.
```

A = sym([309, 186; 486, 224]);
B = sym([558, 444; 1024, 1984]);
gcd(A,B)
ans =
[3, 6]
[2, 32]

```

Find the greatest common divisors for the elements of matrix A and the value 200. Here, gcd expands 200 into the 2-by-2 matrix with all elements equal to 200.
```

gcd(A,200)

```
ans =
[ 1, 2]
[ 2, 8]

\section*{Greatest Common Divisor of Polynomials}

Find the greatest common divisor of univariate and multivariate polynomials.
Find the greatest common divisor of these univariate polynomials.
```

syms x
gcd(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)
ans =
x - 1

```

Find the greatest common divisor of these multivariate polynomials. Because there are more than two polynomials, specify them as elements of a symbolic vector.
```

syms x y
gcd([x^2*y + x^3, (x + y)^2, x^2 + x* y^2 + x*y + x + y^3 + y])

```

\section*{GCD Is Positive Linear Combination of Inputs}

A theorem in number theory states that the GCD of two numbers is the smallest positive linear combination of those numbers. Show that the GCD is a positive linear combination for 64 and 44.
```

A = sym([64 44]);
[G,M] = gcd(A)
G =
4
M =
[-2, 3]
isequal(G,sum(M.*A))
ans=
logical
l

```

\section*{Bézout Coefficients}

Find the greatest common divisor and the Bézout coefficients of these polynomials. For multivariate expressions, use the third input argument to specify the polynomial variable. When computing Bézout coefficients, gcd ensures that the polynomial variable does not appear in their denominators.

Find the greatest common divisor and the Bézout coefficients of these polynomials with respect to variable x .
```

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, x)
G =
x + y
C =
1/y^2
D =
1/y - x/y^2

```

Find the greatest common divisor and the Bézout coefficients of the same polynomials with respect to variable \(y\).
```

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, y)
G =
x + y
C =
1/x^2
D =
0

```

If you do not specify the polynomial variable, then the toolbox uses symvar to determine the variable.
```

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2)
G =
x + y
C =
1/y^2
D =
1/y - x/y^2

```

\section*{Solution to Diophantine Equation}

Solve the Diophantine equation, \(30 x+56 y=8\), for \(x\) and \(y\).
Find the greatest common divisor and a pair of Bézout coefficients for 30 and 56.
\([G, C, D]=\operatorname{gcd}(\operatorname{sym}(30), 56)\)
G =
2

C =
-13
D =
7
```

C = - 13 and D = 7 satisfy the Bézout's identity, (30*(-13)) + (56*7) = 2.

```

Rewrite Bézout's identity so that it looks more like the original equation. Do this by multiplying by 4 . Use \(==\) to verify that both sides of the equation are equal.
```

isAlways((30*C*4) + (56*D*4) == G*4)
ans =
logical
1

```

Calculate the values of \(x\) and \(y\) that solve the problem.
```

x = C*4
y = D*4
x =
-52
y =
28

```

\section*{Input Arguments}

\section*{A - Input value}

\section*{number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix}

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

\section*{B - Input value}
number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

\section*{X - Polynomial variable \\ symbolic variable}

Polynomial variable, specified as a symbolic variable.

\section*{Output Arguments}

\section*{G - Greatest common divisor}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Greatest common divisor, returned as a symbolic number, variable, expression, function, or a vector or matrix of symbolic numbers, variables, expressions, or functions.

\section*{M - Linear combination of input}
symbolic vector | symbolic matrix | symbolic array
Linear combination of input that equals GCD of input, returned as a symbolic vector, matrix, or array.

\section*{C, D - Bézout coefficients}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Bézout coefficients, returned as symbolic numbers, variables, expressions, functions, or vectors or matrices of symbolic numbers, variables, expressions, or functions.

\section*{Tips}
- Calling gcd for numbers that are not symbolic objects invokes the MATLAB gcd function.
- The MATLAB gcd function does not accept rational or complex arguments. To find the greatest common divisor of rational or complex numbers, convert these numbers to symbolic objects by using sym, and then use gcd.
- Nonscalar arguments must be the same size. If one input argument is nonscalar, then gcd expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

\section*{See Also}
lcm

\section*{Introduced in R2014b}

\section*{ge}

Define greater than or equal to relation

\section*{Syntax}
\(A>=B\) ge( \(A, B\) )

\section*{Description}
\(A>=B\) creates a greater than or equal to relation.
ge \((A, B)\) is equivalent to \(A>=B\).

\section*{Examples}

\section*{Set and Use Assumption Using Greater Than Equal To}

Use assume and the relational operator \(>=\) to set the assumption that \(x\) is greater than or equal to 3 :
```

syms x
assume(x >= 3)

```

Solve this equation. The solver takes into account the assumption on variable x , and therefore returns these two solutions.
```

solve((x-1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
ans =
3
4

```

\section*{Find Values that Satisfy Condition}

Use the relational operator \(>=\) to set this condition on variable x :
```

syms x
cond = (abs(sin(x)) >= 1/2);
for i = 0:sym(pi/12):sym(pi)
if subs(cond, x, i)
disp(i)
end
end

```

Use the for loop with step \(\Pi / 24\) to find angles from 0 to \(\Pi\) that satisfy that condition:
pi/6
pi/4
pi/3
(5*pi)/12
pi/2
(7*pi)/12
(2*pi)/3
(3*pi)/4
(5*pi)/6

\section*{Input Arguments}

\section*{A - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{B - Input \\ number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression}

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{Tips}
- Calling >= or ge for non-symbolic \(A\) and \(B\) invokes the MATLAB ge function. This function returns a logical array with elements set to logical 1 (true) where \(A\) is greater than or equal to \(B\); otherwise, it returns logical 0 (false).
- If both \(A\) and \(B\) are arrays, then these arrays must have the same dimensions. \(A>=B\) returns an array of relations \(A(i, j, \ldots)>=B(i, j, \ldots)\)
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, \(x\) ), and \(B\) is an \(m\)-by- \(n\) matrix, then \(A\) is expanded into \(m\)-by- \(n\) matrix of elements, each set to \(x\).
- The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, \(x>=i\) becomes \(x>=0\), and \(x>=\) \(3+2 *\) i becomes \(x>=3\).

\section*{Alternatives}

You can also define this relation by combining an equation and a greater than relation. Thus, \(A>=B\) is equivalent to \((A>B) \mid(A==B)\).

\section*{See Also}
eq | gt | isAlways | le|lt|ne

\section*{Topics}
"Set Assumptions" on page 1-28

\section*{Introduced in R2012a}

\section*{gegenbauerC}

Gegenbauer polynomials

\section*{Syntax}
gegenbauerC(n,a,x)

\section*{Description}
gegenbauerC ( \(n, a, x\) ) represents the nth-degree Gegenbauer (ultraspherical) polynomial on page 4-797 with parameter a at the point \(x\).

\section*{Examples}

\section*{First Four Gegenbauer Polynomials}

Find the first four Gegenbauer polynomials for the parameter a and variable \(x\).
```

syms a x
gegenbauerC([0, 1, 2, 3], a, x)
ans =
[1, 2*a*x, (2*a^2 + 2*a)*x^2 - a,...
((4*a^3)/3 + 4*a^2 + (8*a)/3)*x^3 + (- 2*a^2 - 2*a)*x]

```

\section*{Gegenbauer Polynomials for Numeric and Symbolic Arguments}

Depending on its arguments, gegenbauerC returns floating-point or exact symbolic results.

Find the value of the fifth-degree Gegenbauer polynomial for the parameter a \(=1 / 3\) at these points. Because these numbers are not symbolic objects, gegenbauerC returns floating-point results.
```

gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])
ans =
0.1520 0.1911 0.1914 0.0672 -0.1483 -0.2188

```

Find the value of the fifth-degree Gegenbauer polynomial for the same numbers converted to symbolic objects. For symbolic numbers, gegenbauerC returns exact symbolic results.
```

gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))
ans =
[26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]

```

\section*{Evaluate Chebyshev Polynomials with Floating-Point Numbers}

Floating-point evaluation of Gegenbauer polynomials by direct calls of gegenbauerC is numerically stable. However, first computing the polynomial using a symbolic variable, and then substituting variable-precision values into this expression can be numerically unstable.

Find the value of the 500th-degree Gegenbauer polynomial for the parameter 4 at \(1 / 3\) and vpa (1/3). Floating-point evaluation is numerically stable.
```

gegenbauerC(500, 4, 1/3)
gegenbauerC(500, 4, vpa(1/3))
ans =
1.9161e+05
ans =
-191609.10250897532784888518393655

```

Now, find the symbolic polynomial C500 = gegenbauerC(500, 4, x), and substitute \(x\) \(=\mathrm{vpa}(1 / 3)\) into the result. This approach is numerically unstable.
```

syms x
C500 = gegenbauerC(500, 4, x);
subs(C500, x, vpa(1/3))
ans =
-8.0178726380235741521208852037291e35

```

Approximate the polynomial coefficients by using vpa, and then substitute \(\mathrm{x}=\) \(\operatorname{sym}(1 / 3)\) into the result. This approach is also numerically unstable.
subs(vpa(C500), x, sym(1/3))
ans \(=\)
-8.1125412405858470246887213923167e36

\section*{Plot Gegenbauer Polynomials}

Plot the first five Gegenbauer polynomials for the parameter \(a=3\). Prior to R2016a, use ezplot instead of fplot.
```

syms x y

```
fplot (gegenbauerC(0:4, 3, x))
axis([-1 1 -10 10])
grid on
ylabel('G_n^3(x)')
title('Gegenbauer polynomials')
legend('G_0^3(x)', 'G_1^3(x)', 'G_2^3(x)', 'G_3^3(x)', 'G_4^3(x)',...
    'Location', 'Best')


\section*{Input Arguments}

\section*{n - Degree of polynomial}
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

\section*{a - Parameter}
number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Parameter, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

\section*{x - Evaluation point}
number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

\section*{Definitions}

\section*{Gegenbauer Polynomials}

Gegenbauer polynomials are defined by this recursion formula.
\[
G(0, a, x)=1, \quad G(1, a, x)=2 a x, \quad G(n, a, x)=\frac{2 x(n+a-1)}{n} G(n-1, a, x)-\frac{n+2 a-2}{n} G(n-2, a, x)
\]

For all real \(a>-1 / 2\), Gegenbauer polynomials are orthogonal on the interval \(-1 \leq x \leq 1\) with respect to the weight function
\[
w(x)=\left(1-x^{2}\right)^{a-\frac{1}{2}}
\]

Chebyshev polynomials of the first and second kinds are a special case of the Gegenbauer polynomials.
\[
\begin{aligned}
& T(n, x)=\frac{n}{2} G(n, 0, x) \\
& U(n, x)=G(n, 1, x)
\end{aligned}
\]

Legendre polynomials are also a special case of the Gegenbauer polynomials.
\[
P(n, x)=G\left(n, \frac{1}{2}, x\right)
\]

\section*{Tips}
- gegenbauerC returns floating-point results for numeric arguments that are not symbolic objects.
- gegenbauerC acts element-wise on nonscalar inputs.
- All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then gegenbauerC expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.

\section*{References}
[1] Hochstrasser, U. W. "Orthogonal Polynomials." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

\section*{See Also}
chebyshevT|chebyshevU| hermiteH|jacobiP|laguerreL|legendreP

\section*{Introduced in R2014b}

\section*{getVar}

Get variable from MuPAD notebook

\section*{Note}

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

\section*{Syntax}

MATLABvar = getVar(nb,'MuPADvar')

\section*{Description}

MATLABvar \(=\) getVar(nb,'MuPADvar') assigns the variable MuPADvar in the MuPAD notebook nb to a symbolic variable MATLABvar in the MATLAB workspace.

\section*{Examples}

\section*{Copy Variable from MuPAD to MATLAB}

Copy a variable with a value assigned to it from a MuPAD notebook to the MATLAB workspace.

Create a new MuPAD notebook and specify a handle mpnb to that notebook:
mpnb = mupad;

In the MuPAD notebook, enter the following command. This command creates the variable \(f\) and assigns the value \(x^{\wedge} 2\) to this variable. At this point, the variable and its value exist only in MuPAD.
```

f := x^2

```

Return to the MATLAB Command Window and use the getVar function:
```

f = getVar(mpnb,'f')
f =
x^2

```

After you call getVar, the variable f appears in the MATLAB workspace. The value of the variable \(f\) in the MATLAB workspace is \(x^{\wedge} 2\).

Now, use getVar to copy variables a and b from the same notebook. Although you do not specify these variables explicitly, and they do not have any values assigned to them, they exist in MuPAD.
```

a = getVar(mpnb,'a')

```
b = getVar(mpnb,'b')
a =
a
b =
b
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53

\section*{Input Arguments}

\section*{nb - Pointer to MuPAD notebook}
handle to notebook
Pointer to a MuPAD notebook, specified as a MuPAD notebook handle. You create the notebook handle when opening a notebook with the mupad or openmn function.

\section*{MuPADvar - Variable in MuPAD notebook}
variable

Variable in a MuPAD notebook, specified as a variable. A variable exists in MuPAD even if it has no value assigned to it.

\section*{Output Arguments}

\section*{MATLABvar - Variable in MATLAB workspace}
symbolic variable
Variable in the MATLAB workspace, returned as a symbolic variable.

\section*{See Also}
mupad | openmu | setVar

\section*{Topics}
"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53

\section*{Introduced in R2008b}

\section*{gradient}

Gradient vector of scalar function

\section*{Syntax}
gradient(f,v)

\section*{Description}
gradient ( \(\mathrm{f}, \mathrm{v}\) ) finds the gradient vector of the scalar function f with respect to vector \(v\) in Cartesian coordinates.

If you do not specify \(v\), then gradient ( \(f\) ) finds the gradient vector of the scalar function \(f\) with respect to a vector constructed from all symbolic variables found in \(f\). The order of variables in this vector is defined by symvar.

\section*{Examples}

\section*{Find Gradient of Function}

The gradient of a function \(f\) with respect to the vector \(v\) is the vector of the first partial derivatives of \(f\) with respect to each element of \(v\).

Find the gradient vector of \(f(x, y, z)\) with respect to vector \([x, y, z]\). The gradient is a vector with these components.
```

syms x y z
f = 2*y*z*sin(x) + 3*x*sin(z)*\operatorname{cos(y);}
gradient(f, [x, y, z])
ans =
3*}\operatorname{cos}(y)*\operatorname{sin}(z)+2*y*z*\operatorname{cos}(x
2*z*sin(x) - 3*x*sin(y)*\operatorname{sin}(z)
2*y*\operatorname{sin}(x)+3*x*\operatorname{cos}(y)*\operatorname{cos}(z)

```

\section*{Plot Gradient of Function}

Find the gradient of a function \(f(x, y)\), and plot it as a quiver (velocity) plot.
Find the gradient vector of \(f(x, y)\) with respect to vector \([x, y]\). The gradient is vector \(g\) with these components.
```

syms x y
f = - (sin(x) + sin(y))^2;
g = gradient(f, [x, y])
g =
-2*\operatorname{cos}(x)*(sin(x) + sin(y))
-2*\operatorname{cos}(y)*(sin(x) + sin(y))

```

Now plot the vector field defined by these components. MATLAB provides the quiver plotting function for this task. The function does not accept symbolic arguments. First, replace symbolic variables in expressions for components of \(g\) with numeric values. Then use quiver:
\([\mathrm{X}, \mathrm{Y}]=\) meshgrid(-1:.1:1,-1:.1:1);
G1 = subs (g(1), [xy], \{X,Y\});
G2 = subs(g(2), [x y], \{X,Y\});
quiver(X, Y, G1, G2)


\section*{Input Arguments}

\section*{f-Scalar function}
symbolic expression | symbolic function
Scalar function, specified as symbolic expression or symbolic function.

\section*{v - Vector with respect to which you find gradient vector}
symbolic vector

Vector with respect to which you find gradient vector, specified as a symbolic vector. By default, \(v\) is a vector constructed from all symbolic variables found in \(f\). The order of variables in this vector is defined by symvar.
 sym([]), then gradient returns an empty symbolic object.

\section*{Definitions}

\section*{Gradient Vector}

The gradient vector of \(f(x)\) with respect to the vector \(x\) is the vector of the first partial derivatives of \(f\).
\[
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
\]

\section*{See Also}
curl|diff|divergence|hessian|jacobian| laplacian| potential|quiver| vectorPotential

Introduced in R2011b

\section*{gbasis}

Reduced Groebner basis

\section*{Syntax}
```

gbasis(poly)
gbasis(poly,vars)
gbasis(

```
\(\qquad\)
``` , 'MonomialOrder', MonomialOrder)
```


## Description

gbasis(poly) returns the Groebner basis of the vector of polynomials poly. By default, gbasis finds independent variables in poly by using symvar, and uses the monomial ordering degreeInverseLexicographic.
gbasis(poly, vars) also uses the independent variables vars.
gbasis( $\qquad$ , 'MonomialOrder' ,MonomialOrder) also uses the specified monomial order in addition to the input arguments in previous syntaxes. Options are 'degreeInverseLexicographic', 'degreeLexicographic', or 'lexicographic'. By default, gbasis uses 'degreeInverseLexicographic'.

## Examples

## Groebner Basis of Polynomials

Calculate the Groebner basis of the polynomials $x^{\wedge} 2-y^{\wedge} 2$ and $x^{\wedge} 2+y$. By default, gbasis finds the independent variables by using symvar.

```
syms x y
p = [x^2- y^2, x^2+y];
gbasis(p)
```

```
ans =
[x^2 + y, y^2 + y]
```


## Specify Independent Variables

Specify the independent variables as the second argument of gbasis.
Compute the Groebner basis of the polynomials $a^{*} y+x^{\wedge} 2 * y+a$ and $a^{*} x^{\wedge} 2+y$ with the independent variables [x y].

```
syms x y a
p = [a*y + x^2*y + a, a* (a^2 + y];
vars = [x y];
grobnerBasis = gbasis(p,vars)
grobnerBasis =
[a*x^2 + y, - y^2/a + a*y + a]
```


## Groebner Basis with Monomial Order

By default, gbasis uses the monomial order degreeInverseLexicographic. Change the monomial order by using the 'MonomialOrder' name-value pair argument.

Find the Groebner basis of the polynomials $y^{*} z^{\wedge} 2+1$ and $y^{\wedge} 2^{*} x^{\wedge} 2-y-z^{\wedge} 3$ with lexicographic monomial order.

```
syms x y z
p = [y* z^2 + 1, y^2*x^2 - y - z^3];
grobnerBasis = gbasis(p,'MonomialOrder','lexicographic')
grobnerBasis =
[x^2 - z^7 + z^2, y*z^2 + 1]
```

Use the variables [ $\left.\begin{array}{ll}z & y\end{array}\right]$ with degreeLexicographic monomial order.

```
grobnerBasis = gbasis(p,[z y],'MonomialOrder','degreeLexicographic')
```

```
grobnerBasis =
[x^2* y^2 - y - z'^3, y* z^2 + 1, x^2** y^3 - y^2 + z]
```


## Input Arguments

poly - Polynomials
vector of symbolic expressions
Polynomials, specified as a vector of symbolic expressions.

## vars - Independent variables

vector of symbolic variables
Independent variables, specified as a vector of symbolic variables.

## MonomialOrder - Monomial order

'degreeInverseLexicographic' (default)|'degreeLexicographic' | 'lexicographic'

Monomial order, specified as the comma-separated pair of 'MonomialOrder' and one of the values 'degreeInverseLexicographic', 'degreeLexicographic', or ' lexicographic'. If vars is specified, then monomials are sorted with respect to the order of variables in vars.

- lexicographic sorts the terms of the polynomial using lexicographic ordering.
- degreeLexicographic sorts the terms of a polynomial according to the total degree of each term. If terms have equal total degrees, polynomialReduce sorts them using lexicographic ordering.
- degreeInverseLexicographic sorts the terms of a polynomial according to the total degree of each term. If terms have equal total degrees, polynomialReduce sorts them using inverse lexicographic ordering.


## See Also

eliminate|solve

## Topics

"Solve Algebraic Equation" on page 2-146
"Solve System of Linear Equations" on page 2-173

## Introduced in R2018a

## gt

Define greater than relation

## Syntax

$A>B$
gt (A, B)

## Description

$A>B$ creates a greater than relation.
$\mathrm{gt}(\mathrm{A}, \mathrm{B})$ is equivalent to $\mathrm{A}>\mathrm{B}$.

## Examples

## Set and Use Assumption Using Greater Than

Use assume and the relational operator > to set the assumption that $x$ is greater than 3:

## syms x

assume( $x$ > 3 )
Solve this equation. The solver takes into account the assumption on variable $x$, and therefore returns this solution.

```
solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
ans =
4
```


## Find Values that Satisfy Condition

Use the relational operator $>$ to set this condition on variable x :

```
syms x
cond = abs(sin(x)) + abs(cos(x)) > 7/5;
for i = 0:sym(pi/24):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end
```

Use the for loop with step $\Pi / 24$ to find angles from 0 to $\Pi$ that satisfy that condition:
(5*pi)/24
pi/4
(7*pi)/24
(17*pi)/24
(3*pi)/4
(19*pi)/24

## Input Arguments

## A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## Tips

- Calling > or gt for non-symbolic A and B invokes the MATLAB gt function. This function returns a logical array with elements set to logical 1 (true) where $A$ is greater than B; otherwise, it returns logical 0 (false).
- If both $A$ and $B$ are arrays, then these arrays must have the same dimensions. $A>B$ returns an array of relations $A(i, j, \ldots)>B(i, j, \ldots)$
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, $x$ ), and $B$ is an $m$-by- $n$ matrix, then $A$ is expanded into $m$-by- $n$ matrix of elements, each set to $x$.
- The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, $x>i$ becomes $x>0$, and $x>3$ $+2 *$ i becomes x > 3 .


## See Also

eq|ge|isAlways|le|lt|ne

## Topics

"Set Assumptions" on page 1-28

## Introduced in R2012a

## harmonic

Harmonic function (harmonic number)

## Syntax

harmonic(x)

## Description

harmonic (x) returns the harmonic function on page 4-818 of $x$. For integer values of $x$, harmonic (x) generates harmonic numbers.

## Examples

## Generate Harmonic Numbers

Generate the first 10 harmonic numbers.

```
harmonic(sym(1:10))
ans =
[1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520]
```


## Harmonic Function for Numeric and Symbolic Arguments

Find the harmonic function for these numbers. Since these are not symbolic objects, you get floating-point results.

```
harmonic([2 i 13/3])
ans =
 1.5000 + 0.0000i 0.6719 + 1.0767i 2.1545 + 0.0000i
```

Find the harmonic function symbolically by converting the numbers to symbolic objects.

```
y = harmonic(sym([2 i 13/3]))
y =
[3/2, harmonic(1i), 8571/1820 - (pi*3^(1/2))/6 - (3*log(3))/2]
```

If the denominator of $x$ is $2,3,4$, or 6 , and $|x|<500$, then the result is expressed in terms of pi and log.

Use vpa to approximate the results obtained.

```
vpa(y)
```

```
ans =
[1.5, 0.67186598552400983787839057280431...
+ 1.07667404746858117413405079475i,...
2.1545225442213858782694336751358]
```

For $|x|>1000$, harmonic returns the function call as it is. Use vpa to force harmonic to evaluate the function call.

```
harmonic(sym(1001))
vpa(harmonic(sym(1001)))
```

ans =
harmonic(1001)
ans =
7.4864698615493459116575172053329

## Harmonic Function for Special Values

Find the harmonic function for special values.

```
harmonic([0 1 -1 Inf -Inf])
```

ans $=$
01 Inf Inf NaN

## Harmonic Function for Symbolic Functions

Find the harmonic function for the symbolic function $f$.

```
syms f(x)
f(x) = exp(x) + tan(x);
y = harmonic(f)
```

```
y(x) =
harmonic(exp(x) + tan(x))
```


## Harmonic Function for Symbolic Vectors and Matrices

Find the harmonic function for elements of vector V and matrix M .

```
syms x
V = [x sin(x) 3*i];
M = [exp(i*x) 2; -6 Inf];
harmonic(V)
harmonic(M)
ans =
[harmonic(x), harmonic(sin(x)), harmonic(3i)]
ans =
[harmonic(exp(x*1i)), 3/2]
[Inf, Inf]
```


## Plot Harmonic Function

Plot the harmonic function from $x=-5$ to $x=5$. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(harmonic(x),[-5,5]), grid on


## Differentiate and Find Limit of Harmonic Function

The functions diff and limit handle expressions containing harmonic.
Find the second derivative of harmonic $\left(x^{\wedge} 2+1\right)$.

```
syms x
diff(harmonic(x^2+1),x,2)
ans =
2*psi(1, x^2 + 2) + 4*x^2*psi(2, x^2 + 2)
```

Find the limit of harmonic $(x)$ as $x$ tends to $\infty$ and of $(x+1) *$ harmonic $(x)$ as $x$ tends to -1 .
syms x
limit(harmonic(x),Inf)
limit((x+1)*harmonic(x),-1)
ans =
Inf
ans =

- 1


## Taylor Series Expansion of Harmonic Function

Use taylor to expand the harmonic function in terms of the Taylor series.

```
syms x
taylor(harmonic(x))
ans =
(pi^6*x^5)/945 - zeta(5)*x^4 + (pi^4*x^3)/90...
 - zeta(3)*x^2 + (pi^2*x)/6
```


## Expand Harmonic Function

Use expand to expand the harmonic function.

```
syms x
expand(harmonic(2*x+3))
ans =
harmonic(x + 1/2)/2 + log(2) + harmonic(x)/2 - 1/(2*(x + 1/2))...
 + 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x + 3)
```


## Input Arguments

## x - Input

number | vector | matrix | multidimensional array | symbolic variable | symbolic
expression $\mid$ symbolic function $\mid$ symbolic vector $\mid$ symbolic matrix | symbolic N-D array

Input, specified as number, vector, matrix, or as a multidimensional array or symbolic variable, expression, function, vector, matrix, or multidimensional array.

## Definitions

## Harmonic Function

The harmonic function for $x$ is defined as

$$
\operatorname{harmonic}(x)=\sum_{k=1}^{x} \frac{1}{k}
$$

It is also defined as

$$
\text { harmonic }(x)=\Psi(x+1)+\gamma
$$

where $\Psi(x)$ is the polygamma function and $\gamma$ is the Euler-Mascheroni constant.

## Algorithms

The harmonic function is defined for all complex arguments $z$ except for negative integers $-1,-2, \ldots$ where a singularity occurs.

If $x$ has denominator $1,2,3,4$, or 6 , then an explicit result is computed and returned. For other rational numbers, harmonic uses the functional equation
harmonic $(x+1)=\operatorname{harmonic}(x)+\frac{1}{x}$ to obtain a result with an argument $x$ from the
interval $[0,1]$.
expand expands harmonic using the equations harmonic $(x+1)=\operatorname{harmonic}(x)+\frac{1}{x}$,
harmonic $(-x)=\operatorname{harmonic}(x)-\frac{1}{x}+\pi \cot (\pi x)$, and the Gauss multiplication formula for harmonic ( $k x$ ), where $k$ is an infteger.
harmonic implements the following explicit formulae:

$$
\begin{aligned}
& \text { harmonic }\left(\frac{-1}{2}\right)=-2 \ln (2) \\
& \text { harmonic }\left(-\frac{2}{3}\right)=-\frac{3}{2} \ln (3)-\frac{\sqrt{3}}{6} \pi \\
& \text { harmonic }\left(-\frac{1}{3}\right)=-\frac{3}{2} \ln (3)+\frac{\sqrt{3}}{6} \pi \\
& \text { harmonic }\left(\frac{-3}{4}\right)=-3 \ln (2)-\frac{\pi}{2} \\
& \text { harmonic }\left(\frac{-1}{4}\right)=-3 \ln (2)+\frac{\pi}{2} \\
& \text { harmonic }\left(\frac{-5}{6}\right)=-2 \ln (2)-\frac{3}{2} \ln (3)-\frac{\sqrt{3}}{2} \pi \\
& \text { harmonic }\left(\frac{-1}{6}\right)=-2 \ln (2)-\frac{3}{2} \ln (3)+\frac{\sqrt{3}}{2} \pi \\
& \text { harmonic }(0)=0 \\
& \text { harmonic }\left(\frac{1}{2}\right)=2-2 \ln (2) \\
& \text { harmonic }\left(\frac{1}{3}\right)=3-\frac{3}{2} \ln (3)-\frac{\sqrt{3}}{6} \pi \\
& \text { harmonic }\left(\frac{2}{3}\right)=\frac{3}{2}-\frac{3}{2} \ln (3)+\frac{\sqrt{3}}{6} \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { harmonic }\left(\frac{1}{4}\right)=4-3 \ln (2)-\frac{\pi}{2} \\
& \text { harmonic }\left(\frac{3}{4}\right)=\frac{4}{3}-3 \ln (2)+\frac{\pi}{2} \\
& \text { harmonic }\left(\frac{1}{6}\right)=6-2 \ln (2)-\frac{3}{2} \ln (3)-\frac{\sqrt{3}}{2} \pi \\
& \text { harmonic }\left(\frac{5}{6}\right)=\frac{6}{5}-2 \ln (2)-\frac{3}{2} \ln (3)+\frac{\sqrt{3}}{2} \pi \\
& \text { harmonic }(1)=1 \\
& \text { harmonic }(\infty)=\infty \\
& \text { harmonic }(-\infty)=N a N
\end{aligned}
$$

## See Also

beta|factorial| gamma|gammaln|nchoosek|zeta

## Introduced in R2014a

## has

Check if expression contains particular subexpression

## Syntax

has (expr,subexpr)

## Description

has (expr, subexpr) returns logical 1 (true) if expr contains subexpr. Otherwise, it returns logical 0 (false).

- If expr is an array, has (expr, subexpr) returns an array of the same size as expr. The returned array contains logical 1 s (true) where the elements of expr contain subexpr, and logical 0 s (false) where they do not.
- If subexpr is an array, has (expr, subexpr) checks if expr contains any element of subexpr.


## Examples

## Check If Expression Contains Particular Subexpression

Use the has function to check if an expression contains a particular variable or subexpression.

Check if these expressions contain variable $\mathbf{z}$.

```
syms x y z
has(x + y + z, z)
ans =
 logical
 1
has(x + y, z)
```

```
ans =
 logical
 0
```

Check if $x+y+z$ contains the following subexpressions. Note that has finds the subexpression $x+z$ even though the terms $x$ and $z$ do not appear next to each other in the expression.

```
has(x + y + z, x + y)
has(x + y + z, y + z)
has(x + y + z, x + z)
ans =
 logical
 1
ans =
 logical
 1
ans =
 logical
 1
```

Check if the expression $(x+1)^{\wedge} 2$ contains $x^{\wedge} 2$. Although $(x+1)^{\wedge} 2$ is mathematically equivalent to the expression $x^{\wedge} 2+2 * x+1$, the result is a logical 0 because has typically does not transform expressions to different forms when testing for subexpressions.

```
has((x + 1)^2, x^2)
ans =
 logical
 0
```

Expand the expression and then call has to check if the result contains $x^{\wedge} 2$. Because expand $\left((x+1)^{\wedge} 2\right)$ transforms the original expression to $x^{\wedge} 2+2 * x+1$, the has function finds the subexpression $x^{\wedge} 2$ and returns logical 1.

```
has(expand((x + 1)^2), x^2)
ans =
 logical
 l
```


## Check If Expression Contains Any of Specified Subexpressions

Check if a symbolic expression contains any of subexpressions specified as elements of a vector.

If an expression contains one or more of the specified subexpressions, has returns logical 1.

```
syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), sin(x), exp(x)])
ans =
 logical
 l
```

If an expression does not contain any of the specified subexpressions, has returns logical 0.

```
syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), exp(x)])
ans =
 logical
 0
```


## Find Matrix Elements Containing Particular Subexpression

Using has, find those elements of a symbolic matrix that contain a particular subexpression.

First, create a matrix.

```
syms x y
M = [sin(x)*sin(y), cos(x*y) + 1; cos(x)*tan(x), 2*sin(x)^2]
M =
[sin(x)*sin(y), cos(x*y) + 1]
[cos(x)*tan(x), 2*sin(x)^2]
```

Use has to check which elements of $M$ contain $\sin (x)$. The result is a matrix of the same size as $M$, with 1 s and 0 s as its elements. For the elements of M containing the specified expression, has returns logical 1s. For the elements that do not contain that subexpression, has returns logical 0s.

```
T = has(M, sin(x))
T =
 2\times2 logical array
 1 0
 0 1
```

Return only the elements that contain $\sin (x)$ and replace all other elements with 0 by multiplying M by T elementwise.

```
M.*T
ans =
[sin(x)*sin(y), 0]
[0, 2*sin(x)^2]
```

To check if any of matrix elements contain a particular subexpression, use any.

```
any(has(M(:), sin(x)))
ans =
 logical
 l
any(has(M(:), cos(y)))
ans =
 logical
 0
```


## Find Vector Elements Containing Any of Specified Subexpressions

Using has, find those elements of a symbolic vector that contain any of the specified subexpressions.

```
syms x y z
T = has([x + 1, cos(y) + 1, y + z, 2*x*\operatorname{cos}(y)], [x, cos(y)])
T =
 1\times4 logical array
 1 1 1 0 1
```

Return only the elements of the original vector that contain $x$ or $\cos (y)$ or both, and replace all other elements with 0 by multiplying the original vector by T elementwise.

```
[x+1, cos(y) + 1, y + z, 2*x*}\operatorname{cos}(y)].*
ans =
[x + 1, cos(y) + 1, 0, 2*x*\operatorname{cos(y)]}
```


## Use has for Symbolic Functions

If expr or subexpr is a symbolic function, has uses formula(expr) or formula (subexpr). This approach lets the has function check if an expression defining the symbolic function expr contains an expression defining the symbolic function subexpr.

Create a symbolic function.

```
syms x
f(x) = sin(x) + cos(x);
```

Here, $\sin (x)+\cos (x)$ is an expression defining the symbolic function $f$.

```
formula(f)
```

ans $=$
$\cos (x)+\sin (x)$

Check if $f$ and $f(x)$ contain $\sin (x)$. In both cases has checks if the expression $\sin (x)$ $+\cos (x)$ contains $\sin (x)$.

```
has(f, sin(x))
```

has(f(x), $\sin (x))$
ans =
logical
1
ans $=$
logical
1

Check if $f\left(x^{\wedge} 2\right)$ contains $f$. For these arguments, has returns logical 0 (false) because it does not check if the expression $f\left(x^{\wedge} 2\right)$ contains the letter $f$. This call is equivalent to has (f( $\left.x^{\wedge} 2\right)$, formula(f)), which, in turn, resolves to has $\left(\cos \left(x^{\wedge} 2\right)+\sin \left(x^{\wedge} 2\right)\right.$, $\cos (x)+\sin (x))$.
has(f(x^2), f)

```
ans =
 logical
 0
```


## Check for Calls to Particular Function

Check for calls to a particular function by specifying the function name as the second argument. Check for calls to any one of multiple functions by specifying the multiple functions as a cell array of character vectors.

Integrate $\tan \left(x^{\wedge} 7\right)$. Determine if the integration is successful by checking the result for calls to int. Because has finds the int function and returns logical 1 (true), the integration is not successful.

```
syms x
f = int(tan(x^7), x);
has(f, 'int')
ans =
 logical
 1
```

Check if the solution to a differential equation contains calls to either sin or cos by specifying the second argument as \{'sin', 'cos'\}. The has function returns logical 0 (false), which means the solution does not contain calls to either sin or cos.

```
syms y(x) a
sol = dsolve(diff(y,x) == a*y);
has(sol, {'sin' 'cos'})
ans =
 logical
 0
```


## Input Arguments

## expr - Expression to test

symbolic expression | symbolic function | symbolic equation | symbolic inequality | symbolic vector \| symbolic matrix | symbolic array

Expression to test, specified as a symbolic expression, function, equation, or inequality. Also it can be a vector, matrix, or array of symbolic expressions, functions, equations, and inequalities.

## subexpr - Subexpression to check for

symbolic variable | symbolic expression | symbolic function | symbolic equation | symbolic inequality | symbolic vector | symbolic matrix | symbolic array | character vector | cell array of character vectors

Subexpression to test for, specified as a symbolic variable, expression, function, equation, or inequality, or a character vector, or a cell array of character vectors. subexpr can also be a vector, matrix, or array of symbolic variables, expressions, functions, equations, and inequalities.

## Tips

- has does not transform or simplify expressions. This is why it does not find subexpressions like $x^{\wedge} 2$ in expressions like $(x+1)^{\wedge} 2$. However, in some cases has might find that an expression or subexpression can be represented in a form other than its original form. For example, has finds that the expression $-x-1$ can be represented as $-(x+1)$. Thus, the call has $(-x-1, x+1)$ returns 1 .
- If expr is an empty symbolic array, has returns an empty logical array of the same size as expr.


## See Also

subexpr|subs | times

## Introduced in R2015b

## heaviside

Heaviside step function

## Syntax

```
heaviside(x)
```


## Description

heaviside $(x)$ returns the value 0 for $x<0,1$ for $x>0$, and $1 / 2$ for $x=0$.

## Examples

## Evaluate Heaviside Function for Numeric and Symbolic Arguments

Depending on the argument value, heaviside returns one of these values: 0,1 , or $1 / 2$. If the argument is a floating-point number (not a symbolic object), then heaviside returns floating-point results.

For $x<0$, the function heaviside $(x)$ returns 0:
heaviside(sym(-3))
ans =
0
For $x>0$, the function heaviside $(x)$ returns 1:

```
heaviside(sym(3))
```

```
ans =
```

1

For $x=0$, the function heaviside $(x)$ returns $1 / 2$ :

```
heaviside(sym(0))
ans =
1/2
For numeric \(x=0\), the function heaviside \((x)\) returns the numeric result:
heaviside(0)
ans =
 0.5000
```


## Use Assumptions on Variables

heaviside takes into account assumptions on variables.
syms $x$
assume (x < 0)
heaviside(x)
ans =
0

For further computations, clear the assumptions:
syms x clear

## Plot Heaviside Function

Plot the Heaviside step function for $x$ and $x$ - 1 . Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(heaviside(x), [-2, 2])



## Evaluate Heaviside Function for Symbolic Matrix

Call heaviside for this symbolic matrix. When the input argument is a matrix, heaviside computes the Heaviside function for each element.

```
syms x
heaviside(sym([-1 0; 1/2 x]))
ans =
[0, 1/2]
[1, heaviside(x)]
```


## Differentiate and Integrate Expressions Involving Heaviside Function

Compute derivatives and integrals of expressions involving the Heaviside function.
Find the first derivative of the Heaviside function. The first derivative of the Heaviside function is the Dirac delta function.

```
syms x
diff(heaviside(x), x)
ans =
dirac(x)
```

Find the integral of the expression involving the Heaviside function:

```
syms x
int(exp(-x)*heaviside(x), x, -Inf, Inf)
ans =
1
```


## Change Value of Heaviside Function at Origin

heaviside assumes that the value of the Heaviside function at the origin is $1 / 2$.

```
heaviside(sym(0))
```

ans $=$
1/2

Other common values for the Heaviside function at the origin are 0 and 1 . To change the value of heaviside at the origin, use the 'HeavisideAtOrigin' preference of sympref. Store the previous parameter value returned by sympref, so that you can restore it later.
oldparam = sympref('HeavisideAtOrigin',1);
Check the new value of heaviside at 0 .

```
heaviside(sym(0))
ans =
1
```

The preferences set by sympref persist throughout your current and future MATLAB sessions. To restore the previous value of heaviside at the origin, use the value stored in oldparam.
sympref('HeavisideAtOrigin',oldparam);
Alternatively, you can restore the default value of 'HeavisideAtOrigin' by using the 'default' setting.
sympref('HeavisideAtOrigin','default');

## Input Arguments

## x - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.

## See Also

dirac|sympref
Introduced before R2006a

## hermiteForm

Hermite form of matrix

## Syntax

H = hermiteForm(A)
[ $\mathrm{U}, \mathrm{H}]=$ hermiteForm(A)
___ = hermiteForm(A, var)

## Description

$H=$ hermiteForm (A) returns the Hermite normal form on page 4-839 of a matrix $A$. The elements of A must be integers or polynomials in a variable determined by symvar ( $\mathrm{A}, 1$ ). The Hermite form H is an upper triangular matrix.
$[\mathrm{U}, \mathrm{H}]=$ hermiteForm $(\mathrm{A})$ returns the Hermite normal form of A and a unimodular transformation matrix U , such that $\mathrm{H}=\mathrm{U} * \mathrm{~A}$.
$=$ hermiteForm ( $\mathrm{A}, \mathrm{var}$ ) assumes that the elements of A are univariate polynomials in the specified variable var. If A contains other variables, hermiteForm treats those variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.
If $A$ does not contain var, then hermiteForm(A) and hermiteForm(A, var) return different results.

## Examples

## Hermite Form for Matrix of Integers

Find the Hermite form of an inverse Hilbert matrix.

```
A = sym(invhilb(5))
H = hermiteForm(A)
\begin{tabular}{|c|c|c|c|c|}
\hline 25, & -300, & 1050, & -1400, & 630] \\
\hline -300, & 4800, & -18900, & 26880, & -12600] \\
\hline 1050, & -18900, & 79380, & -117600, & 56700] \\
\hline -1400, & 26880, & -117600, & 179200, & -88200] \\
\hline 630, & -12600, & 56700, & -88200, & 44100] \\
\hline
\end{tabular}
H =
[5, 0, -210, -280, 630]
[0, 60, 0, 0, 0]
[0, 0, 420, 0, 0]
[0, 0, 0, 840, 0]
[0, 0, 0, 0, 2520]
```


## Hermite Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable x .

```
syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]
A =
[x^2 + 3, (2*x - 1)^2]
[(x + 2)^2, 3*x^2 + 5]
```

Find the Hermite form of this matrix.

```
H = hermiteForm(A)
```

```
H =
[1, (4*x^3)/49 + (47*x^2)/49 - (76*x)/49 + 20/49]
[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]
```


## Hermite Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix that contains two variables: $x$ and $y$.

```
syms x y
A = [2/x + y, x^2 - y^2; 3*
```

```
[\(\left.=\quad y+2 / x, x^{\wedge} 2-y^{\wedge} 2\right]\)
\([y+3 * \sin (x), \quad x]\)
```

Find the Hermite form of this matrix. If you do not specify the polynomial variable, hermiteForm uses symvar $(A, 1)$ and thus determines that the polynomial variable is $x$. Because 3*sin(x) + $y$ is not a polynomial in $x$, hermiteForm throws an error.

H = hermiteForm(A)
Error using mupadengine/feval (line 163)
Cannot convert the matrix entries to integers or univariate polynomials.
Find the Hermite form of A specifying that all elements of A are polynomials in the variable y.

```
H = hermiteForm(A,y)
H =
[1, (x*y^2)/(3*x*}\operatorname{sin}(x) - 2) + (x*(x - x^2))/(3*x*sin(x) - 2)] [
[0, 3*y^2*
```


## Hermite Form and Transformation Matrix

Find the Hermite form and the corresponding transformation matrix for an inverse Hilbert matrix.

```
A = sym(invhilb(3));
[U,H] = hermiteForm(A)
U =
[13, 9, 7]
[6, 4, 3]
[20, 15, 12]
H =
[3, 0, 30]
[0, 12, 0]
[0, 0, 60]
```

Verify that $H=U * A$.
isAlways(H == U*A)

```
ans =
\begin{tabular}{ccc}
\(3 \times 3\) & logical & array \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular}
```

Find the Hermite form and the corresponding transformation matrix for a matrix of polynomials.

```
syms x y
A = [2*(x - y), 3*(x^2 - y^2);
 4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,H] = hermiteForm(A,x)
U =
[1/2, 0]
[2*x^2 + 2*x*y + 2*y^2, -1]
H =
[x - y, (3*x^2)/2 - (3*y^2)/2]
[0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]
Verify that H = U*A.
isAlways(H == U*A)
ans =
 2\times2 logical array
 1
 1 1
```


## If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call hermiteForm specifying that variable as the second argument, then the result differs from what you get without specifying that variable. For example, create a matrix that does not contain any variables.

```
A = [9 -36 30; -36 192 -180; 30 -180 180]
A =
 9 -36 30
 -36 192 -180
 30 -180 180
```

Call hermiteForm specifying variable $x$ as the second argument. In this case, hermiteForm assumes that the elements of A are univariate polynomials in $x$.

```
syms x
hermiteForm(A,x)
ans =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{tabular}
```

Call hermiteForm without specifying variables. In this case, hermiteForm treats A as a matrix of integers.
hermiteForm(A)
ans $=$

3	0	30
0	12	0
0	0	60

## Input Arguments

## A - Input matrix

symbolic matrix
Input matrix, specified as a symbolic matrix, the elements of which are integers or univariate polynomials. If the elements of A contain more than one variable, use the var argument to specify a polynomial variable, and treat all other variables as symbolic parameters. If A is multivariate, and you do not specify var, then hermiteForm uses symvar $(A, 1)$ to determine a polynomial variable.

## var - Polynomial variable

symbolic variable
Polynomial variable, specified as a symbolic variable.

## Output Arguments

## H - Hermite normal form of input matrix

symbolic matrix

Hermite normal form of input matrix, returned as a symbolic matrix. The Hermite form of a matrix is an upper triangular matrix.

## U - Transformation matrix <br> unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of $U$ are also integers, and $\operatorname{det}(U)=1 \operatorname{or} \operatorname{det}(U)=-1$. If elements of $A$ are polynomials, then elements of $U$ are univariate polynomials, and $\operatorname{det}(U)$ is a constant.

## Definitions

## Hermite Normal Form

For any square $n$-by- $n$ matrix $A$ with integer coefficients, there exists an $n$-by- $n$ matrix $H$ and an $n$-by- $n$ unimodular matrix $U$, such that $A^{*} U=H$, where $H$ is the Hermite normal form of $A$. A unimodular matrix is a real square matrix, such that its determinant equals 1 or -1 . If $A$ is a matrix of polynomials, then the determinant of $U$ is a constant.
hermiteForm returns the Hermite normal form of a nonsingular integer square matrix $A$
as an upper triangular matrix $H$, such that $H_{j j} \geq 0$ and $-\frac{H_{i j}}{2}<H_{i j} \leq \frac{H_{j j}}{2}$ for $j>i$. If $A$ is not a square matrix or a singular matrix, the matrix $H$ is simply an upper triangular matrix.

## See Also

jordan|smithForm

Introduced in R2015b

## hermiteH

Hermite polynomials

## Syntax

hermiteH ( $\mathrm{n}, \mathrm{x}$ )

## Description

hermiteH ( $n, x$ ) represents the nth-degree Hermite polynomial at the point $x$.

## Examples

## First Five Hermite Polynomials

Find the first five Hermite polynomials of the second kind for the variable $x$.

```
syms x
hermiteH([0, 1, 2, 3, 4], x)
ans =
[1, 2*x, 4*x^2 - 2, 8*x^3 - 12*x, 16*x^4 - 48*x^2 + 12]
```


## Hermite Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, hermiteH returns floating-point or exact symbolic results.
Find the value of the fifth-degree Hermite polynomial at these points. Because these numbers are not symbolic objects, hermiteH returns floating-point results.
hermiteH(5, [1/6, 1/3, $1 / 2,2 / 3,3 / 4])$
ans $=$
$\begin{array}{lllll}19.2634 & 34.2058 & 41.0000 & 36.8066 & 30.0938\end{array}$

Find the value of the fifth-degree Hermite polynomial for the same numbers converted to symbolic objects. For symbolic numbers, hermiteH returns exact symbolic results.

```
hermiteH(5, sym([1/6, 1/3, 1/2, 2/3, 3/4]))
ans =
[4681/243, 8312/243, 41, 8944/243, 963/32]
```


## Plot Hermite Polynomials

Plot the first five Hermite polynomials. Prior to R2016a, use ezplot instead of fplot.

```
syms x y
fplot(hermiteH(0:4,x))
axis([-2 2 -30 30])
grid on
ylabel('H_n(x)')
legend('H_0(x)', 'H_1(x)', 'H_2(x)', 'H_3(x)', 'H_4(x)', 'Location', 'Best')
title('Hermite polynomials')
```



## Input Arguments

## n - Degree of polynomial

nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector | matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## x - Evaluation point

number | symbolic number | symbolic variable | symbolic expression | symbolic function | vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## Definitions

## Hermite Polynomials

Hermite polynomials are defined by this recursion formula:

$$
H(0, x)=1, \quad H(1, x)=2 x, \quad H(n, x)=2 x H(n-1, x)-2(n-1) H(n-2, x)
$$

Hermite polynomials in MATLAB satisfy this normalization.

$$
\int_{-\infty}^{\infty}\left(H_{n}(x)\right)^{2} \mathrm{e}^{-x^{2}} d x=2^{n} \sqrt{\pi} n!
$$

## Tips

- hermiteH returns floating-point results for numeric arguments that are not symbolic objects.
- hermiteH acts element-wise on nonscalar inputs.
- At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, then hermiteH expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.


## References

[1] Hochstrasser, U. W. "Orthogonal Polynomials." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also<br>chebyshevT|chebyshevU| gegenbauerC|jacobiP|laguerreL|legendreP Introduced in R2014b

## hessian

Hessian matrix of scalar function

## Syntax

hessian(f,v)

## Description

hessian ( $f, v$ ) finds the Hessian matrix on page 4-846 of the scalar function $f$ with respect to vector $v$ in Cartesian coordinates.

If you do not specify $v$, then hessian( $f$ ) finds the Hessian matrix of the scalar function $f$ with respect to a vector constructed from all symbolic variables found in $f$. The order of variables in this vector is defined by symvar.

## Examples

## Find Hessian Matrix of Scalar Function

Find the Hessian matrix of a function by using hessian. Then find the Hessian matrix of the same function as the Jacobian of the gradient of the function.

Find the Hessian matrix of this function of three variables:

```
syms x y z
f = x*y + 2*z*x;
hessian(f,[x,y,z])
ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]
```

```
Alternatively, compute the Hessian matrix of this function as the Jacobian of the gradient of that function:
jacobian(gradient(f))
ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]
```


## Input Arguments

## f - Scalar function

symbolic expression | symbolic function
Scalar function, specified as symbolic expression or symbolic function.

## v - Vector with respect to which you find Hessian matrix <br> symbolic vector

Vector with respect to which you find Hessian matrix, specified as a symbolic vector. By default, $v$ is a vector constructed from all symbolic variables found in $f$. The order of variables in this vector is defined by symvar.

If $v$ is an empty symbolic object, such as sym([]), then hessian returns an empty symbolic object.

## Definitions

## Hessian Matrix

The Hessian matrix of $f(x)$ is the square matrix of the second partial derivatives of $f(x)$.

$$
H(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

## See Also

curl|diff|divergence | gradient|jacobian|laplacian|potential| vectorPotential

## Introduced in R2011b

## horner

Horner nested polynomial representation

## Syntax

```
horner(p)
horner(p,var)
```


## Description

horner ( $p$ ) returns the Horner form of the polynomial $p$.
horner( $p$, var) uses the variable in var.

## Examples

## Horner Form of Polynomial

Find the Horner representation of a polynomial.

```
syms x
p = x^3 - 6*x^2 + 11*x - 6;
horner(p)
ans =
x*(x*(x - 6) + 11) - 6
```

Specify the variable in the polynomial by using the second argument.

```
syms a b y
p = a*y*x^3 - y*x^2 - 11*b*y*x + 2;
horner(p,x)
ans =
2 - x*(11*b*y + x*(y - a*x*y))
```

```
horner(p,y)
ans =
2 - y*(- a*x^3 + x^2 + 11*b*x)
```


## Input Arguments

## p - Polynomial

symbolic expression | symbolic function | array of symbolic expressions | array of symbolic functions

Polynomial, specified as a symbolic expression or function, or an array of symbolic expressions or functions.

## var - Variable

symbolic variable | array of symbolic variables
Variable, specified as a symbolic variable or an array of symbolic variables.

```
See Also
collect | combine | expand | factor | numden | rewrite | simplify | simplifyFraction
```


## Introduced before R2006a

## horzcat

Concatenate symbolic arrays horizontally

## Syntax

```
horzcat(A1,...,AN)
[A1 ... AN]
```


## Description

horzcat (A1, ..., AN ) horizontally concatenates the symbolic arrays A1, . . . , AN. For vectors and matrices, all inputs must have the same number of rows. For multidimensional arrays, horzcat concatenates inputs along the second dimension. The remaining dimensions must match.
[A1 ... AN] is a shortcut for horzcat (A1, ... AN).

## Examples

Concatenate Two Symbolic Matrices Horizontally
Create matrices A and B .
$A=\operatorname{sym}\left(' a \% d \% d ',\left[\begin{array}{ll}2 & 2\end{array}\right]\right)$
$B=\operatorname{sym}\left(' b \% d \% d ',\left[\begin{array}{ll}2 & 2\end{array}\right]\right)$
A =
[ a11, a12]
[ a21, a22]
B =
[ b11, b12]
[ b21, b22]
Concatenate A and B .

```
horzcat(A,B)
ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]
```

Alternatively, use the shortcut [A B].
[AB]

```
ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]
```


## Concatenate Multiple Symbolic Arrays Horizontally

```
A = sym('a%d',[3 1]);
B = sym('b%d%d',[3 3]);
C = sym('c%d%d',[3 2]);
horzcat(C,A,B)
ans =
[c11, c12, a1, b11, b12, b13]
[c21, c22, a2, b21, b22, b23]
[c31, c32, a3, b31, b32, b33]
```

Alternatively, use the shortcut [C A B].

```
[C A B]
```

```
ans =
```

[ c11, c12, a1, b11, b12, b13]
[ c21, c22, a2, b21, b22, b23]
[ c31, c32, a3, b31, b32, b33]

## Concatenate Multidimensional Arrays Horizontally

Create the 3-D symbolic arrays A and B .

```
A = sym('a%d%d',[2 3]);
A(:,:,2) = -A
B = sym('b%d%d', [2 2]);
B(:,:,2) = -B
```

```
A(:,:,1) =
[a11, a12, a13]
[a21, a22, a23]
A(:,:,2) =
[-a11, -a12, -a13]
[-a21, -a22, -a23]
B(:,:,1) =
[b11, b12]
[b21, b22]
B(:,:,2) =
[-b11, -b12]
[-b21, -b22]
```

Use horzcat to concatenate A and B.

```
horzcat(A,B)
ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]
```

Alternatively, use the shortcut [A B].
[A B]

```
ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]
```


## Input Arguments

## A1, ..., AN - Input arrays

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

## See Also

cat|vertcat

Introduced before R2006a

## hypergeom

Hypergeometric function

## Syntax

hypergeom(a,b,z)

## Description

hypergeom ( $a, b, z$ ) represents the generalized hypergeometric function on page 4857.

## Examples

## Hypergeometric Function for Numeric and Symbolic Arguments

Depending on its arguments, hypergeom can return floating-point or exact symbolic results.

Compute the hypergeometric function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [hypergeom([1, 2], 2.5, 2),
hypergeom(1/3, [2, 3], pi),
hypergeom([1, 1/2], 1/3, 3*i)]
A =
 -1.2174 - 0.8330i
 1.2091 + 0.0000i
 -0.2028 + 0.2405i
```

Compute the hypergeometric function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, hypergeom returns unresolved symbolic calls.

```
symA = [hypergeom([1, 2], 2.5, sym(2)),
hypergeom(1/3, [2, 3], sym(pi)),
hypergeom([1, 1/2], sym(1/3), 3*i)]
symA =
 hypergeom([1, 2], 5/2, 2)
 hypergeom(1/3, [2, 3], pi)
 hypergeom([1/2, 1], 1/3, 3i)
```

Use vpa to approximate symbolic results with the required number of digits:

```
vpa(symA,10)
ans =
 - 1.21741893 - 0.8330405509i
 1.209063189
 - 0.2027516975 + 0.2405013423i
```


## Special Values

The hypergeometric function has special values for some parameters:

```
syms a b c d x
hypergeom([], [], x)
hypergeom([a, b, c, d], [a, b, c, d], x)
hypergeom(a, [], x)
ans =
exp(x)
ans =
exp(x)
ans =
1/(1 - x)^a
```

Any hypergeometric function, evaluated at 0 , has the value 1 :

```
ans =
1
```

syms a b c d
hypergeom([a, b], [c, d], 0)

If, after cancelling identical parameters in the first two arguments, the list of upper parameters contains 0 , the resulting hypergeometric function is constant with the value 1. For details, see "Algorithms" on page 4-858.

```
hypergeom([0, 0, 2, 3], [a, 0, 4], x)
```

```
ans =
```

1

If, after canceling identical parameters in the first two arguments, the upper parameters contain a negative integer larger than the largest negative integer in the lower parameters, the hypergeometric function is a polynomial. If all parameters as well as the argument $x$ are numeric, a corresponding explicit value is returned.

```
hypergeom([(-4), -2 , 3], [-3, 1, 4], x*pi*sqrt(2))
ans =
(6*pi^2*x^2)/5 - 2*2^(1/2)*pi*x + 1
```

Hypergeometric functions also reduce to other special functions for some parameters:

```
hypergeom([1], [a], x)
hypergeom([a], [a, b], x)
ans =
(exp(x/2)*whittakerM(1 - a/2, a/2 - 1/2, -x))/(-x)^(a/2)
ans =
 x^(1/2 - b/2)*gamma(b)*besseli(b - 1, 2*x^(1/2))
```


## Handling Expressions That Contain Hypergeometric Functions

Many functions, such as diff and taylor, can handle expressions containing hypergeom.

Differentiate this expression containing hypergeometric function:

```
syms a b c d x
diff(1/x*hypergeom([a, b], [c, d], x), x)
ans =
(a*b*hypergeom([a + 1, b + 1], [c + 1, d + 1], x))/(c*d*x)...
 - hypergeom([a, b], [c, d], x)/x^2
```

Compute the Taylor series of this hypergeometric function:

```
taylor(hypergeom([1, 2], [3], x), x)
ans =
(2*x^5)/7 + x^4/3 + (2* x^3)/5 + x^2/2 + (2*x)/3 + 1
```


## Input Arguments

## a - Upper parameters of hypergeometric function

number $\mid$ vector $\mid$ symbolic number $\mid$ symbolic variable | symbolic expression $\mid$ symbolic function $\mid$ symbolic vector

Upper parameters of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector.

## b - Lower parameters of hypergeometric function

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Lower parameters of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector.

## z - Argument of hypergeometric function

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Argument of hypergeometric function, specified as a number, variable, symbolic expression, symbolic function, or vector. If $z$ is a vector, hypergeom $(a, b, z)$ is evaluated element-wise.

## Definitions

## Generalized Hypergeometric Function

The generalized hypergeometric function of order $p, q$ is defined as follows:

$$
{ }_{p} F_{q}(a ; b ; z)={ }_{p} F_{q}\left(a_{1}, \ldots, a_{j}, \ldots, a_{p} ; b_{1}, \ldots, b_{k}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty}\left(\frac{\left(a_{1}\right)_{n} \ldots\left(a_{j}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{k}\right)_{n} \ldots\left(b_{q}\right)_{n}}\right)\left(\frac{z^{n}}{n!}\right) .
$$

Here $a=\left[a_{1}, a_{2}, \ldots, a_{p}\right]$ and $b=\left[b_{1}, b_{2}, \ldots, b_{q}\right]$ are vectors of lengths $p$ and $q$, respectively. $(a)_{k}$ and $(b)_{k}$ are Pochhammer symbols.

For empty vectors $a$ and $b$, hypergeom is defined as follows:

$$
\begin{aligned}
& { }_{0} F_{q}(; b ; z)=\sum_{k=0}^{\infty} \frac{1}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{q}\right)_{k}}\left(\frac{z^{k}}{k!}\right) \\
& { }_{p} F_{0}(a ; ; z)=\sum_{k=0}^{\infty}\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{p}\right)_{k}\left(\frac{z^{k}}{k!}\right) \\
& { }_{0} F_{0}(; ; z)=\sum_{k=0}^{\infty}\left(\frac{z^{k}}{k!}\right)=e^{z} .
\end{aligned}
$$

## Pochhammer Symbol

The Pochhammer symbol is defined as follows:

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)} .
$$

If $n$ is a positive integer, then $(x)_{n}=x(x+1) \ldots(x+n-1)$.

## Algorithms

The hypergeometric function is

$$
{ }_{p} F_{q}(a ; b ; z)={ }_{p} F_{q}\left(a_{1}, \ldots, a_{j}, \ldots, a_{p} ; b_{1}, \ldots, b_{k}, \ldots, b_{q} ; z\right)=\sum_{n=0}^{\infty}\left(\frac{\left(a_{1}\right)_{n} \ldots\left(a_{j}\right)_{n} \ldots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \ldots\left(b_{k}\right)_{n} \ldots\left(b_{q}\right)_{n}}\right)\left(\frac{z^{n}}{n!}\right) .
$$

- The hypergeometric function has convergence criteria:
- Converges if $p \leq q$ and $|z|<\infty$.
- Converges if $p=q+1$ and $|z|<1$. For $|z|>=1$, the series diverges, and is defined by analytic continuation.
- Diverges if $p>q+1$ and $z \neq 0$. Here, the series is defined by an asymptotic expansion of ${ }_{p} F_{q}(a ; b ; z)$ around $z=0$. The branch cut is the positive real axis.
- The function is a polynomial, called the hypergeometric polynomial, if any $a_{j}$ is a nonpositive integer.
- The function is undefined:
- If any $b_{k}$ is a nonpositive integer such that $b_{k}>a_{j}$ where $a_{j}$ is also a nonpositive integer, because division by 0 occurs
- If any $b_{k}$ is a nonpositive integer and no $a_{j}$ is a nonpositive integer
- The function has reduced order when upper and lower parameter values are equal and cancel. If $r$ values of the upper and lower parameters are equal (that is, $a=\left[a_{1}, \ldots, a_{p-r}\right.$, $\left.\left.c_{1}, \ldots, c_{r}\right], b=\left[b_{1}, \ldots, b_{q-r}, c_{1}, \ldots, c_{r}\right]\right)$, then the order $(p, q)$ of ${ }_{p} F_{q}(a ; b ; z)$ is reduced to ( $p-r$, $q-r)$ :

$$
\begin{aligned}
& { }_{p} F_{q}\left(a_{1}, \ldots, a_{p-r}, c_{1}, \ldots, c_{r} ; b_{1}, \ldots, b_{q-r}, c_{1}, \ldots, c_{r} ; z\right)= \\
& { }_{p-r} F_{q-r}\left(a_{1}, \ldots, a_{p-r} ; b_{1}, \ldots, b_{q-r} ; z\right)
\end{aligned}
$$

This rule applies even if any $c_{i}$ is zero or a negative integer [2].

- ${ }_{p} F_{q}(a ; b ; z)$ is symmetric. That is, it does not depend on the order $a_{1}, a_{2}, \ldots$ in $a$ or $b_{1}, b_{2}$, ... in $b$.
$U(z)={ }_{p} F_{q}(a ; b ; z)$ satisfies the differential equation in $z$

$$
[\delta(\delta+b-1)-z(\delta+a)] U(z)=0, \quad \delta=z \frac{\partial}{\partial z} .
$$

Here, $(\delta+a)$ represents

$$
\prod_{i=1}^{p}\left(\delta+a_{i}\right)
$$

And $(\delta+b)$ represents

$$
\prod_{j=1}^{q}\left(\delta+b_{j}\right)
$$

Thus, the order of this differential equation is $\max (p, q+1)$, and the hypergeometric function is only one of its solutions. If $p<q+1$, this differential equation has a regular singularity at $z=0$ and an irregular singularity at $z=\infty$. If $p=q+1$, the points $z=0, z=1$, and $z=\infty$ are regular singularities, which explains the convergence properties of the hypergeometric series.

- The hypergeometric function has these special values:
- ${ }_{p} F_{p}(a ; a ; z)={ }_{0} F_{0}(; ; z)=\mathrm{e}^{\mathrm{z}}$.
- ${ }_{p} F_{q}(a ; b ; z)=1$ if the list of upper parameters $a$ contains more 0 s than the list of lower parameters $b$.
- ${ }_{p} F_{q}(a ; b ; 0)=1$.


## References

[1] Oberhettinger, F. "Hypergeometric Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Luke, Y.L. "The Special Functions and Their Approximations", Vol. 1, Academic Press, New York, 1969.
[3] Prudnikov, A.P., Yu.A. Brychkov, and O.I. Marichev, "Integrals and Series", Vol. 3: More Special Functions, Gordon and Breach, 1990.

## See Also

kummerU|meijerG|whittakerM|whittakerW

Introduced before R2006a

## ifourier

Inverse Fourier transform

## Syntax

```
ifourier(F)
ifourier(F,transVar)
ifourier(F,var,transVar)
```


## Description

ifourier (F) returns the "Inverse Fourier Transform" on page 4-865 of F. By default, the independent variable is $w$ and the transformation variable is $x$. If $F$ does not contain $w$, ifourier uses the function symvar.
ifourier ( $F$, transVar) uses the transformation variable transVar instead of $x$.
ifourier(F,var,transVar) uses the independent variable var and the transformation variable transVar instead of $w$ and $x$, respectively.

## Examples

## Inverse Fourier Transform of Symbolic Expression

Compute the inverse Fourier transform of $\exp \left(-w^{\wedge} 2 / 4\right)$. By default, the inverse transform is in terms of $x$.

```
syms W
F = exp(-w^2/4);
ifourier(F)
ans =
exp(-x^2)/pi^(1/2)
```


## Default Independent Variable and Transformation Variable

Compute the inverse Fourier transform of $\exp \left(-w^{\wedge} 2-a^{\wedge} 2\right)$. By default, the independent and transformation variables are $w$ and $x$, respectively.

```
syms a w t
F = exp(-w^2-a^2);
ifourier(F)
ans =
exp(- a^2 - x^2/4)/(2*pi^(1/2))
```

Specify the transformation variable as $t$. If you specify only one variable, that variable is the transformation variable. The independent variable is still w .

```
ifourier(F,t)
ans =
exp(- a^2 - t^2/4)/(2*pi^(1/2))
```


## Inverse Fourier Transforms Involving Dirac and Heaviside Functions

Compute the inverse Fourier transform of expressions in terms of Dirac and Heaviside functions.

```
syms t w
ifourier(dirac(w), w, t)
ans =
1/(2*pi)
f = 2*exp(-abs(w))-1;
ifourier(f,w,t)
ans =
-(2*pi*dirac(t) - 4/(t^2 + 1))/(2*pi)
f = exp(-w)*heaviside(w);
ifourier(f,w,t)
ans =
-1/(2*pi*(- 1 + t*li))
```


## Specify Parameters of Inverse Fourier Transform

Specify parameters of the inverse Fourier transform.
Compute the inverse Fourier transform of this expression using the default values of the Fourier parameters c = 1, s = - 1. For details, see "Inverse Fourier Transform" on page 4-865.

```
syms t w
f = -(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2;
ifourier(f,w,t)
ans =
t*exp(-t^2)
```

Change the Fourier parameters to $c=1, s=1$ by using sympref, and compute the transform again. The sign of the result changes.

```
sympref('FourierParameters',[1 1]);
ifourier(f,w,t)
ans =
-t*}\operatorname{exp(-t^2)
```

Change the Fourier parameters to $c=1 /(2 *$ pi $), s=1$. The result changes.

```
sympref('FourierParameters', [1/(2*sym(pi)) 1]);
```

ifourier(f,w,t)
ans =
$-2 * t^{*} \mathrm{pi}^{*} \exp \left(-\mathrm{t}^{\wedge} 2\right)$

Preferences set by sympref persist through your current and future MATLAB sessions. Restore the default values of $c$ and $s$ by setting FourierParameters to 'default'.
sympref('FourierParameters','default');

## Inverse Fourier Transform of Array Inputs

Find the inverse Fourier transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, ifourier acts on them element-wise.

```
syms a b c d w x y z
M = [exp(x), 1; sin(y), i*z];
vars = [w, x; y, z];
transVars = [a, b; c, d];
ifourier(M,vars,transVars)
ans =
[exp(x)*dirac(a), dirac(b)]
[(dirac(c - 1)*li)/2 - (dirac(c + 1)*li)/2, dirac(1, d)]
```

If ifourier is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

```
ifourier(x,vars,transVars)
ans =
[x*dirac(a), -dirac(1, b)*li]
[x*dirac(c), x*dirac(d)]
```


## If Inverse Fourier Transform Cannot Be Found

If ifourier cannot transform the input, then it returns an unevaluated call to fourier.

```
syms F(w) t
f = ifourier(F,w,t)
f =
fourier(F(w), w, -t)/(2*pi)
```


## Input Arguments

## F - Input

symbolic expression | symbolic function | symbolic vector | symbolic matrix
Input, specified as a symbolic expression, function, vector, or matrix.

## var - Independent variable

$x$ (default) | symbolic variable
Independent variable, specified as a symbolic variable. This variable is often called the "frequency variable." If you do not specify the variable, then ifourier uses w . If F does
not contain $w$, then ifourier uses the function symvar to determine the independent variable.

## transVar - Transformation variable <br> x (default) | $\mathrm{t} \mid$ symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It is often called the "time variable" or "space variable." By default, ifourier uses x . If x is the independent variable of $F$, then ifourier uses $t$.

## Definitions

## Inverse Fourier Transform

The inverse Fourier transform of the expression $F=F(w)$ with respect to the variable $w$ at the point $x$ is

$$
f(x)=\frac{|s|}{2 \pi c} \int_{-\infty}^{\infty} F(w) e^{-i s w x} d w
$$

$c$ and $s$ are parameters of the inverse Fourier transform. The ifourier function uses $c=1, s=-1$.

## Tips

- If any argument is an array, then ifourier acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- The toolbox computes the inverse Fourier transform via the Fourier transform:

$$
\text { ifourier }(F, w, t)=\frac{1}{2 \pi} \text { fourier }(F, w,-t) \text {. }
$$

If ifourier cannot find an explicit representation of the inverse Fourier transform, then it returns results in terms of the Fourier transform.

- To compute the Fourier transform, use fourier.


## References

[1] Oberhettinger, F. "Tables of Fourier Transforms and Fourier Transforms of Distributions." Springer, 1990.

## See Also

fourier|ilaplace|iztrans|laplace| sympref|ztrans

## Topics

"Fourier and Inverse Fourier Transforms" on page 2-225

## Introduced before R2006a

## igamma

Incomplete gamma function

## Syntax

igamma(nu,z)

## Description

igamma(nu,z) returns the incomplete gamma function.
igamma uses the definition of the upper incomplete gamma function on page 4-869. The MATLAB gammainc function uses the definition of the lower incomplete gamma function on page 4-869, gammainc (z, nu) = 1 - igamma(nu, z)/gamma(nu). The order of input arguments differs between these functions.

## Examples

## Compute Incomplete Gamma Function for Numeric and Symbolic Arguments

Depending on its arguments, igamma returns floating-point or exact symbolic results.
Compute the incomplete gamma function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [igamma(0, 1), igamma(3, sqrt(2)), igamma(pi, exp(1)), igamma(3, Inf)]
A =
 0.2194 1.6601 1.1979 0
```

Compute the incomplete gamma function for the numbers converted to symbolic objects:
$\operatorname{symA}=[$ igamma(sym(0), 1$)$, igamma(3, sqrt(sym(2))),...
igamma(sym(pi), exp(sym(1))), igamma(3, sym(Inf))]

```
symA =
[-ei(-1), exp(-2^(1/2))*(2*2^(1/2) + 4), igamma(pi, exp(1)), 0]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[0.21938393439552027367716377546012,....
1.6601049038903044104826564373576
1.1979302081330828196865548471769, ...
0]
```


## Compute Lower Incomplete Gamma Function

igamma is implemented according to the definition of the upper incomplete gamma function. If you want to compute the lower incomplete gamma function, convert results returned by igamma as follows.

Compute the lower incomplete gamma function for these arguments using the MATLAB gammainc function:

```
A = [-5/3, -1/2, 0, 1/3];
gammainc(A, 1/3)
ans =
 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i
```

Compute the lower incomplete gamma function for the same arguments using igamma:

```
1 - igamma(1/3, A)/gamma(1/3)
ans =
 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i
```

If one or both arguments are complex numbers, use igamma to compute the lower incomplete gamma function. gammainc does not accept complex arguments.

```
1 - igamma(1/2, i)/gamma(1/2)
ans =
 0.9693 + 0.4741i
```


## Input Arguments

## nu - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

## z - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

## Definitions

## Upper Incomplete Gamma Function

The following integral defines the upper incomplete gamma function:

$$
\Gamma(\eta, z)=\int_{z}^{\infty} t^{\eta-1} e^{-t} d t
$$

## Lower Incomplete Gamma Function

The following integral defines the lower incomplete gamma function:

$$
\gamma(\eta, z)=\int_{0}^{z} t^{\eta-1} e^{-t} d t
$$

## Tips

- The MATLAB gammainc function does not accept complex arguments. For complex arguments, use igamma.
- gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu) represents the lower incomplete gamma function in terms of the upper incomplete gamma function.
- igamma(nu,z) = gamma(nu)(1 - gammainc(z, nu)) represents the upper incomplete gamma function in terms of the lower incomplete gamma function.
- gammainc(z, nu, 'upper') = igamma(nu, z)/gamma(nu).


## See Also

ei |erfc|factorial|gamma|gammainc|int

## Introduced in R2014a

## ilaplace

Inverse Laplace transform

## Syntax

```
ilaplace(F)
ilaplace(F,transVar)
ilaplace(F,var,transVar)
```


## Description

ilaplace(F) returns the "Inverse Laplace Transform" on page 4-875 of F. By default, the independent variable is $s$ and the transformation variable is $t$. If $F$ does not contain $s$, ilaplace uses the function symvar.
ilaplace(F,transVar) uses the transformation variable transVar instead of t .
ilaplace(F,var,transVar) uses the independent variable var and transformation variable transVar instead of $s$ and $t$, respectively.

## Examples

Inverse Laplace Transform of Symbolic Expression
Compute the inverse Laplace transform of $1 / \mathrm{s}^{\wedge} 2$. By default, the inverse transform is in terms of t .
syms s
$\mathrm{F}=1 / \mathrm{s}^{\wedge} 2$;
ilaplace(F)
ans =
t

## Default Independent Variable and Transformation Variable

Compute the inverse Laplace transform of $1 /(s-a)^{\wedge} 2$. By default, the independent and transformation variables are $s$ and $t$, respectively.

```
syms a s
F = 1/(s-a)^2;
ilaplace(F)
ans =
t*exp(a*t)
```

Specify the transformation variable as $x$. If you specify only one variable, that variable is the transformation variable. The independent variable is still s .

```
syms x
ilaplace(F,x)
ans =
x*exp(a*x)
```

Specify both the independent and transformation variables as a and $x$ in the second and third arguments, respectively.

```
ilaplace(F,a,x)
ans =
x*exp(s*x)
```


## Inverse Laplace Transforms Involving Dirac and Heaviside Functions

Compute the following inverse Laplace transforms that involve the Dirac and Heaviside functions:

```
syms s t
ilaplace(1,s,t)
ans =
dirac(t)
F = exp(-2*s)/(s^2+1);
ilaplace(F,s,t)
```

ans =
heaviside(t - 2)*sin(t - 2)

## Inverse Laplace Transform of Array Inputs

Find the inverse Laplace transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, ilaplace acts on them element-wise.

```
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
ilaplace(M,vars,transVars)
ans =
[exp(x)*dirac(a), dirac(b)]
[ilaplace(sin(y), y, c), dirac(1, d)*1i]
```

If ilaplace is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

```
syms w x y z a b c d
ilaplace(x,vars,transVars)
ans =
[x*dirac(a), dirac(1, b)]
[x*dirac(c), x*dirac(d)]
```


## If Inverse Laplace Transform Cannot Be Found

If ilaplace cannot compute the inverse transform, then it returns an unevaluated call to ilaplace.

```
syms F(s) t
F(s) = exp(s);
f = ilaplace(F,s,t)
f =
ilaplace(exp(s), s, t)
```

Return the original expression by using laplace.

```
laplace(f,t,s)
ans =
exp(s)
```


## Inverse Laplace Transform of Symbolic Function

Compute the Inverse Laplace transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.

```
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ilaplace([f1 f2],x,[a b])
ans =
[ilaplace(exp(x), x, a), dirac(1, b)]
```


## Input Arguments

```
F - Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix
```

Input, specified as a symbolic expression, function, vector, or matrix.

## var - Independent variable

s (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix
Independent variable, specified as a symbolic variable, expression, vector, or matrix. This variable is often called the "complex frequency variable." If you do not specify the variable, then ilaplace uses $s$. If $F$ does not contain $s$, then ilaplace uses the function symvar to determine the independent variable.

## transVar - Transformation variable

t (default) |x| symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It is often called the "time variable" or "space variable." By default, ilaplace uses $t$. If $t$ is the independent variable of $F$, then ilaplace uses $x$.

## Definitions

## Inverse Laplace Transform

The inverse Laplace transform $f=f(t)$ of $F=F(s)$ is:

$$
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) e^{s t} d s .
$$

Here, $c$ is a suitable complex number.

## Tips

- If any argument is an array, then ilaplace acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- To compute the direct Laplace transform, use laplace.


## See Also

fourier|ifourier|iztrans|laplace|ztrans

## Topics

"Solve Differential Equations Using Laplace Transform" on page 2-230

Introduced before R2006a

## imag

Imaginary part of complex number

## Syntax

```
imag(z)
```


## Description

imag ( $z$ ) returns the imaginary part of $z$. If $z$ is a matrix, imag acts elementwise on $z$.

## Examples

## Compute Imaginary Part of Numeric Inputs

Find the imaginary parts of these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1 + i))]
```

ans =

```
 1.5000 74.2032 4.5747
```


## Compute Imaginary Part of Symbolic Inputs

Compute the imaginary parts of the numbers converted to symbolic objects:

```
[imag(sym(2) + 3/2*i), imag(4/(sym(1) + 3*i)), imag(sin(sym(5)*i))]
ans =
[3/2, -6/5, sinh(5)]
```

Compute the imaginary part of this symbolic expression:
imag(2*exp(1 + sym(i)))

## ans =

$2 * \exp (1) * \sin (1)$

## Compute Imaginary Part of Symbolic Expressions

In general, imag cannot extract the entire imaginary parts from symbolic expressions containing variables. However, imag can rewrite and sometimes simplify the input expression:

```
syms a x y
imag(a + 2)
imag(x + y*i)
ans =
imag(a)
ans =
imag(x) + real(y)
```

If you assign numeric values to these variables or if you specify that these variables are real, imag can extract the imaginary part of the expression:

```
syms a
 a = 5 + 3*i;
imag(a + 2)
ans =
 3
syms x y real
imag(x + y*i)
ans =
y
```

Clear the assumption that x and y are real:
syms x y clear

## Compute Imaginary Part for Matrix Input

Find the imaginary parts of the elements of matrix A:

```
syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
imag(A)
ans =
[1, imag(sinh(x))]
[exp(10)*sin(7), 0]
```


## Input Arguments

```
z - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression
```

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## Tips

- Calling imag for a number that is not a symbolic object invokes the MATLAB imag function.


## Alternatives

You can compute the imaginary part of $z$ via the conjugate: $\operatorname{imag}(z)=(z-$ conj(z))/2i.

## See Also

conj|in|real|sign|signIm

## Introduced before R2006a

## in

Numeric type of symbolic input

## Syntax

in(x,type)

## Description

in ( $x$, type) expresses the logical condition that $x$ is of the specified type.

## Examples

## Express Condition on Symbolic Variable or Expression

The syntax in(x,type) expresses the condition that $x$ is of the specified type. Express the condition that $x$ is of type Real.

```
syms x
cond = in(x,'real')
cond =
in(x, 'real')
```

Evaluate the condition using isAlways. Because isAlways cannot determine the condition, it issues a warning and returns logical 0 (false).

```
isAlways(cond)
```

Warning: Unable to prove 'in(x, 'real')'.
ans =
logical
0

Assume the condition cond is true using assume, and evaluate the condition again. The isAlways function returns logical 1 (true) indicating that the condition is true.

```
assume(cond)
isAlways(cond)
ans =
 logical
 1
```

Clear the assumption on $x$ to use it in further computations.

```
syms x clear
```


## Express Conditions in Output

Functions such as solve use in in output to express conditions.
Solve the equation $\sin (x)==0$ using solve. Set the option ReturnConditions to true to return conditions on the solution. The solve function uses in to express the conditions.

```
syms x
[solx, params, conds] = solve(sin(x) == 0,'ReturnConditions',true)
solx =
pi*k
params =
k
conds =
in(k, 'integer')
```

The solution is $\mathrm{pi}^{*} \mathrm{k}$ with parameter k under the condition in(k,'integer'). You can use this condition to set an assumption for further computations. Under the assumption, solve returns only integer values of $k$.

```
assume(conds)
k = solve(solx > 0, solx < 5*pi, params)
k =
 1
 2
```

3
4
To find the solutions corresponding to these values of $k$, use subs to substitute for k in solx.

```
subs(solx,k)
ans =
 pi
 2*pi
 3*pi
 4*pi
```

Clear the assumption on k to use it in further computations.
assume(params, 'clear')

## Test if Elements of Symbolic Matrix Are Rational

Create symbolic matrix M.

```
syms x y z
M = sym([1.22 i x; sin(y) 3*x 0; Inf sqrt(3) sym(22/7)])
M =
[61/50, 1i, x]
[sin(y), 3*x, 0]
[Inf, 3^(1/2), 22/7]
```

Use isAlways to test if the elements of $M$ are rational numbers. The in function acts on $M$ element-by-element. Note that isAlways returns logical 0 (false) for statements that cannot be decided and issues a warning for those statements.

```
in(M,'rational')
ans =
[in(61/50, 'rational'), in(li, 'rational'), in(x, 'rational')]
[in(sin(y), 'rational'), in(3*x, 'rational'), in(0, 'rational')]
[in(Inf, 'rational'), in(3^(1/2), 'rational'), in(22/7, 'rational')]
isAlways(in(M,'rational'))
Warning: Unable to prove 'in(sin(y), 'rational')'.
Warning: Unable to prove 'in(3*x, 'rational')'.
```

```
Warning: Unable to prove 'in(x, 'rational')'.
ans =
 3\times3 logical array
 10}
 0}00
 0 0 1
```


## Input Arguments

## x - Input

symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic function

Input, specified as a symbolic number, vector, matrix, multidimensional array, expression, or function.

```
type - Type of input
'real'|'positive'|'integer'|'rational'
```

Type of input, specified as 'real', 'positive', 'integer', or 'rational'.

## See Also

assume |assumeAlso|false|imag|isalways|isequal|isequaln|isfinite| isinf|piecewise|real|true

## Introduced in R2014b

## incidenceMatrix

Find incidence matrix of system of equations

## Syntax

A = incidenceMatrix(eqs,vars)

## Description

$A=$ incidenceMatrix(eqs,vars) for $m$ equations eqs and $n$ variables vars returns an m-by-n matrix $A$. Here, $A(i, j)=1$ if eqs(i) contains vars $(j)$ or any derivative of $\operatorname{vars}(j)$. All other elements of $A$ are 0 s.

## Examples

## Incidence Matrix

Find the incidence matrix of a system of five equations in five variables.
Create the following symbolic vector eqs containing five symbolic differential equations.

```
syms y1(t) y2(t) y3(t) y4(t) y5(t) c1 c3
eqs = [diff(y1(t),t) == y2(t),..
 diff(y2(t),t) == c1*y1(t) + c3*y3(t),...
 diff(y3(t),t) == y2(t) + y4(t),...
 diff(y4(t),t) == y3(t) + y5(t),...
 diff(y5(t),t) == y4(t)];
```

Create the vector of variables. Here, c1 and c3 are symbolic parameters (not variables) of the system.

```
vars = [y1(t), y2(t), y3(t), y4(t), y5(t)];
```

Find the incidence matrix A for the equations eqs and with respect to the variables vars.

A $=$				
1	1	0	0	0
1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	0	1	1

## Input Arguments

## eqs - Equations

vector of symbolic equations | vector of symbolic expressions
Equations, specified as a vector of symbolic equations or expressions.

```
vars - Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function
calls
```

Variables, specified as a vector of symbolic variables, symbolic functions, or function calls, such as $x(t)$.

## Output Arguments

## A - Incidence matrix

matrix of double-precision values
Incidence matrix, returned as a matrix of double-precision values.

## See Also

daeFunction | decic|findDecoupledBlocks |isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies|spy

Introduced in R2014b

## int

Definite and indefinite integrals

## Syntax

```
int(expr,var)
int(expr,var,a,b)
int(___,Name,Value)
```


## Description

int (expr,var) computes the indefinite integral of expr with respect to the symbolic scalar variable var. Specifying the variable var is optional. If you do not specify it, int uses the default variable determined by symvar. If expr is a constant, then the default variable is x .
int (expr,var, a,b) computes the definite integral of expr with respect to var from a to $b$. If you do not specify it, int uses the default variable determined by symvar. If expr is a constant, then the default variable is $x$.
int (expr,var, [a b]) is equivalent to int (expr,var,a,b).
int( $\qquad$ ,Name, Value) specifies additional using one or more Name, Value pair arguments. For example, 'IgnoreAnalyticConstraints', true specifies that int applies additional simplifications to the integrand.

## Examples

## Indefinite Integral of Univariate Expression

Find an indefinite integral of this univariate expression.

```
syms x
f = -2*x/(1+x^2)^2;
int(f)
ans =
1/(x^2 + 1)
```


## Indefinite Integrals of Multivariate Expression

Find indefinite integrals of this multivariate expression with respect to the variables x and $z$.

```
syms x z
f = x/(1+z^2);
int(f,x)
int(f,z)
ans =
x^2/(2*(z^2 + 1))
ans =
x*atan(z)
```

If you do not specify the integration variable, int uses the variable returned by symvar. For this expression, symvar returns $x$.
symvar(f, 1)
ans $=$
x

## Definite Integrals of Symbolic Expressions

Integrate an expression from 0 to 1.
syms $x$
f = $x^{*} \log (1+x)$;
int(f,[0 1])
ans $=$
1/4

Integrate an expression from $\sin (t)$ to 1.

```
syms t
int(2*x, [sin(t) 1])
ans =
cos(t)^2
```

When int cannot compute a definite integral, numerically approximate the integral by using vpa.
syms $x$
$f=\cos (x) / \operatorname{sqrt}\left(1+x^{\wedge} 2\right) ;$
fInt $=\operatorname{int}\left(f, x,\left[\begin{array}{ll}0 & 10]) \text {; }\end{array}\right.\right.$
fVpa $=\operatorname{vpa(fInt)}$
fVpa $=$
0.37570628299079723478493405557162

To approximate integrals directly, use vpaintegral instead of vpa. The vpaintegral function is faster and provides control over integration tolerances.
fVpa = vpaintegral(f,x,[0 10])
fVpa $=$
0.375706

## Integrals of Matrix Elements

Find indefinite integrals for the expressions listed as the elements of a matrix.

```
syms a x t z
M = [exp(t) exp(a*t); sin(t) cos(t)];
int(M)
ans =
[exp(t), exp(a*t)/a]
[-\operatorname{cos}(t), sin(t)]
```


## Apply IgnoreAnalyticConstraints

Compute this indefinite integral. By default, int uses strict mathematical rules. These rules do not let int rewrite asin( $\sin (x))$ and $\operatorname{acos}(\cos (x))$ as $x$.

```
syms x
f = acos(sin(x));
int(f,x)
ans =
x*acos(sin(x)) + x^2/(2*sign(cos(x)))
```

If you want a simple practical solution, try IgnoreAnalyticConstraints.

```
int(f, x, 'IgnoreAnalyticConstraints', true)
ans =
-(x*(x - pi))/2
```


## Ignore Special Cases

Compute this integral with respect to the variable x . By default, int returns the integral as a piecewise object where every branch corresponds to a particular value (or a range of values) of the symbolic parameter $t$.

```
syms x t
int(x^t, x)
ans =
piecewise(t == -1, log(x), t ~= -1, x^(t + 1)/(t + 1))
```

To ignore special cases of parameter values, use IgnoreSpecialCases. With this option, int ignores the special case $t=-1$ and returns only the branch where $t<>-1$.

```
int(x^t, x, 'IgnoreSpecialCases', true)
ans =
x^(t + 1)/(t + 1)
```


## Find Cauchy Principal Value

Compute this definite integral, where the integrand has a pole in the interior of the interval of integration. Mathematically, this integral is not defined.

```
syms x
f = 1/(x-1);
int(f,x,0,2)
ans =
NaN
```

However, the Cauchy principal value of the integral exists. Use PrincipalValue to compute the Cauchy principal value of the integral.

```
int(f,x,0,2,'PrincipalValue',true)
ans =
0
```


## Approximate Indefinite Integrals

If int cannot compute a closed form of an integral, it returns an unresolved integral.

```
syms x
f = sin(sinh(x));
int(f,x)
ans =
int(sin(sinh(x)), x)
```

If int cannot compute a closed form of an indefinite integral, try to approximate the expression around some point using taylor, and then compute the integral. For example, approximate the expression around $x=0$.

```
fApprox = taylor(f, x, 'ExpansionPoint', 0, 'Order', 10);
int(fApprox,x)
```


## ans =

$x^{\wedge} 10 / 56700-x^{\wedge} 8 / 720-x^{\wedge} 6 / 90+x^{\wedge} 2 / 2$

## Input Arguments

## expr - Integrand

symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number

Integrand, specified as a symbolic expression or function, a constant, or a vector or matrix of symbolic expressions, functions, or constants.

## var - Integration variable

symbolic variable
Integration variable, specified as a symbolic variable. If you do not specify this variable, int uses the default variable determined by symvar (expr, 1 ). If expr is a constant, then the default variable is $x$.

## a - Lower bound

number | symbolic number | symbolic variable | symbolic expression | symbolic function
Lower bound, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

## b - Upper bound

number | symbolic number | symbolic variable | symbolic expression | symbolic function
Upper bound, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'IgnoreAnalyticConstraints',true specifies that int applies purely algebraic simplifications to the integrand.

## IgnoreAnalyticConstraints - Indicator for applying purely algebraic simplifications to integrand <br> false (default) | true

Indicator for applying purely algebraic simplifications to integrand, specified as true or false. If the value is true, apply purely algebraic simplifications to the integrand. This option can provide simpler results for expressions, for which the direct use of the integrator returns complicated results. Sometimes, it also enables int to compute integrals that cannot be computed otherwise.

Using this option can lead to wrong or incomplete results.

## IgnoreSpecialCases - Indicator for ignoring special cases <br> false (default)|true

Indicator for ignoring special cases, specified as true or false. This ignores cases that require one or more parameters to be elements of a comparatively small set, such as a fixed finite set or a set of integers.

## PrincipalValue - Indicator for returning principal value <br> false (default)|true

Indicator for returning principal value, specified as true or false. If the value is true, compute the Cauchy principal value of the integral.

## Tips

- In contrast to differentiation, symbolic integration is a more complicated task. If int cannot compute an integral of an expression, check for these reasons:
- The antiderivative does not exist in a closed form.
- The antiderivative exists, but int cannot find it.

If int cannot compute a closed form of an integral, it returns an unresolved integral.
Try approximating such integrals by using one of these methods:

- For indefinite integrals, use series expansions. Use this method to approximate an integral around a particular value of the variable.
- For definite integrals, use numeric approximations.
- Results returned by int do not include integration constants.
- For indefinite integrals, int implicitly assumes that the integration variable var is real. For definite integrals, int restricts the integration variable var to the specified integration interval. If one or both integration bounds $a$ and $b$ are not numeric, int assumes that $\mathrm{a}<=\mathrm{b}$ unless you explicitly specify otherwise.


## Algorithms

When you use IgnoreAnalyticConstraints, int applies these rules:

- $\log (a)+\log (b)=\log (a \cdot b)$ for all values of $a$ and $b$. In particular, the following equality is valid for all values of $a, b$, and $c$ :

$$
(a \cdot b)^{c}=a^{c} \cdot b^{c} .
$$

- $\log \left(a^{b}\right)=b \cdot \log (a)$ for all values of $a$ and $b$. In particular, the following equality is valid for all values of $a, b$, and $c$ :

$$
\left(a^{b}\right)^{c}=a^{b \cdot c} .
$$

- If $f$ and $g$ are standard mathematical functions and $f(g(x))=x$ for all small positive numbers, then $f(g(x))=x$ is assumed to be valid for all complex values $x$. In particular:
- $\log \left(e^{x}\right)=x$
- $\operatorname{asin}(\sin (x))=x, \operatorname{acos}(\cos (x))=x, \operatorname{atan}(\tan (x))=x$
- $\operatorname{asinh}(\sinh (x))=x, \operatorname{acosh}(\cosh (x))=x, \operatorname{atanh}(\tanh (x))=x$
- lambertW ${ }_{k}\left(x \cdot e^{x}\right)=x$ for all values of $k$


## See Also

diff|functionalDerivative | symprod | symsum| symvar|vpaintegral

## Topics

"Integration" on page 2-57

## Introduced before R2006a

## inv

Inverse of symbolic matrix

## Syntax

inv(A)

## Description

inv (A) returns the inverse of the symbolic matrix $A$.

## Examples

## Compute Inverse of Symbolic Matrix

Compute the inverse of the following matrix of symbolic numbers.

```
A = sym([2 -1 0; -1 2 -1; 0 -1 2]);
inv(A)
ans =
[3/4, 1/2, 1/4]
[1/2, 1, 1/2]
[1/4, 1/2, 3/4]
```

Compute the inverse of the following symbolic matrix.

```
syms a b c d
A = [a b; c d];
inv(A)
ans =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]
```


## Compute Inverse of Symbolic Hilbert Matrix

Compute the inverse of the symbolic Hilbert matrix.

```
inv(sym(hilb(4)))
ans =
[16, -120, 240, -140]
[-120, 1200, -2700, 1680]
[240, -2700, 6480, -4200]
[-140, 1680, -4200, 2800]
```


## Input Arguments

## A - Matrix

symbolic matrix
Matrix, specified as a symbolic matrix.

See Also<br>det | eig|rank<br>Introduced before R2006a

## isAlways

Check whether equation or inequality holds for all values of its variables

> Note isAlways issues a warning when returning false for undecidable inputs. To suppress the warning, set the Unknown option to false as isAlways (cond, 'Unknown', 'false'). For details, see "Handle Output for Undecidable Conditions".

## Syntax

isAlways(cond)
isAlways(cond,Name, Value)

## Description

isAlways (cond) checks if the condition cond is valid for all possible values of the symbolic variables in cond. When verifying cond, the isAlways function considers all assumptions on the variables in cond. If the condition holds, isAlways returns logical 1 (true). Otherwise it returns logical 0 (false).
isAlways (cond, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

## Test Conditions

Check if this inequality is valid for all values of $x$.

```
syms x
isAlways(abs(x) >= 0)
```

```
ans =
 logical
 1
```

isAlways returns logical 1 (true) indicating that the inequality abs(x) >= 0 is valid for all values of $x$.

Check if this equation is valid for all values of x .

```
isAlways(sin(x)^2 + cos(x)^2 == 1)
```

```
ans =
 logical
 1
```

isAlways returns logical 1 (true) indicating that the inequality is valid for all values of X.

## Test if One of Several Conditions Is Valid

Check if at least one of these two conditions is valid. To check if at least one of several conditions is valid, combine them using the logical operator or or its shortcut $\mid$.

```
syms x
isAlways(sin(x)^2 + cos(x)^2 == 1 | x^2 > 0)
ans =
 logical
 1
```

Check if both conditions are valid. To check if several conditions are valid, combine them using the logical operator and or its shortcut \&

```
isAlways(sin(x)^2 + cos(x)^2 == 1& abs(x) > 2*abs(x))
```

ans =
logical
0

## Handle Output for Undecidable Conditions

Test this condition. When isAlways cannot determine if the condition is valid, it returns logical 0 (false) and issues a warning by default.

```
syms x
isAlways(2*x >= x)
Warning: Unable to prove 'x <= 2*x'.
ans =
 logical
 0
```

To change this default behavior, use Unknown. For example, specify Unknown as false to suppress the warning and make isAlways return logical 0 (false) if it cannot determine the validity of the condition.

```
isAlways(2*x >= x,'Unknown','false')
ans =
 logical
 0
```

Instead of false, you can also specify error to return an error, and true to return logical 1 (true).

## Test Conditions with Assumptions

Check this inequality under the assumption that $x$ is negative. When isAlways tests an equation or inequality, it takes into account assumptions on variables in that equation or inequality.

```
syms x
assume(x < 0)
isAlways(2*x < x)
ans =
 logical
 1
```

For further computations, clear the assumption on x .

```
syms x clear
```


## Input Arguments

## cond - Condition to check

symbolic condition | vector of symbolic conditions | matrix of symbolic conditions | multidimensional array of symbolic conditions

Condition to check, specified as a symbolic condition, or a vector, matrix, or multidimensional array of symbolic conditions.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: isAlways (cond, 'Unknown' , true) makes isAlways return logical 1 (true) when the specified condition cannot be decided.

## Unknown - Return value for undecidable condition

falseWithWarning (default) | false | true | error
Return value for an undecidable condition, specified as the comma-separated pair of 'Unknown' and one of these values.

falseWithWarning (default)	On undecidable inputs, return logical 0   (false) and a warning that the condition   cannot be proven.
false	On undecidable inputs, return logical 0   (false).
true	On undecidable inputs, return logical 1   (true).
error	On undecidable inputs, return an error.

## See Also

assume |assumeAlso|assumptions | in |isequal |isequaln|isfinite|isinf| isnan|piecewise|sym|syms

## Topics

"Use Assumptions on Symbolic Variables" on page 1-28
"Clear Assumptions and Reset the Symbolic Engine" on page 3-68

## Introduced in R2012a

## isequal

Test equality of symbolic inputs

## Syntax

```
isequal(a,b)
isequal(a1,a2,...,aN)
```


## Description

isequal ( $a, b$ ) returns logical 1 (true) if $A$ and $B$ are the same size and their contents are of equal value. Otherwise, isequal returns logical 0 (false). isequal does not consider NaN (not a number) values equal. isequal recursively compares the contents of symbolic data structures and the properties of objects. If all contents in the respective locations are equal, isequal returns logical 1 (true).
isequal (a1, a2, ...,aN) returns logical 1 (true) if all the inputs a1, a2, ..., aN are equal.

## Examples

## Test Numbers for Equality

Test numeric or symbolic inputs for equality using isequal. If you compare numeric inputs against symbolic inputs, isequal returns 0 (false) because double and symbolic are distinct data types.

Test if 2 and 5 are equal. Because you are comparing doubles, the MATLAB isequal function is called. isequal returns 0 (false) as expected.

```
isequal(2,5)
ans=
 logical
 0
```

Test if the solution of the equation $\cos (x)==-1$ is pi . The isequal function returns 1 (true) meaning the solution is equal to pi.

```
syms x
sol = solve(cos(x) == -1, x);
isequal(sol,sym(pi))
ans =
 logical
 l
```

Compare the double and symbolic representations of 1 . isequal returns 0 (false) because double and symbolic are distinct data types. To return 1 (true) in this case, use logical instead.

```
usingIsEqual = isequal(pi,sym(pi))
usingLogical = logical(pi == sym(pi))
usingIsEqual =
 logical
 0
usingLogical =
 logical
 1
```


## Test Symbolic Expressions for Equality

Test if rewrite correctly rewrites $\tan (x)$ as $\sin (x) / \cos (x)$. The isequal function returns 1 (true) meaning the rewritten result equals the test expression.

```
syms x
f = rewrite(tan(x),'sincos');
testf = sin(x)/cos(x);
isequal(f,testf)
ans =
 logical
 I
```


## Test Symbolic Vectors and Matrices for Equality

Test vectors and matrices for equality using isequal.

Test if solutions of the quadratic equation found by solve are equal to the expected solutions. isequal function returns 1 (true) meaning the inputs are equal.

```
syms a b c x
eqn = a*x^2 + b*x + c;
Sol = solve(eqn, x);
testSol = [-(b+(b^2-4*a*c)^(1/2))/(2*a); -(b-(b^2-4*a*c)^(1/2))/(2*a)];
isequal(Sol,testSol)
ans=
 logical
 1
```

The Hilbert matrix is a special matrix that is difficult to invert accurately. If the inverse is accurately computed, then multiplying the inverse by the original Hilbert matrix returns the identity matrix.

Use this condition to symbolically test if the inverse of hilb(20) is correctly calculated. isequal returns 1 (true) meaning that the product of the inverse and the original Hilbert matrix is equal to the identity matrix.

```
H = sym(hilb(20));
prod = H*inv(H);
eye20 = sym(eye(20));
isequal(prod,eye20)
ans =
 logical
 1
```


## Compare Inputs Containing NaN

Compare three vectors containing NaN (not a number). isequal returns logical 0 (false) because isequal does not treat NaN values as equal to each other.

```
syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequal(A1, A2, A3)
ans =
 logical
 0
```


## Input Arguments

## a, b-Inputs to compare

numbers $\mid$ vectors $\mid$ matrices $\mid$ multidimensional arrays $\mid$ symbolic numbers $\mid$ symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays | symbolic functions | symbolic expressions

Inputs to compare, specified as numbers, vectors, matrices, or multidimensional arrays or symbolic numbers, variables, vectors, matrices, multidimensional arrays, functions, or expressions.
a1, a2, ... aN - Several inputs to compare
numbers | vectors | matrices | multidimensional arrays | symbolic numbers | symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays | symbolic functions | symbolic expressions

Several inputs to compare, specified as numbers, vectors, matrices, or multidimensional arrays or symbolic numbers, variables, vectors, matrices, multidimensional arrays, functions, or expressions.

## Tips

- When your inputs are not symbolic objects, the MATLAB isequal function is called. If one of the arguments is symbolic, then all other arguments are converted to symbolic objects before comparison, and the symbolic isequal function is called.


## See Also

in |isAlways|isequaln|isfinite |isinf|isnan|logical

Introduced before R2006a

## isequaln

Test symbolic objects for equality, treating NaN values as equal

## Syntax

```
isequaln(A,B)
isequaln(A1,A2,...,An)
```


## Description

isequaln $(A, B)$ returns logical 1 (true) if $A$ and $B$ are the same size and their contents are of equal value. Otherwise, isequaln returns logical 0 (false). All NaN (not a number) values are considered to be equal to each other. isequaln recursively compares the contents of symbolic data structures and the properties of objects. If all contents in the respective locations are equal, isequaln returns logical 1 (true).
isequaln ( $\mathrm{A} 1, \mathrm{~A} 2, \ldots, \mathrm{An}$ ) returns logical 1 (true) if all the inputs are equal.

## Examples

## Compare Two Expressions

Use isequaln to compare these two expressions:

```
syms x
isequaln(abs(x), x)
ans =
 logical
 0
```

For positive x , these expressions are identical:
assume ( $\mathrm{x}>0$ )
isequaln(abs(x), $x$ )

```
ans =
 logical
 1
```

For further computations, remove the assumption:
syms x clear

## Compare Two Matrices

Use isequaln to compare these two matrices:
A = hilb(3);
B = sym(A);
isequaln(A, B)
ans $=$
logical
0

## Compare Vectors Containing NaN Values

Use isequaln to compare these vectors:

```
syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequaln(A1, A2, A3)
ans =
 logical
 l
```


## Input Arguments

## A, B - Inputs to compare

symbolic numbers | symbolic variables | symbolic expressions | symbolic functions | symbolic vectors | symbolic matrices

Inputs to compare, specified as symbolic numbers, variables, expressions, functions, vectors, or matrices. If one of the arguments is a symbolic object and the other one is numeric, the toolbox converts the numeric object to symbolic before comparing them.

## A1, A2, ... An - Series of inputs to compare

symbolic numbers | symbolic variables | symbolic expressions | symbolic functions | symbolic vectors | symbolic matrices

Series of inputs to compare, specified as symbolic numbers, variables, expressions, functions, vectors, or matrices. If at least one of the arguments is a symbolic object, the toolbox converts all other arguments to symbolic objects before comparing them.

## Tips

- Calling isequaln for arguments that are not symbolic objects invokes the MATLAB isequaln function. If one of the arguments is symbolic, then all other arguments are converted to symbolic objects before comparison.


## See Also

in |isAlways |isequal|isequaln|isfinite|isinf|isnan

## Introduced in R2013a

## isfinite

Check whether symbolic array elements are finite

## Syntax

## isfinite(A)

## Description

isfinite (A) returns an array of the same size as A containing logical 1s (true) where the elements of $A$ are finite, and logical 0 s (false) where they are not. For a complex number, isfinite returns 1 if both the real and imaginary parts of that number are finite. Otherwise, it returns 0.

## Examples

## Determine Which Elements of Symbolic Array Are Finite Values

Using isfinite, determine which elements of this symbolic matrix are finite values:

```
ans =
 2\times3 logical array
 l
```

isfinite(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

## Determine if Exact and Approximated Values Are Finite

Approximate these symbolic values with the 50-digit accuracy:
$\mathrm{V}=\operatorname{sym}\left(\left[\mathrm{pi}, 2 * \mathrm{pi}, 3 * \mathrm{pi}, 4^{*} \mathrm{pi}\right]\right)$;
V_approx = vpa(V, 50);

The cotangents of the exact values are not finite:

```
cot(V)
isfinite(cot(V))
ans =
[Inf, Inf, Inf, Inf]
ans =
 1\times4 logical array
 0 0 0 0
```

Nevertheless, the cotangents of the approximated values are finite due to the round-off errors:

```
isfinite(cot(V_approx))
ans =
 1\times4 logical array
 1 1 1 1
```


## Input Arguments

## A - Input value

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.

## Tips

- For any $A$, exactly one of the three quantities isfinite (A), isinf(A), or isnan(A) is 1 for each element.
- Elements of A are recognized as finite if they are
- Not symbolic NaN
- Not symbolic Inf or - Inf
- Not sums or products containing symbolic infinities Inf or - Inf

See Also<br>in |isAlways|isequal|isequaln|isinf|isnan<br>Introduced in R2013b

## isinf

Check whether symbolic array elements are infinite

## Syntax

## isinf(A)

## Description

isinf(A) returns an array of the same size as A containing logical 1s (true) where the elements of A are infinite, and logical 0 s (false) where they are not. For a complex number, isinf returns 1 if the real or imaginary part of that number is infinite or both real and imaginary parts are infinite. Otherwise, it returns 0.

## Examples

## Determine Which Elements of Symbolic Array Are Infinite

Using isinf, determine which elements of this symbolic matrix are infinities:

```
ans =
 2\times3 logical array
\(0 \quad 0 \quad 1\)
010
```

isinf(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

## Determine if Exact and Approximated Values Are Infinite

Approximate these symbolic values with the 50-digit accuracy:

```
V = sym([pi, 2*pi, 3*pi, 4*pi]);
```

V_approx = vpa(V, 50);

The cotangents of the exact values are infinite:

```
cot(V)
isinf(cot(V))
ans =
[Inf, Inf, Inf, Inf]
ans =
 1\times4 logical array
 1 1 1 1
```

Nevertheless, the cotangents of the approximated values are not infinite due to the roundoff errors:

```
isinf(cot(V_approx))
ans =
 1\times4 logical array
 0 0 0 0
```


## Input Arguments

## A - Input value

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.

## Tips

- For any $A$, exactly one of the three quantities isfinite $(A), \operatorname{isinf}(A)$, or isnan(A) is 1 for each element.
- The elements of A are recognized as infinite if they are
- Symbolic Inf or - Inf
- Sums or products containing symbolic Inf or - Inf and not containing the value NaN.

See Also<br>in |isAlways|isequal|isequaln|isfinite|isnan<br>Introduced in R2013b

## isLowIndexDAE

Check if differential index of system of equations is lower than 2

## Syntax

isLowIndexDAE(eqs,vars)

## Description

isLowIndexDAE (eqs, vars) checks if the system eqs of first-order semilinear differential algebraic equations (DAEs) has a low differential index. If the differential index of the system is 0 or 1 , then isLowIndexDAE returns logical 1 (true). If the differential index of eqs is higher than 1 , then isLowIndexDAE returns logical 0 (false).

The number of equations eqs must match the number of variables vars.

## Examples

## Check Differential Index of DAE System

Check if a system of first-order semilinear DAEs has a low differential index (0 or 1).
Create the following system of two differential algebraic equations. Here, $x(t)$ and $y(t)$ are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t)
eqs = [diff(x(t),t) == x(t) + y(t), x(t)^2 + y(t)^2 == 1];
vars = [x(t), y(t)];
```

Use isLowIndexDAE to check the differential order of the system. The differential order of this system is 1 . For systems of index 0 and 1 , isLowIndexDAE returns 1 (true).

```
isLowIndexDAE(eqs, vars)
```

```
ans =
 logical
 1
```


## Reduce Differential Index of DAE System

Check if the following DAE system has a low or high differential index. If the index is higher than 1 , then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, $x(t), y(t)$, and $z(t)$ are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t) z(t) f(t)
eqs = [diff(x(t),t) == x(t) + z(t),...
 diff(y(t),t) == f(t), x(t) == y(t)];
vars = [x(t), y(t), z(t)];
```

Use isLowIndexDAE to check the differential index of the system. For this system isLowIndexDAE returns 0 (false). This means that the differential index of the system is 2 or higher.

```
isLowIndexDAE(eqs, vars)
ans =
 logical
 0
```

Use reduceDAEIndex to rewrite the system so that the differential index is 1. Calling this function with four output arguments also shows the differential index of the original system. The new system has one additional state variable, Dyt ( t ).

```
[newEqs, newVars, ~, oldIndex] = reduceDAEIndex(eqs, vars)
newEqs =
 diff(x(t), t) - z(t) - x(t)
 Dyt(t) - f(t)
 x(t) - y(t)
 diff(x(t), t) - Dyt(t)
newVars =
 x(t)
 y(t)
```

```
 z(t)
Dyt(t)
oldIndex =
 2
```

Check if the differential order of the new system is lower than 2.

```
isLowIndexDAE(newEqs, newVars)
```

```
ans =
```

    logical
        1
    
## Input Arguments

## eqs - System of first-order semilinear differential algebraic equations

vector of symbolic equations | vector of symbolic expressions
System of first-order semilinear differential algebraic equations, specified as a vector of symbolic equations or expressions.

## vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $\mathrm{x}(\mathrm{t})$.
Example: [x(t),y(t)]

## See Also

daeFunction | decic |findDecoupledBlocks | incidenceMatrix| massMatrixForm|odeFunction | reduceDAEIndex|reduceDAEToODE | reduceDifferentialOrder|reduceRedundancies

## Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

## isnan

Check whether symbolic array elements are NaNs

## Syntax

```
isnan(A)
```


## Description

isnan (A) returns an array of the same size as A containing logical 1s (true) where the elements of A are symbolic NaNs, and logical 0s (false) where they are not.

## Examples

## Determine Which Elements of Symbolic Array Are NaNs

Using isnan, determine which elements of this symbolic matrix are NaNs:

```
isnan(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))
ans =
 2\times3 logical array
\(0 \quad 1 \quad 0\)
```


## Input Arguments

## A - Input value

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an array, vector, or matrix of symbolic numbers, variables, expressions, functions.

## Tips

- For any $A$, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A) is 1 for each element.
- Symbolic expressions and functions containing NaN evaluate to NaN. For example, sym ( $\mathrm{NaN}+\mathrm{i}$ ) returns symbolic NaN .

See Also<br>isAlways|isequal|isequaln|isfinite|isinf<br>Introduced in R2013b

## isolate

Isolate variable or expression in equation

## Syntax

```
isolate(eqn, expr)
```


## Description

isolate (eqn, expr) rearranges the equation eqn so that the expression expr appears on the left side. The result is similar to solving eqn for expr. If isolate cannot isolate expr, it moves all terms containing expr to the left side. The output of isolate lets you eliminate expr from eqn by using subs.

## Examples

## Isolate Variable in Equation

Isolate $x$ in the equation $a^{*} x^{\wedge} 2+b^{*} x+c==0$.

```
syms x a b c
eqn = a*x^2 + b*x + c == 0;
xSol = isolate(eqn, x)
xSol =
x == -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
```

You can use the output of isolate to eliminate the variable from the equation using subs.

Eliminate x from eqn by substituting lhs ( xSol ) for rhs ( xSol ).

```
eqn2 = subs(eqn, lhs(xSol), rhs(xSol))
eqn2 =
c + (b + (b^2 - 4*a*c)^(1/2))^2/(4*a) - (b*(b + (b^2 - 4*a*c)^(1/2)))/(2*a) == 0
```


## Isolate Expression in Equation

Isolate $\mathrm{y}(\mathrm{t})$ in the following equation.

```
syms y(t)
eqn = a*y(t)^2 + b*c == 0;
isolate(eqn, y(t))
ans =
y(t)==((-b)^(1/2)*\mp@subsup{c}{}{\wedge}(1/2))/a^(1/2)
```

Isolate $a * y(t)$ in the same equation.

```
isolate(eqn, a*y(t))
ans =
a*y(t) == - (b*c)/y(t)
```


## isolate Returns Simplest Solution

For equations with multiple solutions, isolate returns the simplest solution.
Demonstrate this behavior by isolating $x$ in $\sin (x)==0$, which has multiple solutions at 0, pi, $3 * \mathrm{pi} / 2$, and so on.

```
isolate(sin(x) == 0, x)
```

```
ans =
```

$x=0$
isolate does not consider special cases when returning the solution. Instead, isolate returns a general solution that is not guaranteed to hold for all values of the variables in the equation.

Isolate $x$ in the equation $a^{*} x^{\wedge} 2 /(x-a)==1$. The returned value of $x$ does not hold in the special case $a=0$.

```
syms a x
isolate(a*x^2/(x-a) == 1, x)
ans =
x == ((-(2*a - 1)*(2*a + 1))^(1/2) + 1)/(2*a)
```


## isolate Follows Assumptions on Variables

isolate returns only results that are consistent with the assumptions on the variables in the equation.

First, assume $x$ is negative, and then isolate $x$ in the equation $x^{\wedge} 4=1$.
syms $x$
assume ( $\mathrm{x}<0$ )
eqn $=x^{\wedge} 4==1$;
isolate ( $x^{\wedge} 4==1, x$ )
ans $=$
$x=-1$
Remove the assumption. isolate chooses a different solution to return.

```
assume(x, 'clear')
isolate(x^4 == 1, x)
ans =
x == 1
```


## Tips

- If eqn has no solution, isolate errors. isolate also ignores special cases. If the only solutions to eqn are special cases, then isolate ignores those special cases and errors.
- The returned solution is not guaranteed to hold for all values of the variables in the solution.
- expr cannot be a mathematical constant such as pi.


## Input Arguments

## eqn - Input equation

## symbolic equation

Input equation, specified as a symbolic equation.
Example: $a^{*} x^{\wedge} 2+b * x+c==0$

## expr - Variable or expression to isolate

symbolic variable | symbolic expression
Variable or expression to isolate, specified as a symbolic variable or expression.

## See Also

lhs|linsolve|rhs | solve| subs

## Topics

"Solve Algebraic Equation" on page 2-146
"Solve System of Algebraic Equations" on page 2-157
"Solve Equations Numerically" on page 2-176
"Solve System of Linear Equations" on page 2-173

## Introduced in R2017a

## isUnit

Determine if input is a symbolic unit

## Syntax

```
tf = isUnit(expr)
```


## Description

tf = isUnit(expr) returns logical 1 (true) if expr is a unit, or a product of powers of units, and logical 0 (false) if it is not.

## Examples

## Determine if Input is a Unit

Determine if an expression is a symbolic unit by using isUnit.
Test if $3^{*} \mathrm{u} . \mathrm{m}$ is a symbolic unit, where $\mathrm{u}=$ symunit. The isUnit function returns logical 0 (false) because $3 *$ u.m contains the symbolic number 3 .

```
u = symunit;
isUnit(3*u.m)
ans =
 logical
 0
```

Check if $u . m, u . m W$, and $x * u . H z$ are units, where $u=$ symunit. The isUnit function returns the array [lll 1110$]$, meaning that the first two expressions are units but the third expression is not.

```
syms x
units = [u.m u.mW x*u.Hz];
isUnit(units)
```

```
ans =
 1\times3 logical array
 1 1 0
```


## Input Arguments

## expr - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Tips

- 1 represents a dimensionless unit. Hence, isUnit(sym(1)) returns logical 1 (true).


## See Also

checkUnits |findUnits|newUnit| separateUnits|str2symunit| symunit| symunit2str|unitConversionFactor

## Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

## External Websites

The International System of Units (SI)

## Introduced in R2017a

## iztrans

Inverse Z-transform

## Syntax

```
iztrans(F)
iztrans(F,transVar)
iztrans(F,var,transVar)
```


## Description

iztrans (F) returns the "Inverse Z-Transform" on page 4-928 of F. By default, the independent variable is $z$ and the transformation variable is $n$. If $F$ does not contain $z$, iztrans uses the function symvar.

iztrans(F,var,transVar) uses the independent variable var and transformation variable transVar instead of $z$ and $n$ respectively.

## Examples

## Inverse Z-Transform of Symbolic Expression

Compute the inverse Z-transform of $2^{*} z /(z-2)^{\wedge} 2$. By default, the inverse transform is in terms of n .

```
syms z
F = 2*z/(z-2)^2;
iztrans(F)
ans =
2^n + 2^n*(n - 1)
```


## Specify Independent Variable and Transformation Variable

Compute the inverse Z-transform of $1 /\left(a^{*} z\right)$. By default, the independent and transformation variables are $z$ and $n$, respectively.

```
syms z a
F=1/(a*z);
iztrans(F)
ans =
kroneckerDelta(n - 1, 0)/a
```

Specify the transformation variable as $m$. If you specify only one variable, that variable is the transformation variable. The independent variable is still z .

```
syms m
iztrans(F,m)
ans =
kroneckerDelta(m - 1, 0)/a
```

Specify both the independent and transformation variables as a and $m$ in the second and third arguments, respectively.

```
iztrans(F,a,m)
ans =
kroneckerDelta(m - 1, 0)/z
```


## Inverse Z-Transforms Involving Kronecker Delta Function

Compute the inverse Z-transforms of these expressions. The results involve the Kronecker Delta function.

```
syms n z
iztrans(1/z,z,n)
ans =
kroneckerDelta(n - 1, 0)
f = (z^3 + 3* z^2)/\mp@subsup{z}{}{\wedge}5;
iztrans(f,z,n)
ans =
kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0)
```


## Inverse Z-Transform of Array Inputs

Find the inverse Z-transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, iztrans acts on them element-wise.

```
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
iztrans(M,vars,transVars)
ans =
[exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)]
[iztrans(sin(y), y, c), iztrans(z, z, d)*li]
```

If iztrans is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

```
syms w x y z a b c d
iztrans(x,vars,transVars)
ans =
[x*kroneckerDelta(a, 0), iztrans(x, x, b)]
[x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]
```


## Inverse Z-Transform of Symbolic Function

Compute the Inverse Z-transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.

```
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
iztrans([f1, f2],x,[a, b])
ans =
[iztrans(exp(x), x, a), iztrans(x, x, b)]
```


## If Inverse Z-Transform Cannot Be Found

If iztrans cannot compute the inverse transform, it returns an unevaluated call.

```
syms F(z) n
F(z) = exp(z);
f = iztrans(F,z,n)
f =
iztrans(exp(z), z, n)
```

Return the original expression by using ztrans.

```
ztrans(f,n,z)
ans =
exp(z)
```


## Input Arguments

```
F - Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix
```

Input, specified as a symbolic expression, function, vector, or matrix.

## var - Independent variable

## $x$ (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Independent variable, specified as a symbolic variable, expression, vector, or matrix. This variable is often called the "complex frequency variable." If you do not specify the variable, then iztrans uses $z$. If $F$ does not contain $z$, then iztrans uses the function symvar.

## transVar - Transformation variable

x (default) | t | symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It is often called the"time variable" or "space variable." By default, iztrans uses $n$. If $n$ is the independent variable of $F$, then iztrans uses $k$.

## Definitions

## Inverse Z-Transform

Where $R$ is a positive number, such that the function $F=F(z)$ is analytic on and outside the circle $|z|=R$, the inverse Z-transform is

$$
f(n)=\frac{1}{2 \pi i} \oint_{|z|=R} F(z) z^{n-1} d z, \quad n=0,1,2 \ldots
$$

## Tips

- If any argument is an array, then iztrans acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- To compute the direct Z-transform, use ztrans.


## See Also

fourier|ifourier|ilaplace|kroneckerDelta|laplace|ztrans

## Topics

"Solve Difference Equations Using Z-Transform" on page 2-238
Introduced before R2006a

## jacobiAM

Jacobi amplitude function

## Syntax

```
jacobiAM(u,m)
```


## Description

jacobiAM ( $u, m$ ) returns the "Jacobi Amplitude Function" on page 4-933 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiAM acts element-wise.

## Examples

## Calculate Jacobi Amplitude Function for Numeric Inputs

```
jacobiAM(2,1)
```

```
ans =
```

1.3018

Call j acobiAM on array inputs. jacobiAM acts element-wise when $u$ or $m$ is an array.

```
jacobiAM([2 1 -3],[1 2 3])
```

ans $=$
$1.3018 \quad 0.7370 \quad-3.7571$

## Calculate Jacobi Amplitude Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi amplitude function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiAM returns exact symbolic output.

```
jacobiAM(sym(2),sym(1))
ans =
2*atan(exp(2)) - pi/2
```

Show that for other values of $u$ or $m$, jacobiAM returns an unevaluated function call. jacobiAM(sym(2),sym(3))
ans =
jacobiAM(2, 3)

## Find Jacobi Amplitude Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiAM returns the unevaluated function call.

```
syms x y
```

$\mathrm{f}=\mathrm{jacobiAM}(\mathrm{x}, \mathrm{y})$
$f=$
jacobiAM(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

$f=$
jacobiAM(3, 5)
fVal = double(f)
fVal =
3.1104

Calculate f to higher precision using vpa.
fVal $=\operatorname{vpa}(f)$
fVal =
3.1104428381773623934754349126446

## Plot Jacobi Amplitude Function

Plot the Jacobi amplitude function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$-axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.
syms $f(u, m)$
$\mathrm{f}(\mathrm{u}, \mathrm{m})=$ jacobiAM(u,m);
fcontour(f,'Fill','on')
title('Jacobi Amplitude Function')
xlabel('u')
ylabel('m')


## Input Arguments

## u - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi Amplitude Function

The Jacobi amplitude function $\operatorname{am}(u, m)$ is defined by $\operatorname{am}(u, m)=\varphi$ where $\mathrm{F}(\varphi, m)=u$ and F represents the incomplete elliptic integral of the first kind. F is implemented as ellipticF.

## See Also

ellipticF|jacobiCD|jacobiCN|jacobiCS|jacobiDC| jacobiDN| jacobiDS| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobian

Jacobian matrix

## Syntax

```
jacobian(f,v)
```


## Description

jacobian ( $f, v$ ) computes the Jacobian matrix on page 4-936 of $f$ with respect to $v$.

The $(i, j)$ element of the result is $\frac{\partial f(i)}{\partial \mathrm{v}(j)}$.

## Examples

## Jacobian of Vector Function

The Jacobian of a vector function is a matrix of the partial derivatives of that function.
Compute the Jacobian matrix of $\left[x^{*} y^{*} z, y^{\wedge} 2, x+z\right]$ with respect to $[x, y, z]$.
syms x y z
jacobian([x*y*z, y^2, x + z], [x, y, z])

```
ans =
[r y*z,
```

Now, compute the Jacobian of $\left[x^{*} y^{*} z, y^{\wedge} 2, x+z\right]$ with respect to $[x ; y ; z]$. jacobian([x*y*z, y^2, x + z], [x; y; z])

## Jacobian of Scalar Function

The Jacobian of a scalar function is the transpose of its gradient.
Compute the Jacobian of $2 * x+3 * y+4 * z$ with respect to $[x, y, z]$.

```
syms x y z
jacobian(2*x + 3*y + 4*z, [x, y, z])
ans =
[2, 3, 4]
```

Now, compute the gradient of the same expression.

```
gradient(2*x + 3*y + 4*z, [x, y, z])
```

ans $=$
2
3
4

## Jacobian with Respect to Scalar

The Jacobian of a function with respect to a scalar is the first derivative of that function. For a vector function, the Jacobian with respect to a scalar is a vector of the first derivatives.

Compute the Jacobian of $\left[x^{\wedge} 2^{*} y, x^{*} \sin (y)\right]$ with respect to $x$.

```
syms x y
jacobian([x^2*y, x*sin(y)], x)
```

```
ans =
```

ans =
2*x*y
2*x*y
sin(y)

```
 sin(y)
```

Now, compute the derivatives.

```
diff([x^2*y, x*sin(y)], x)
ans =
[2*x*y, sin(y)]
```


## Input Arguments

## f - Scalar or vector function <br> symbolic expression | symbolic function | symbolic vector

Scalar or vector function, specified as a symbolic expression, function, or vector. If $f$ is a scalar, then the Jacobian matrix of $f$ is the transposed gradient of $f$.

## v-Vector of variables with respect to which you compute Jacobian

symbolic variable | symbolic vector
Vector of variables with respect to which you compute Jacobian, specified as a symbolic variable or vector of symbolic variables. If $v$ is a scalar, then the result is equal to the transpose of $\operatorname{diff}(f, v)$. If $v$ is an empty symbolic object, such as sym ([]), then jacobian returns an empty symbolic object.

## Definitions

## Jacobian Matrix

The Jacobian matrix of the vector function $f=\left(f_{1}\left(x_{1}, \ldots, x_{\mathrm{n}}\right), \ldots, f_{\mathrm{n}}\left(x_{1}, \ldots, x_{\mathrm{n}}\right)\right)$ is the matrix of the derivatives of $f$ :

$$
J\left(x_{1}, \ldots x_{n}\right)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]
$$

## See Also

curl|diff|divergence | gradient |hessian|laplacian | potential | vectorPotential

Introduced before R2006a

## jacobiCD

Jacobi CD elliptic function

## Syntax

jacobiCD(u,m)

## Description

jacobiCD ( $u, m$ ) returns the "Jacobi CD Elliptic Function" on page 4-941 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiCD acts element-wise.

## Examples

## Calculate Jacobi CD Elliptic Function for Numeric Inputs

```
jacobiCD(2,1)
```

ans =
1

Call jacobiCD on array inputs. jacobiCD acts element-wise when $u$ or $m$ is an array.

```
jacobiCD([2 1 -3],[1 2 3])
```

ans $=$
$1.0000 \quad 2.3829-178.6290$

## Calculate Jacobi CD Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi CD elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiCD returns exact symbolic output.

```
jacobiCD(sym(2),sym(1))
```

```
ans =
```

1

Show that for other values of $u$ or $m, j$ acobiCD returns an unevaluated function call.

```
jacobiCD(sym(2),sym(3))
```

ans =
jacobiCD(2, 3)

## Find Jacobi CD Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiCD returns the unevaluated function call.

```
syms x y
```

$\mathrm{f}=\mathrm{jacobiCD}(\mathrm{x}, \mathrm{y})$
$f=$
jacobiCD(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiCD(3, 5)
fVal = double(f)
fVal =
 1.0019
```

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =

1. 0019475527333315357888731083364

## Plot Jacobi CD Elliptic Function

Plot the Jacobi CD elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiCD(u,m);
fcontour(f,'Fill','on')
title('Jacobi CD Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi CD Elliptic Function

The Jacobi CD elliptic function is

$$
\operatorname{cd}(u, m)=\operatorname{cn}(u, m) / \operatorname{dn}(u, m)
$$

where cn and dn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCN|jacobiCS|jacobiDC| jacobiDN|jacobiDS| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiCN

Jacobi CN elliptic function

## Syntax

jacobiCN(u,m)

## Description

jacobiCN( $u, m$ ) returns the "Jacobi CN Elliptic Function" on page 4-946 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiCN acts element-wise.

## Examples

## Calculate Jacobi CN Elliptic Function for Numeric Inputs

```
jacobiCN(2,1)
ans =
 0.2658
```

Call jacobiCN on array inputs. jacobiCN acts element-wise when $u$ or $m$ is an array.
jacobiCN([2 1-3],[1 2 3])
ans $=$
$0.2658 \quad 0.7405 \quad 0.8165$

## Calculate Jacobi CN Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi CN elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiCN returns exact symbolic output.

```
jacobiCN(sym(2),sym(1))
```


## ans =

$1 / \cosh (2)$
Show that for other values of u or $\mathrm{m}, \mathrm{j}$ acobiCN returns an unevaluated function call.
jacobiCN(sym(2), sym(3))
ans =
jacobiCN(2, 3)

## Find Jacobi CN Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiCN returns the unevaluated function call.
syms x y
$\mathrm{f}=\mathrm{jacobiCN}(\mathrm{x}, \mathrm{y})$
f =
jacobiCN(x, y)
Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

f $=$
jacobiCN(3, 5)
fVal = double(f)
fVal =
0.9995

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =
0.9995148837279268257000709197021

## Plot Jacobi CN Elliptic Function

Plot the Jacobi CN elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiCN(u,m);
fcontour(f,'Fill','on')
title('Jacobi CN Elliptic Function')
xlabel('u')
ylabel('m')
```


## Jacobi CN Elliptic Function



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi CN Elliptic Function

The Jacobi CN elliptic function is $\mathrm{cn}(u, m)=\cos (a m(u, m))$ where am is the Jacobi amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCS | jacobiDC| jacobiDN| jacobiDS| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiCS

Jacobi CS elliptic function

## Syntax

jacobiCS(u,m)

## Description

jacobiCS ( $u, m$ ) returns the "Jacobi CS Elliptic Function" on page 4-951 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiCS acts element-wise.

## Examples

## Calculate Jacobi CS Elliptic Function for Numeric Inputs

```
jacobiCS(2,1)
```

ans =
0.2757

Call jacobiCS on array inputs. jacobiCS acts element-wise when $u$ or $m$ is an array. jacobiCS([2 1 -3],[1 2 3]) ans $=$
$0.2757 \quad 1.1017 \quad 1.4142$

## Calculate Jacobi CS Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi CS elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiCS returns exact symbolic output.

```
jacobiCS(sym(2),sym(1))
```


## ans =

1/sinh(2)
Show that for other values of $u$ or $m$, jacobiCS returns an unevaluated function call.

```
jacobiCS(sym(2),sym(3))
```

ans =
jacobiCS(2, 3)

## Find Jacobi CS Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiCS returns the unevaluated function call.

```
syms x y
```

f = jacobiCS ( $x, y$ )
f =
jacobiCS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiCS(3, 5)
fVal = double(f)
fVal =
 32.0925
```

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =
32.092535022751828816106562829547

## Plot Jacobi CS Elliptic Function

Plot the Jacobi CS elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiCS(u,m);
fcontour(f,'Fill','on')
title('Jacobi CS Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi CS Elliptic Function

The Jacobi CS elliptic function is $\operatorname{cs}(u, m)=\operatorname{cn}(u, m) / \operatorname{sn}(u, m)$
where cn and sn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCN|jacobiDC| jacobiDN| jacobiDS| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiDC

Jacobi DC elliptic function

## Syntax

jacobiDC(u,m)

## Description

jacobiDC ( $u, m$ ) returns the "Jacobi DC Elliptic Function" on page 4-956 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiDC acts element-wise.

## Examples

## Calculate Jacobi DC Elliptic Function for Numeric Inputs

```
jacobiDC(2,1)
ans =
 1
```

Call jacobiDC on array inputs. jacobiDC acts element-wise when $u$ or $m$ is an array.
jacobiDC([2 1-3],[1 2 3])
ans =
$1.0000 \quad 0.4197 \quad-0.0056$

## Calculate Jacobi DC Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi DC elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiDC returns exact symbolic output.

```
jacobiDC(sym(2),sym(1))
```


## ans =

1
Show that for other values of $u$ or $m, j$ acobiDC returns an unevaluated function call.
jacobiDC(sym(2), sym(3))
ans =
jacobiDC(2, 3)

## Find Jacobi DC Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiDC returns the unevaluated function call.
syms x y
$\mathrm{f}=\mathrm{jacobiDC}(\mathrm{x}, \mathrm{y})$
f =
jacobiDC(x, y)
Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

f =
jacobiDC(3, 5)
fVal = double(f)
fVal =
0.9981

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =
0.99805623285568333815968501058428

## Plot Jacobi DC Elliptic Function

Plot the Jacobi DC elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiDC(u,m);
fcontour(f,'Fill','on')
title('Jacobi DC Elliptic Function')
xlabel('u')
ylabel('m')
```


## Jacobi DC Elliptic Function



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi DC Elliptic Function

The Jacobi DC elliptic function is

$$
\operatorname{dc}(u, m)=\operatorname{dn}(u, m) / \operatorname{cn}(u, m)
$$

where dn and cn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCN|jacobiCS|jacobiDN|jacobiDS| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiDN

Jacobi DN elliptic function

## Syntax

jacobiDN(u,m)

## Description

jacobiDN ( $u, m$ ) returns the "Jacobi DN Elliptic Function" on page 4-961 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiDN acts element-wise.

## Examples

## Calculate Jacobi DN Elliptic Function for Numeric Inputs

```
jacobiDN(2,1)
```

ans =
0.2658

Call jacobiDN on array inputs. jacobiDN acts element-wise when $u$ or $m$ is an array.

```
jacobiDN([2 1 -3],[1 2 3])
```

ans $=$
$0.2658 \quad 0.3107 \quad-0.0046$

## Calculate Jacobi DN Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi DN elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiDN returns exact symbolic output.

```
jacobiDN(sym(2),sym(1))
```

```
ans =
1/cosh(2)
```

Show that for other values of $u$ or $m, j$ acobiDN returns an unevaluated function call.

```
jacobiDN(sym(2),sym(3))
```

ans =
jacobiDN(2, 3)

## Find Jacobi DN Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiDN returns the unevaluated function call.

```
syms x y
```

f = jacobiDN( $x, y$ )
f =
jacobiDN(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiDN(3, 5)
fVal = double(f)
fVal =
 0.9976
```

Calculate f to higher precision using vpa.
fVal $=$ vpa(f)
fVal =
0.99757205953668099307853539907267

## Plot Jacobi DN Elliptic Function

Plot the Jacobi DN elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiDN(u,m);
fcontour(f,'Fill','on')
title('Jacobi DN Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi DN Elliptic Function

The Jacobi DN elliptic function is

$$
\operatorname{dn}(u, m)=\sqrt{1-m \sin (\phi)^{2}}
$$

where $\phi$ is such that $F(\phi, m)=u$ and $F$ represents the incomplete elliptic integral of the first kind. F is implemented as ellipticF.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

 jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta
## Introduced in R2017b

## jacobiDS

Jacobi DS elliptic function

## Syntax

jacobiDS(u,m)

## Description

jacobiDS $(u, m)$ returns the "Jacobi DS Elliptic Function" on page 4-966 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiDS acts element-wise.

## Examples

## Calculate Jacobi DS Elliptic Function for Numeric Inputs

```
jacobiDS(2,1)
ans =
 0.2757
```

Call jacobiDS on array inputs. jacobiDS acts element-wise when $u$ or $m$ is an array.

```
jacobiDS([2 1 -3],[1 2 3])
```

ans $=$
$0.2757 \quad 0.4623 \quad-0.0079$

## Calculate Jacobi DS Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi DS elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiDS returns exact symbolic output.

```
jacobiDS(sym(2),sym(1))
```

Show that for other values of $u$ or $m$, jacobiDS returns an unevaluated function call.
jacobiDS(sym(2),sym(3))
ans $=$
jacobiDS(2, 3)

## Find Jacobi DS Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiDS returns the unevaluated function call.

```
syms x y
```

$\mathrm{f}=\mathrm{jacobiDS}(\mathrm{x}, \mathrm{y})$
$f=$
jacobiDS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiDS(3, 5)
fVal = double(f)
fVal =
 32.0302
```

Calculate f to higher precision using vpa.

```
fVal = vpa(f)
```

fVal =
32.030154607596772037587224629884

## Plot Jacobi DS Elliptic Function

Plot the Jacobi DS elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiDS(u,m);
fcontour(f,'Fill','on')
title('Jacobi DS Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi DS Elliptic Function

The Jacobi DS elliptic function is

$$
\mathrm{ds}(u, m)=\operatorname{dn}(u, m) / \operatorname{sn}(u, m)
$$

where dn and sn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCN|jacobiCS|jacobiDC|jacobiDN| jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiNC

Jacobi NC elliptic function

## Syntax

jacobiNC(u,m)

## Description

jacobiNC ( $u, m$ ) returns the "Jacobi NC Elliptic Function" on page 4-971 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiNC acts element-wise.

## Examples

## Calculate Jacobi NC Elliptic Function for Numeric Inputs

```
jacobiNC(2,1)
ans =
 3.7622
```

Call jacobiNC on array inputs. jacobiNC acts element-wise when $u$ or $m$ is an array.
jacobiNC([2 1-3],[1 2 3])
ans $=$
$3.7622 \quad 1.3505 \quad 1.2247$

## Calculate Jacobi NC Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi NC elliptic function. For symbolic input where $u=0$ or $m=0$ or 1, jacobiNC returns exact symbolic output.

```
jacobiNC(sym(2),sym(1))
```

```
ans =
cosh(2)
```

Show that for other values of $u$ or $m$, jacobiNC returns an unevaluated function call.

```
jacobiNC(sym(2),sym(3))
```

ans =
jacobiNC(2, 3)

## Find Jacobi NC Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiNC returns the unevaluated function call.

```
syms x y
```

f = jacobiNC ( $\mathrm{x}, \mathrm{y}$ )
$f=$
jacobiNC(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiNC(3, 5)
fVal = double(f)
fVal =
 1.0005
```

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =

1. 0004853517240922102007985618873

## Plot Jacobi NC Elliptic Function

Plot the Jacobi NC elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiNC(u,m);
fcontour(f,'Fill','on')
title('Jacobi NC Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi NC Elliptic Function

The Jacobi NC elliptic function is

$$
\mathrm{nc}(u, m)=1 / \mathrm{cn}(u, m)
$$

where cn is the respective Jacobi elliptic function.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM| jacobiCD | jacobiCN|jacobiCS| jacobiDC| jacobiDN| jacobiDS|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

## Introduced in R2017b

## jacobiND

Jacobi ND elliptic function

## Syntax

jacobiND(u,m)

## Description

jacobiND ( $u, m$ ) returns the "Jacobi ND Elliptic Function" on page 4-976 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiND acts element-wise.

## Examples

## Calculate Jacobi ND Elliptic Function for Numeric Inputs

```
jacobiND(2,1)
```

ans $=$
3.7622

Call jacobiND on array inputs. jacobiND acts element-wise when $u$ or $m$ is an array.

```
jacobiND([2 1 -3],[1 2 3])
```

ans $=$
$3.7622 \quad 3.2181-218.7739$

## Calculate Jacobi ND Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi ND elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiND returns exact symbolic output.

```
jacobiND(sym(2),sym(1))
```

```
ans =
```

cosh(2)

Show that for other values of $u$ or $m$, jacobiND returns an unevaluated function call.

```
jacobiND(sym(2),sym(3))
```

ans =
jacobiND(2, 3)

## Find Jacobi ND Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiND returns the unevaluated function call.
syms x y
$\mathrm{f}=\mathrm{jacobiND}(\mathrm{x}, \mathrm{y})$
f =
jacobiND(x, y)
Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

$f=$
jacobiND (3, 5)
fVal = double(f)
fVal =
1.0024

Calculate f to higher precision using vpa.
fVal $=v p a(f)$
fVal =
1.0024338497055006289470589737758

## Plot Jacobi ND Elliptic Function

Plot the Jacobi ND elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiND(u,m);
fcontour(f,'Fill','on')
title('Jacobi ND Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi ND Elliptic Function

The Jacobi ND elliptic function is

$$
\operatorname{nd}(u, m)=1 / \mathrm{dn}(u, m)
$$

where $d n$ is the respective Jacobi elliptic function.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCN|jacobiCS|jacobiDC|jacobiDN| jacobiDS|jacobiNC|jacobiNS|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiNS

Jacobi NS elliptic function

## Syntax

jacobiNS(u,m)

## Description

jacobiNS ( $u, m$ ) returns the "Jacobi NS Elliptic Function" on page 4-981 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiNS acts element-wise.

## Examples

## Calculate Jacobi NS Elliptic Function for Numeric Inputs

```
jacobiNS(2,1)
ans =
 1.0373
```

Call jacobiNS on array inputs. jacobiNS acts element-wise when $u$ or $m$ is an array.
jacobiNS([2 1 -3],[1 2 3])
ans $=$
$1.0373 \quad 1.4879 \quad 1.7321$

## Calculate Jacobi NS Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi NS elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiNS returns exact symbolic output.

```
jacobiNS(sym(2),sym(1))
```

```
ans =
coth(2)
```

Show that for other values of $u$ or $m$, jacobiNS returns an unevaluated function call.

```
jacobiNS(sym(2),sym(3))
```

ans =
jacobiNS(2, 3)

## Find Jacobi NS Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiNS returns the unevaluated function call.

```
syms x y
```

f = jacobiNS ( $\mathrm{x}, \mathrm{y}$ )
$f=$
jacobiNS(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiNS(3, 5)
fVal = double(f)
fVal =
 32.1081
```

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =
32.108111189955611054545195854805

## Plot Jacobi NS Elliptic Function

Plot the Jacobi NS elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiNS(u,m);
fcontour(f,'Fill','on')
title('Jacobi NS Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi NS Elliptic Function

The Jacobi NS elliptic function is

$$
\mathrm{ns}(u, m)=1 / \mathrm{ds}(u, m)
$$

where ds is the respective Jacobi elliptic function.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS| jacobiDC| jacobiDN| jacobiDS|jacobiNC|jacobiND|jacobiSC|jacobiSD|jacobiSN|jacobiZeta

## Introduced in R2017b

## jacobiP

Jacobi polynomials

## Syntax

$$
\operatorname{jacobiP}(n, a, b, x)
$$

## Description

jacobiP ( $n, a, b, x$ ) returns the nth degree Jacobi polynomial on page 4-987 with parameters a and b at x .

## Examples

## Find Jacobi Polynomials for Numeric and Symbolic Inputs

Find the Jacobi polynomial of degree 2 for numeric inputs.

```
jacobiP(2,0.5,-3,6)
ans =
 7.3438
```

Find the Jacobi polynomial for symbolic inputs.

```
syms n a b x
jacobiP(n,a,b,x)
ans =
jacobiP(n, a, b, x)
```

If the degree of the Jacobi polynomial is not specified, jacobiP cannot find the polynomial and returns the function call.

Specify the degree of the Jacobi polynomial as 1 to return the form of the polynomial.

```
J = jacobiP(1,a,b,x)
J =
a/2 - b/2 + x*(a/2 + b/2 + 1)
```

To find the numeric value of a Jacobi polynomial, call jacobiP with the numeric values directly. Do not substitute into the symbolic polynomial because the result can be inaccurate due to round-off. Test this by using subs to substitute into the symbolic polynomial, and compare the result with a numeric call.

```
J = jacobiP(300, -1/2, -1/2, x);
subs(J,x,vpa(1/2))
jacobiP(300, -1/2, -1/2, vpa(1/2))
ans =
101573673381249394050.64541318209
ans =
0.032559931334979678350422392588404
```

When subs is used to substitute into the symbolic polynomial, the numeric result is subject to round-off error. The direct numerical call to jacobiP is accurate.

## Find Jacobi Polynomial with Vector and Matrix Inputs

Find the Jacobi polynomials of degrees 1 and 2 by setting $n=\left[\begin{array}{ll}1 & 2\end{array}\right]$ for $a=3$ and $b=$ 1.

```
syms x
jacobiP([1 2],3,1,x)
ans =
[3*x + 1, 7*x^2 + (7*x)/2 - 1/2]
```

jacobiP acts on n element-wise to return a vector with two entries.
If multiple inputs are specified as a vector, matrix, or multidimensional array, these inputs must be the same size. Find the Jacobi polynomials for $a=[12 ; 31], b=[22 ; 1$ 3], $n=1$ and $x$.
a = [1 2;3 1];
b $=[2$ 2;13];
J = jacobiP(1,a,b,x)

```
J =
[(5*x)/2 - 1/2,
```

jacobiP acts element-wise on $a$ and $b$ to return a matrix of the same size as $a$ and $b$.

## Visualize Zeros of Jacobi Polynomials

Plot Jacobi polynomials of degree 1,2 , and 3 for $a=3, b=3$, and $-1<x<1$. To better view the plot, set axis limits by using axis. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(jacobiP(1:3,3,3,x))
axis([-1 1 -2 2])
grid on
ylabel('P_n^{(\alpha,\beta)}(x)')
title('Zeros of Jacobi polynomials of degree=1,2,3 with a=3 and b=3');
legend('1','2','3','Location','best')
```



## Prove Orthogonality of Jacobi Polynomials with Respect to Weight Function

The Jacobi polynomials $\mathrm{P}(n, a, b, x)$ are orthogonal with respect to the weight function $(1-x)^{a}(1-x)^{b}$ on the interval [-1,1].

Prove $\mathrm{P}(3, a, b, x)$ and $\mathrm{P}(5, a, b, x)$ are orthogonal with respect to the weight function $(1-x)^{a}(1-x)^{b}$ by integrating their product over the interval $[-1,1]$, where $\mathrm{a}=3.5$ and $\mathrm{b}=7.2$.

```
syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
P5 = jacobiP(5, a, b, x);
w = (1-x)^a* (1+x)^b;
int(P3*P5*W, x, -1, 1)
ans =
0
```


## Input Arguments

## n - Degree of Jacobi polynomial

nonnegative integer | vector of nonnegative integers | matrix of nonnegative integers | multidimensional array of nonnegative integers | symbolic nonnegative integer | symbolic variable | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Degree of Jacobi polynomial, specified as a nonnegative integer, or a vector, matrix, or multidimensional array of nonnegative integers, or a symbolic nonnegative integer, variable, vector, matrix, function, expression, or multidimensional array.

## a - Input

number | vector $\mid$ matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

## b - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

## x - Evaluation point

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional array

Evaluation point, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, expression, or multidimensional array.

## Definitions

## Jacobi Polynomials

The Jacobi polynomials are given by the recursion formula

$$
\begin{aligned}
& 2 n c_{n} c_{2 n-2} P(n, a, b, x)=c_{2 n-1}\left(c_{2 n-2} c_{2 n} x+a^{2}-b^{2}\right) P(n-1, a, b, x) \\
&-2(n-1+a)(n-1+b) c_{2 n} P(n-2, a, b, x),
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{n}=n+a+b \\
& P(0, a, b, x)=1 \\
& P(1, a, b, x)=\frac{a-b}{2}+\left(1+\frac{a+b}{2}\right) x .
\end{aligned}
$$

For fixed real $a>-1$ and $b>-1$, the Jacobi polynomials are orthogonal on the interval $[-1,1]$ with respect to the weight function $w(x)=(1-x)^{a}(1+x)^{b}$.

For $a=0$ and $b=0$, the Jacobi polynomials $\mathrm{P}(n, 0,0, x)$ reduce to the Legendre polynomials $\mathrm{P}(n, x)$.

The relation between Jacobi polynomials $\mathrm{P}(n, a, b, x)$ and Chebyshev polynomials of the first kind $T(n, x)$ is

$$
T(n, x)=\frac{2^{2 n}(n!)^{2}}{(2 n)!} P\left(n,-\frac{1}{2},-\frac{1}{2}, x\right)
$$

The relation between Jacobi polynomials $\mathrm{P}(n, a, b, x)$ and Chebyshev polynomials of the second kind $U(n, x)$ is

$$
U(n, x)=\frac{2^{2 n} n!(n+1)!}{(2 n+1)!} P\left(n, \frac{1}{2}, \frac{1}{2}, x\right)
$$

The relation between Jacobi poynomials $\mathrm{P}(n, a, b, x)$ and Gegenbauer polynomials $\mathrm{G}(n, a, x)$ is

$$
G(n, a, x)=\frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(n+2 a)}{\Gamma(2 a) \Gamma\left(n+a+\frac{1}{2}\right)} P\left(n, a-\frac{1}{2}, a-\frac{1}{2}, x\right)
$$

## See Also

chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | laguerreL | legendreP

## Introduced in R2014b

## jacobiSC

Jacobi SC elliptic function

## Syntax

jacobiSC(u,m)

## Description

jacobiSC ( $u, m$ ) returns the "Jacobi SC Elliptic Function" on page 4-993 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiSC acts element-wise.

## Examples

## Calculate Jacobi SC Elliptic Function for Numeric Inputs

```
jacobiSC(2,1)
ans =
 3.6269
```

Call jacobiSC on array inputs. jacobiSC acts element-wise when $u$ or $m$ is an array.

```
jacobiSC([2 1 -3],[1 2 3])
```

ans $=$
$3.6269 \quad 0.9077 \quad 0.7071$

## Calculate Jacobi SC Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi SC elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiSC returns exact symbolic output.

```
jacobiSC(sym(2),sym(1))
```

```
ans =
sinh(2)
```

Show that for other values of $u$ or $m$, jacobiSC returns an unevaluated function call.

```
jacobiSC(sym(2),sym(3))
```

ans =
jacobiSC(2, 3)

## Find Jacobi SC Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiSC returns the unevaluated function call.
syms x y
f = jacobiSC ( $x, y$ )
f =
jacobiSC(x, y)
Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

$f=$
jacobiSC(3, 5)
fVal = double(f)
fVal =
0.0312

Calculate f to higher precision using vpa.
fVal $=v p a(f)$
fVal =
0.031159894327171581127518352857409

## Plot Jacobi SC Elliptic Function

Plot the Jacobi SC elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiSC(u,m);
fcontour(f,'Fill','on')
title('Jacobi SC Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi SC Elliptic Function

The Jacobi SC elliptic function is
$\operatorname{sc}(u, m)=\operatorname{sn}(u, m) / \operatorname{cn}(u, m)$
where sn and cn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK | jacobiAM| jacobiCD | jacobiCN|jacobiCS| jacobiDC|jacobiDN| jacobiDS|jacobiNC|jacobiND|jacobiNS|jacobiSD|jacobiSN|jacobiZeta

## Introduced in R2017b

## jacobiSD

Jacobi SD elliptic function

## Syntax

jacobiSD(u,m)

## Description

jacobiSD $(u, m)$ returns the "Jacobi SD Elliptic Function" on page 4-998 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiSD acts element-wise.

## Examples

## Calculate Jacobi SD Elliptic Function for Numeric Inputs

```
jacobiSD(2,1)
ans =
 3.6269
```

Call jacobiSD on array inputs. jacobiSD acts element-wise when $u$ or $m$ is an array.

```
jacobiSD([2 1 -3],[1 2 3])
```

ans $=$
$3.6269 \quad 2.1629-126.3078$

## Calculate Jacobi SD Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi SD elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiSD returns exact symbolic output.

```
jacobiSD(sym(2),sym(1))
```


## ans =

sinh(2)
Show that for other values of $u$ or $m$, jacobiSD returns an unevaluated function call.

```
jacobiSD(sym(2),sym(3))
```

ans =
jacobiSD(2, 3)

## Find Jacobi SD Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiSD returns the unevaluated function call.

```
syms x y
```

$\mathrm{f}=\mathrm{jacobiSD}(\mathrm{x}, \mathrm{y})$
f =
jacobiSD(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

$f=$
jacobiSD(3, 5)
fVal = double(f)
fVal =
0.0312

Calculate f to higher precision using vpa.
fVal = vpa(f)
fVal =
0.031220579864538785956650143970485

## Plot Jacobi SD Elliptic Function

Plot the Jacobi SD elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiSD(u,m);
fcontour(f,'Fill','on')
title('Jacobi SD Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression
Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi SD Elliptic Function

The Jacobi SD elliptic function is

$$
\operatorname{sd}(u, m)=\operatorname{sn}(u, m) / \operatorname{dn}(u, m)
$$

where $s n$ and dn are the respective Jacobi elliptic functions.
The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD|jacobiCN|jacobiCS|jacobiDC|jacobiDN| jacobiDS|jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSN|jacobiZeta

Introduced in R2017b

## jacobiSN

Jacobi SN elliptic function

## Syntax

jacobiSN(u,m)

## Description

jacobiSN ( $u, m$ ) returns the "Jacobi SN Elliptic Function" on page 4-1003 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiSN acts element-wise.

## Examples

## Calculate Jacobi SN Elliptic Function for Numeric Inputs

```
jacobiSN(2,1)
ans =
 0.9640
```

Call jacobiSN on array inputs. jacobiSN acts element-wise when $u$ or $m$ is an array.
jacobiSN([2 1 -3],[1 2 3])
ans $=$
$0.9640 \quad 0.6721 \quad 0.5773$

## Calculate Jacobi SN Elliptic Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi SN elliptic function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiSN returns exact symbolic output.

```
jacobiSN(sym(2),sym(1))
```

```
ans =
tanh(2)
```

Show that for other values of $u$ or $m$, jacobiSN returns an unevaluated function call.

```
jacobiSN(sym(2),sym(3))
```

ans =
jacobiSN(2, 3)

## Find Jacobi SN Elliptic Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiSN returns the unevaluated function call.

```
syms x y
```

f = jacobiSN( $x, y$ )
$f=$
jacobiSN(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
f =
jacobiSN(3, 5)
fVal = double(f)
fVal =
 0.0311
```

Calculate f to higher precision using vpa.
$\mathrm{fVal}=\mathrm{vpa}(\mathrm{f})$
fVal =
0.031144778155397389598324170696454

## Plot Jacobi SN Elliptic Function

Plot the Jacobi SN elliptic function using fcontour. Set $u$ on the $x$-axis and $m$ on the $y$ axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiSN(u,m);
fcontour(f,'Fill','on')
title('Jacobi SN Elliptic Function')
xlabel('u')
ylabel('m')
```



## Input Arguments

u - Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi SN Elliptic Function

The Jacobi SN elliptic function is $\operatorname{sn}(u, m)=\sin (a m(u, m))$ where am is the Jacobi amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods $4 \mathrm{~K}(\mathrm{~m})$ and $4 \mathrm{i} \mathrm{K}^{\prime}(\mathrm{m})$, where K is the complete elliptic integral of the first kind, implemented as ellipticK.

## See Also

ellipticK|jacobiAM|jacobiCD | jacobiCN|jacobiCS|jacobiDC|jacobiDN| jacobiDS|jacobiNC|jacobiND|jacobiNS|jacobiSC|jacobiSD|jacobiZeta

Introduced in R2017b

## jacobiZeta

Jacobi zeta function

## Syntax

```
jacobiZeta(u,m)
```


## Description

jacobiZeta ( $u, m$ ) returns the "Jacobi Zeta Function" on page 4-1008 of $u$ and $m$. If $u$ or $m$ is an array, then jacobiZeta acts element-wise.

## Examples

## Calculate Jacobi Zeta Function for Numeric Inputs

```
jacobiZeta(2,1)
```

ans $=$
0.9640

Call jacobiZeta on array inputs. jacobiZeta acts element-wise when $u$ or $m$ is an array.

```
jacobiZeta([2 1 -3],[1 2 3])
```

```
ans =
```

```
 0.9640 + 0.0000i 0.5890 - 0.4569i -2.3239 + 1.9847i
```


## Calculate Jacobi Zeta Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi zeta function. For symbolic input where $u=0$ or $m=0$ or 1 , jacobiZeta returns exact symbolic output.

```
jacobiZeta(sym(2),sym(1))
ans =
tanh(2)
```

Show that for other values of $u$ or $m$, jacobiZeta returns an unevaluated function call.

```
jacobiZeta(sym(2),sym(3))
ans =
jacobiZeta(2, 3)
```


## Find Jacobi Zeta Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiZeta returns the unevaluated function call.

```
syms X y
f = jacobiZeta(x,y)
f =
jacobiZeta(x, y)
```

Substitute values for the variables by using subs, and convert values to double by using double.

```
f = subs(f, [x y], [3 5])
```

f =
jacobiZeta(3, 5)
fVal = double(f)
fVal =
4.0986-3.0018i

Calculate f to arbitrary precision using vpa.
fVal = vpa(f)
fVal =
4.0986033838332279126523721581432-3.0017792319714320747021938869936i

## Plot Jacobi Zeta Function

Plot real and imaginary values of the Jacobi zeta function using fcontour. Set u on the xaxis and $m$ on the $y$-axis by using the symbolic function $f$ with the variable order ( $u, m$ ). Fill plot contours by setting Fill to on.

```
syms f(u,m)
f(u,m) = jacobiZeta(u,m);
subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Jacobi Zeta')
xlabel('u')
ylabel('m')
subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imaginary Values of Jacobi Zeta')
xlabel('u')
ylabel('m')
```



## Input Arguments

## u - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Jacobi Zeta Function

The Jacobi zeta function $\mathrm{Z}(u, m)$ is defined as

$$
\mathrm{Z}(u, m)=\frac{2 \pi}{\mathrm{~K}(m)}\left(\sum_{i=1}^{\infty} \frac{\mathrm{q}(m)^{i}}{1-\mathrm{q}(m)^{2 i}} \sin \left(\frac{2 \pi}{\mathrm{~K}(m)} i u\right)\right)
$$

$\mathrm{K}(m)$ is the complete elliptic integral of the first kind, implemented as ellipticK. $\mathrm{q}(m)$ is the elliptic nome, implemented as ellipticNome.

## See Also

jacobiAM| jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN| jacobiDS | jacobiNC| jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN

Introduced in R2017b

## jordan

Jordan normal form (Jordan canonical form)

## Syntax

```
J = jordan(A)
[V,J] = jordan(A)
```


## Description

J = jordan (A) computes the Jordan normal form of the matrix A. Because the Jordan form of a numeric matrix is sensitive to numerical errors, prefer converting numeric input to exact symbolic form.
[V, J] = jordan (A) computes the Jordan form J and the similarity transform V. The matrix V contains the generalized eigenvectors of A as columns, such that $\mathrm{V} \backslash \mathrm{A} * \mathrm{~V}=\mathrm{J}$.

## Examples

## Compute Jordan Form and Similarity Transform

Compute the Jordan form and the similarity transform for a matrix. Because the Jordan form of a numeric matrix is sensitive to numerical errors, first convert the matrix to symbolic form by using sym.

```
A = [1 -3 -2;
 -1 1 -1;
 2 4 5];
A = sym(A);
[V,J] = jordan(A)
V =
[-1, 1, -1]
```

```
[-1, 0, 0]
[2, 0, 1]
J =
[2, 1, 0]
[0, 2, 0]
[0, 0, 3]
```

Verify that V satisfies the condition $\mathrm{V} \backslash \mathrm{A} * \mathrm{~V}=\mathrm{J}$ by using isAlways.

```
cond = J == V\A*V;
isAlways(cond)
ans =
 3\times3 logical array
 1 1 1
 1 1
 1 1 1
```


## See Also

charpoly|eig| hermiteForm|inv|smithForm

## Introduced before R2006a

## kroneckerDelta

Kronecker delta function

## Syntax

kroneckerDelta(m)
kroneckerDelta(m,n)

## Description

kroneckerDelta(m) returns 1 if $m==0$ and 0 if $m \sim=0$.
kroneckerDelta $(\mathrm{m}, \mathrm{n})$ returns 1 if $\mathrm{m}==\mathrm{n}$ and 0 if $\mathrm{m} \sim=n$.

## Examples

## Compare Two Symbolic Variables

Note For kroneckerDelta with numeric inputs, use the eq function instead.

Set symbolic variable $m$ equal to symbolic variable $n$ and test their equality using kroneckerDelta.
syms m n
$m=n$;
kroneckerDelta(m,n)
ans =
1
kroneckerDelta returns 1 indicating that the inputs are equal.
Compare symbolic variables p and q .

```
syms p q
kroneckerDelta(p,q)
ans =
kroneckerDelta(p - q, 0)
```

kroneckerDelta cannot decide if $p==q$ and returns the function call with the undecidable input. Note that kroneckerDelta ( $p, q$ ) is equal to kroneckerDelta( $p$ - q, 0).

To force a logical result for undecidable inputs, use isAlways. The isAlways function issues a warning and returns logical 0 (false) for undecidable inputs. Set the Unknown option to false to suppress the warning.

```
isAlways(kroneckerDelta(p, q), 'Unknown', 'false')
```

ans =
logical
0

## Compare Symbolic Variable with Zero

Set symbolic variable m to 0 and test m for equality with 0 . The kroneckerDelta function errors because it does not accept numeric inputs of type double.

```
m = 0;
kroneckerDelta(m)
```

Undefined function 'kroneckerDelta' for input arguments of type 'double'.

Use sym to convert 0 to a symbolic object before assigning it to $m$. This is because kroneckerDelta only accepts symbolic inputs.

## syms m

$\mathrm{m}=\operatorname{sym}(0)$;
kroneckerDelta(m)
ans =
1
kroneckerDelta returns 1 indicating that $m$ is equal to 0 . Note that kroneckerDelta(m) is equal to kroneckerDelta(m, 0).

## Compare Vector of Numbers with Symbolic Variable

Compare a vector of numbers [llll $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]$ with symbolic variable $m$. Set $m$ to 3 .

```
V = 1:4
syms m
m = sym(3)
sol = kroneckerDelta(V,m)
V =
 1 2 3 4
m =
3
sol =
[0, 0, 1, 0]
```

kroneckerDelta acts on V element-wise to return a vector, sol, which is the same size as V . The third element of sol is 1 indicating that the third element of V equals m .

## Compare Two Matrices

Compare matrices A and B.
Declare matrices A and B.

```
syms m
A = [m m+1 m+2;m-2 m-1 m]
B = [m m+3 m+2;m-1 m-1 m+1]
A =
[m,m + 1,m + 2]
[m - 2, m - 1, m]
B =
[m,m + 3,m + 2]
```

Compare A and B using kroneckerDelta.

```
sol = kroneckerDelta(A,B)
```

sol =
[ 1, 0, 1]
[ 0, 1, 0]
kroneckerDelta acts on $A$ and $B$ element-wise to return the matrix sol which is the same size as $A$ and $B$. The elements of sol that are 1 indicate that the corresponding elements of $A$ and $B$ are equal. The elements of sol that are 0 indicate that the corresponding elements of $A$ and $B$ are not equal.

## Use kroneckerDelta in Inputs to Other Functions

kroneckerDelta appears in the output of iztrans.

```
syms z n
sol = iztrans(l/(z-1), z, n)
sol =
1 - kroneckerDelta(n, 0)
```

Use this output as input to ztrans to return the initial input expression.

```
ztrans(sol, n, z)
ans =
z/(z - 1) - 1
```


## Filter Response to Kronecker Delta Input

Use filter to find the response of a filter when the input is the Kronecker Delta function. Convert $k$ to a symbolic vector using sym because kroneckerDelta only accepts symbolic inputs, and convert it back to double using double. Provide arbitrary filter coefficients $a$ and $b$ for simplicity.

```
b = [0 1 1];
a = [1 -0.5 0.3];
k = -20:20;
x = double(kroneckerDelta(sym(k)));
y = filter(b,a,x);
plot(k,y)
```



## Input Arguments

## m - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array. At least one of the inputs, $m$ or $n$, must be symbolic.

## n - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array. At least one of the inputs, $m$ or n , must be symbolic.

## Definitions

## Kronecker Delta Function

The Kronecker delta function is defined as

$$
\delta(m, n)= \begin{cases}0 & \text { if } \mathrm{m} \neq n \\ 1 & \text { if } \mathrm{m}=n\end{cases}
$$

## Tips

- When m or n is NaN , the kroneckerDelta function returns NaN .


## See Also

iztrans|ztrans

## Introduced in R2014b

## kummerU

Confluent hypergeometric Kummer U function

## Syntax

kummerU(a,b,z)

## Description

kummerU( $a, b, z)$ computes the value of confluent hypergeometric function, $U(a, b, z)$. If the real parts of $z$ and a are positive values, then the integral representations of the Kummer U function is as follows:

$$
U(a, b, z)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

## Examples

## Equation Returning the Kummer U Function as Its Solution

dsolve can return solutions of second-order ordinary differential equations in terms of the Kummer U function.

Solve this equation. The solver returns the results in terms of the Kummer U function and another hypergeometric function.

```
syms t z y(z)
dsolve(z^3*diff(y,2) + (z^2 + t)*diff(y) + z*y)
ans =
(C4*hypergeom(1i/2, 1 + 1i, t/(2*z^2)))/\mp@subsup{z}{}{\wedge}1i +...
(C3*kummerU(1i/2, 1 + 1i, t/(2*z^2)))/\mp@subsup{z}{}{\wedge}1i
```


## Kummer U Function for Numeric and Symbolic Arguments

Depending on its arguments, kummerU can return floating-point or exact symbolic results.
Compute the Kummer U function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [kummerU(-1/3, 2.5, 2)
kummerU(1/3, 2, pi)
kummerU(1/2, 1/3, 3*i)]
A =
 0.8234 + 0.0000i
 0.7284 + 0.0000i
 0.4434 - 0.3204i
```

Compute the Kummer U function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, kummerU returns unresolved symbolic calls.

```
symA = [kummerU(-1/3, 2.5, sym(2))
kummerU(1/3, 2, sym(pi))
kummerU(1/2, sym(1/3), 3*i)]
symA =
 kummerU(-1/3, 5/2, 2)
 kummerU(1/3, 2, pi)
 kummerU(1/2, 1/3, 3i)
```

Use vpa to approximate symbolic results with the required number of digits.
vpa(symA,10)
ans $=$
0.8233667846
0.7284037305
$0.4434362538-0.3204327531 i$

## Some Special Values of Kummer U

The Kummer U function has special values for some parameters.
If a is a negative integer, the Kummer U function reduces to a polynomial.
syms a b z
[kummerU(-1, b, z)

```
kummerU(-2, b, z)
kummerU(-3, b, z)]
ans =
```

```
 b - 2*z*(b + 1) + b^2 + +^^2
6* z* (b^2/2 + (3*b)/2 + 1) - 2*b - 6* z^2*(b/2 + 1) - 3* b^2 - b^3 + z^3
```

If $b=2 * a$, the Kummer $U$ function reduces to an expression involving the modified Bessel function of the second kind.

```
kummerU(a, 2*a, z)
ans =
(z^(1/2 - a)*exp(z/2)*besselk(a - 1/2, z/2))/pi^(1/2)
```

If $\mathrm{a}=1$ or $\mathrm{a}=\mathrm{b}$, the Kummer U function reduces to an expression involving the incomplete gamma function.

```
kummerU(1, b, z)
ans =
z^(1 - b)*exp(z)*igamma(b - 1, z)
kummerU(a, a, z)
ans =
exp(z)*igamma(1 - a, z)
If a = 0, the Kummer U function is 1.
kummerU(0, a, z)
ans =
1
```


## Handle Expressions Containing the Kummer U Function

Many functions, such as diff, int, and limit, can handle expressions containing kummerU.

Find the first derivative of the Kummer $U$ function with respect to $z$.

```
syms a b z
diff(kummerU(a, b, z), z)
```

```
ans =
(a*kummerU(a + 1, b, z)*(a - b + 1))/z - (a*kummerU(a, b, z))/z
```

Find the indefinite integral of the Kummer $U$ function with respect to $z$.

```
int(kummerU(a, b, z), z)
ans =
((b - 2)/(a - 1) - 1)*kummerU(a, b, z) +...
(kummerU(a + 1, b, z)*(a - a*b + a^2))/(a - 1) -...
(z*kummerU(a, b, z))/(a - 1)
```

Find the limit of this Kummer U function.

```
limit(kummerU(1/2, -1, z), z, 0)
```

ans $=$
4/(3*pi^(1/2))

## Input Arguments

## a - Parameter of Kummer U function

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector.

## b - Parameter of Kummer U function

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector.

## z - Argument of Kummer $\mathbf{U}$ function

number | vector | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector

Argument of Kummer U function, specified as a number, variable, symbolic expression, symbolic function, or vector. If $z$ is a vector, $\operatorname{kummerU}(a, b, z)$ is evaluated element-wise.

## Definitions

## Confluent Hypergeometric Function (Kummer U Function)

The confluent hypergeometric function (Kummer U function) is one of the solutions of the differential equation

$$
z \frac{\partial^{2}}{\partial z^{2}} y+(b-z) \frac{\partial}{\partial z} y-a y=0
$$

The other solution is the hypergeometric function ${ }_{1} F_{1}(a, b, z)$.
The Whittaker W function can be expressed in terms of the Kummer $U$ function:

$$
W_{a, b}(z)=e^{-z / 2} z^{b+1 / 2} U\left(b-a+\frac{1}{2}, 2 b+1, z\right)
$$

## Tips

- kummerU returns floating-point results for numeric arguments that are not symbolic objects.
- kummerU acts element-wise on nonscalar inputs.
- All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then kummerU expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.


## References

[1] Slater, L. J. "Confluent Hypergeometric Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

## See Also

hypergeom|whittakerM|whittakerW

## Introduced in R2014b

## laguerreL

Generalized Laguerre Function and Laguerre Polynomials

## Syntax

laguerreL ( $\mathrm{n}, \mathrm{x}$ )
laguerreL( $n, a, x$ )

## Description

laguerreL $(n, x)$ returns the Laguerre polynomial of degree $n$ if $n$ is a nonnegative integer. When $n$ is not a nonnegative integer, laguerreL returns the Laguerre function. For details, see "Generalized Laguerre Function" on page 4-1028.
laguerreL $(\mathrm{n}, \mathrm{a}, \mathrm{x})$ returns the generalized Laguerre polynomial of degree n if n is a nonnegative integer. When n is not a nonnegative integer, laguerreL returns the generalized Laguerre function.

## Examples

Find Laguerre Polynomials for Numeric and Symbolic Inputs
Find the Laguerre polynomial of degree 3 for input 4.3.
laguerreL $(3,4.3)$
ans $=$
2.5838

Find the Laguerre polynomial for symbolic inputs. Specify degree $n$ as 3 to return the explicit form of the polynomial.
syms $x$
laguerreL(3,x)

```
ans =
- x^3/6 + (3*x^2)/2 - 3*x + 1
```

If the degree of the Laguerre polynomial $n$ is not specified, laguerreL cannot find the polynomial. When laguerreL cannot find the polynomial, it returns the function call.

```
syms n x
```

laguerreL(n,x)
ans =
laguerreL(n, x)

## Find Generalized Laguerre Polynomial

Find the explicit form of the generalized Laguerre polynomial $L(n, a, x)$ of degree $n=$ 2.

```
syms a x
laguerreL(2,a,x)
ans =
(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1
```


## Return Generalized Laguerre Function

When n is not a nonnegative integer, laguerreL ( $\mathrm{n}, \mathrm{a}, \mathrm{x}$ ) returns the generalized Laguerre function.

```
laguerreL(-2.7,3,2)
```

ans =
0.2488
laguerreL is not defined for certain inputs and returns an error.
syms $x$
laguerreL(-5/2, -3/2, x)
Error using symengine (line 60)
The function 'laguerreL' is not defined for parameter values -5/2' and '-3/2'.

## Find Laguerre Polynomial with Vector and Matrix Inputs

```
Find the Laguerre polynomials of degrees 1 and 2 by setting n = [ll 2].
syms x
laguerreL([1 2],x)
ans =
[1 - x, x^2/2 - 2*x + 1]
```

laguerreL acts element-wise on n to return a vector with two elements.
If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs must be the same size. Find the generalized Laguerre polynomials where input arguments $n$ and $x$ are matrices.

```
syms a
n = [2 3; 1 2];
xM = [x^2 11/7; -3.2 -x];
laguerreL(n,a,xM)
ans =
[a^2/2 - a*x^2 + (3*a)/2 + x^4/2 - 2*x^2 + 1,...
 a^3/6 + (3*a^2)/14 - (253*a)/294 - 676/1029]
 a + 21/5,..
 a^2/2 + a*x + (3*a)/2 + x^2/2 + 2*x + 1]
```

laguerreL acts element-wise on $n$ and $x$ to return a matrix of the same size as $n$ and $x$.

## Differentiate and Find Limits of Laguerre Polynomials

Use limit to find the limit of a generalized Laguerre polynomial of degree 3 as $x$ tends to $\infty$.

```
syms x
expr = laguerreL(3,2,x);
limit(expr,x,Inf)
ans =
-Inf
```

Use diff to find the third derivative of the generalized Laguerre polynomial laguerreL(n,a,x).

```
syms n a
expr = laguerreL(n,a,x);
diff(expr,x,3)
ans =
-laguerreL(n - 3, a + 3, x)
```


## Find Taylor Series Expansion of Laguerre Polynomials

Use taylor to find the Taylor series expansion of the generalized Laguerre polynomial of degree 2 at $x=0$.

```
syms a x
```

expr = laguerreL(2,a,x);
taylor(expr,x)
ans $=$
$\left(3^{*} a\right) / 2-x^{*}(a+2)+a^{\wedge} 2 / 2+x^{\wedge} 2 / 2+1$

## Plot Laguerre Polynomials

Plot the Laguerre polynomials of orders 1 through 4. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(laguerreL(1:4, x))
axis([-2 10 -10 10])
grid on
ylabel('L_n(x)')
title('Laguerre polynomials of orders 1 through 4')
legend('1','2','3','4','Location','best')
```



## Input Arguments

## n - Degree of polynomial

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

## x - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

## a - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

## Definitions

## Generalized Laguerre Function

The generalized Laguerre function is defined in terms of the hypergeometric function as

$$
\operatorname{laguerreL}(n, a, x)=\binom{n+a}{a}{ }_{1} F_{1}(-n ; a+1 ; x)
$$

For nonnegative integer values of $n$, the function returns the generalized Laguerre polynomials that are orthogonal with respect to the scalar product

$$
\langle f 1, f 2\rangle=\int_{0}^{\infty} e^{-x} x^{a} f 1(x) f 2(x) d x
$$

In particular,

$$
\langle\text { laguerreL }(n, a, x) \text {, laguerreL }(m, a, x)\rangle=\left\{\begin{array}{cc}
0 & \text { if } n \neq m \\
\frac{\Gamma(a+n+1)}{n!} & \text { if } n=m
\end{array}\right.
$$

## Algorithms

- The generalized Laguerre function is not defined for all values of parameters n and a because certain restrictions on the parameters exist in the definition of the hypergeometric functions. If the generalized Laguerre function is not defined for a particular pair of $n$ and $a$, the laguerreL function returns an error message. See "Return Generalized Laguerre Function" on page 4-1024.
- The calls laguerreL( $n, x$ ) and laguerreL( $n, 0, x$ ) are equivalent.
- If n is a nonnegative integer, the laguerreL function returns the explicit form of the corresponding Laguerre polynomial.
- 

The special values laguerreL $(n, a, 0)=\binom{n+a}{a}$ are implemented for arbitrary values of
n and a.

- If n is a negative integer and a is a numerical noninteger value satisfying $a \geq-n$, then laguerreL returns 0 .
- If n is a negative integer and a is an integer satisfying $a<-n$, the function returns an explicit expression defined by the reflection rule
laguerreL $(n, a, x)=(-1)^{a} e^{x}$ laguerreL $(-n-a-1, a,-x)$
- If all arguments are numerical and at least one argument is a floating-point number, then laguerreL ( $x$ ) returns a floating-point number. For all other arguments, laguerreL ( $\mathrm{n}, \mathrm{a}, \mathrm{x}$ ) returns a symbolic function call.


## See Also

chebyshevT | chebyshevU | gegenbauerC | hermiteH| hypergeom | jacobiP| legendreP

## Introduced in R2014b

## lambertw

Lambert W function

## Syntax

## lambertw(x)

lambertw(k,x)

## Description

lambertw ( $x$ ) returns the principal branch of the Lambert $W$ function on page 4-1038. This syntax is equivalent to lambertw $(0, x)$.
lambertw $(k, x)$ is the $k$ th branch of the Lambert $W$ function. lambertw $(k, x)$ returns real values only if $\mathrm{k}=0$ or $\mathrm{k}=-1$.

## Examples

## Equation Returning Lambert W Function as Its Solution

The Lambert $W$ function $W(x)$ is a set of solutions of the equation $x=W(x) e^{W(x)}$.
Solve this equation. The solution is the Lambert W function.

```
syms x W
eqn = x == W* exp(W);
solve(eqn,W)
ans =
lambertw(0, x)
```

Verify that branches of the Lambert W function are valid solutions of the equation $\mathrm{x}=$ $W^{*} e^{W}$ :

```
k = - 2:2;
eqn = subs(eqn,W,lambertw(k,x));
isAlways(eqn)
ans =
 1\times5 logical array
 1
```


## Lambert W Function for Numeric and Symbolic Arguments

Depending on its arguments, lambertw can return floating-point or exact symbolic results.

Compute the Lambert W functions for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [0 -1/exp(1); pi i];
lambertw(A)
ans =
 0.0000 + 0.0000i -1.0000 + 0.0000i
 1.0737 + 0.0000i 0.3747 + 0.5764i
lambertw(-1,A)
ans =
 -Inf + 0.0000i -1.0000 + 0.0000i
```

Compute the Lambert W functions for the numbers converted to symbolic objects. For most symbolic (exact) numbers, lambertw returns unresolved symbolic calls.

```
A = [0 -1/exp(sym(1)); pi i];
W0 = lambertw(A)
W0 =
[0, -1]
[lambertw(0, pi), lambertw(0, li)]
Wmin1 = lambertw(-1,A)
Wmin1 =
```

```
[-Inf, -1]
lambertw(-1, pi), lambertw(-1, 1i)]
```

Convert symbolic results to double by using double.

```
double(W0)
ans =
 0.0000 + 0.0000i -1.0000 + 0.0000i
 1.0737 + 0.0000i 0.3747 + 0.5764i
```


## Plot Two Main Branches of Lambert W function

Plot the two main branches, $W_{0}(x)$ and $W_{-1}(x)$, of the Lambert W function. Before R2016a, use ezplot instead of fplot.

```
syms x
fplot(lambertw(x))
hold on
fplot(lambertw(-1,x))
hold off
axis([-0.5 4 -4 2])
title('Lambert W function, two main branches')
legend('k=0','k=1','Location','best')
```

Lambert W function, two main branches


## Lambert W Function Plot on Complex Plane

Plot the principal branch of the Lambert W function on the complex plane.
Plot the real value of the Lambert W function by using fmesh. Simultaneously plot the countours by setting 'ShowContours' to 'On'.
syms $x$ y
$\mathrm{f}=$ lambertw $(\mathrm{x}+1 \mathrm{i} * \mathrm{y})$;
interval $=[-100100-100$ 100];
fmesh(real(f),interval,'ShowContours','On')


Plot the imaginary value of the Lambert W function. The plot has a branch cut along the negative real axis. Plot the contours separately.
fmesh(imag(f),interval)

fcontour(imag(f),interval,'Fill','on')


Plot the absolute value of the Lambert W function.
fmesh(abs(f),interval,'ShowContours','On')


## Input Arguments

## x - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector
or a matrix, lambertw expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

## k - Branch of Lambert W function <br> integer | vector or matrix of integers | symbolic integer | symbolic vector or matrix of integers

Branch of Lambert W function, specified as an integer or a vector or matrix of integers, or a symbolic integer or symbolic vector or matrix of integers.

At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix, lambertw expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

## Definitions

## Lambert W Function

The Lambert W function $\mathrm{W}(x)$ represents the solutions $y$ of the equation $y e^{y}=x$ for any complex number $x$.

- For complex $x$, the equation has an infinite number of solutions $\mathrm{y}=\operatorname{lambertW}(k, x)$ where $k$ ranges over all integers.
- For all real $x \geq 0$, the equation has exactly one real solution $\mathrm{y}=\operatorname{lambertW}(x)=$ lambertW(0,x).
- For real $x$ where $-e^{-1}<x<0$, the equation has exactly two real solutions. The larger solution is represented by y $=$ lambertW $(x)$ and the smaller solution by $\mathrm{y}=$ lambertW(-1,x).
- For $x=-e^{-1}$, the equation has exactly one real solution $y=-1=\operatorname{lambertW}(0,-\exp (-1))$ $=\operatorname{lambertW}(-1,-\exp (-1))$.


## References

[1] Corless, R.M, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth "On the Lambert W Function" Advances in Computational Mathematics, vol.5, pp. 329-359, 1996.

## See Also

Functions<br>wright0mega<br>Introduced before R2006a

## laplace

Laplace transform

## Syntax

```
laplace(f)
laplace(f,transVar)
laplace(f,var,transVar)
```


## Description

laplace ( f ) returns the "Laplace Transform" on page 4-1044 of f. By default, the independent variable is $t$ and transformation variable is $s$.
laplace( $\mathrm{f}, \mathrm{transVar)} \mathrm{uses} \mathrm{the} \mathrm{transformation} \mathrm{variable} \mathrm{transVar} \mathrm{instead} \mathrm{of} \mathrm{s}$.
laplace( $\mathrm{f}, \mathrm{var}, \mathrm{transVar}$ ) uses the independent variable var and the transformation variable transVar instead of $t$ and $s$, respectively.

## Examples

## Laplace Transform of Symbolic Expression

Compute the Laplace transform of $1 / \operatorname{sqrt}(x)$. By default, the transform is in terms of $s$.

```
syms x y
f = 1/sqrt(x);
laplace(f)
ans =
pi^(1/2)/\mp@subsup{s}{}{^}(1/2)
```


## Specify Independent Variable and Transformation Variable

Compute the Laplace transform of $\exp \left(-a^{*} t\right)$. By default, the independent variable is $t$, and the transformation variable is s .

```
syms a t
f = exp(-a*t);
laplace(f)
ans =
1/(a + s)
```

Specify the transformation variable as $y$. If you specify only one variable, that variable is the transformation variable. The independent variable is still t .

```
laplace(f,y)
ans =
1/(a + y)
```

Specify both the independent and transformation variables as a and y in the second and third arguments, respectively.

```
laplace(f,a,y)
```

ans $=$
1/( $\mathrm{t}+\mathrm{y}$ )

## Laplace Transforms of Dirac and Heaviside Functions

Compute the Laplace transforms the Dirac and Heaviside functions.

```
syms t s
laplace(dirac(t-3),t,s)
ans =
exp(-3*s)
laplace(heaviside(t-pi),t,s)
ans =
exp(-pi*s)/s
```


## Relation Between Laplace Transform of Function and it's Derivative

Show that the Laplace transform of the derivative of a function is expressed in terms of the Laplace transform of the function itself.

```
syms f(t) s
Df = diff(f(t),t);
laplace(Df,t,s)
ans =
s*laplace(f(t), t, s) - f(0)
```


## Laplace Transform of Array Inputs

Find the Laplace transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, laplace acts on them element-wise.

```
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
laplace(M,vars,transVars)
ans =
[exp(x)/a, 1/b]
[1/(c^2 + 1), 1i/d^2]
```

If laplace is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

```
laplace(x,vars,transVars)
ans =
[x/a, 1/b^2]
[x/c, x/d]
```


## Laplace Transform of Symbolic Function

Compute the Laplace transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.

```
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
laplace([f1 f2],x,[a b])
ans =
[1/(a - 1), 1/b^2]
```


## If Laplace Transform Cannot Be Found

If laplace cannot transform the input then it returns an unevaluated call.

```
syms f(t) s
f(t) = 1/t;
F = laplace(f,t,s)
F =
laplace(1/t, t, s)
```

Return the original expression by using ilaplace.

```
ilaplace(F,s,t)
```


## ans $=$

1/t

## Input Arguments

## f - Input

symbolic expression | symbolic function | symbolic vector | symbolic matrix
Input, specified as a symbolic expression, function, vector, or matrix.

## var - Independent variable

t (default) | symbolic variable

Independent variable, specified as a symbolic variable. This variable is often called the "time variable" or the "space variable." If you do not specify the variable then, by default, laplace uses $t$. If $f$ does not contain $t$, then laplace uses the function symvar to determine the independent variable.

## transVar - Transformation variable

$s$ (default) | $\mathrm{z} \mid$ symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. This variable is often called the "complex frequency variable." If you do not specify the variable then, by default, laplace uses $s$. If $s$ is the independent variable of $f$, then laplace uses z.

## Definitions

## Laplace Transform

The Laplace transform $F=F(s)$ of the expression $f=f(t)$ with respect to the variable $t$ at the point $s$ is

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

## Tips

- If any argument is an array, then laplace acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- To compute the inverse Laplace transform, use ilaplace.


## See Also

fourier|ifourier|ilaplace|iztrans|ztrans

[^0]
## laplacian

Laplacian of scalar function

## Syntax

```
laplacian(f,x)
laplacian(f)
```


## Description

laplacian ( $\mathrm{f}, \mathrm{x}$ ) computes the Laplacian of the scalar function or functional expression $f$ with respect to the vector $x$ in Cartesian coordinates.
laplacian(f) computes the Laplacian of the scalar function or functional expression $f$ with respect to a vector constructed from all symbolic variables found in $f$. The order of variables in this vector is defined by symvar.

## Examples

## Compute Laplacian of Symbolic Expression

Compute the Laplacian of this symbolic expression. By default, laplacian computes the Laplacian of an expression with respect to a vector of all variables found in that expression. The order of variables is defined by symvar.

```
syms x y t
laplacian(1/x^3 + y^2 - log(t))
ans =
1/t^2 + 12/x^5 + 2
```


## Compute Laplacian of Symbolic Function

Create this symbolic function:

```
syms x y z
f(x, y, z) = 1/x + y^2 + z^3;
```

Compute the Laplacian of this function with respect to the vector $[x, y, z]$ :

```
L = laplacian(f, [x y z])
```

$\mathrm{L}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$
$6^{*} z+2 / x^{\wedge} 3+2$

## Input Arguments

## f - Input <br> symbolic expression | symbolic function

Input, specified as a symbolic expression or function.

## x - Input

vector of symbolic variables
Input, specified as a vector of symbolic variables. The Laplacian is computed with respect to these symbolic variables.

## Definitions

## Laplacian of Scalar Function

The Laplacian of the scalar function or functional expression $f$ with respect to the vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is the sum of the second derivatives of $f$ with respect to $X_{1}, \ldots, X_{n}$ :

$$
\Delta f=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}
$$

## Tips

- If $x$ is a scalar, laplacian(f, $x)=\operatorname{diff(f,~2,~x).~}$


## Alternatives

The Laplacian of a scalar function or functional expression is the divergence of the gradient of that function or expression:

$$
\Delta f=\nabla \cdot(\nabla f)
$$

Therefore, you can compute the Laplacian using the divergence and gradient functions:

```
syms f(x, y)
divergence(gradient(f(x, y)), [x y])
```


## See Also

curl|diff|divergence | gradient|hessian | jacobian | potential | vectorPotential

## Introduced in R2012a

## latex

LaTeX form of symbolic expression

## Syntax

latex(S)

## Description

latex(S) returns the LaTeX form of the symbolic expression S .

## Examples

## LaTeX Form of Symbolic Expression

Find the LaTeX form of the symbolic expressions $x^{\wedge} 2+1 / x$ and $\sin \left(p i^{*} x\right)+a l p h a$.

```
syms x phi
latex(x^2 + 1/x)
latex(sin(pi*x) + phi)
ans =
 '\frac{1}{x}+x^2'
ans =
 '\varphi +\sin\left(\pi \,x\right)'
```


## LaTeX Form of Symbolic Matrix

Find the LaTeX form of the symbolic matrix M.

```
syms x
M = [sym(1)/3 x; exp(x) x^2]
latexM = latex(M)
```

```
M =
```


latexM =
\left(\begin\{array\}\{cc\} \frac\{1\}\{3\} \& x<br> \{\mathrm\{e\}\}^x \& x^2 \end\{array\}\right) }

## Use LaTeX to Format Title, Axis Labels, and Ticks

For $x$ and $y$ from $-2 \pi$ to $2 \pi$, plot the 3-D surface $y \sin (x)-x \cos (y)$. Store the axes handle in a by using gca. Display the axes box by using a. Box and set the tick label interpreter to latex.

Create the x-axis ticks by spanning the x-axis limits at intervals of $\mathrm{pi} / 2$. Convert the axis limits to precise multiples of pi/2 using round and get the symbolic tick values in S. Display the ticks by setting the XTick property of a to S. Create the LaTeX labels for the x-axis by using arrayfun to apply latex to $S$ and then concatenating $\$$. Display the labels by assigning them to the XTickLabel property of a.

Repeat these steps for the $y$-axis. Set the $x$ - and $y$-axes labels and the title using the latex interpreter.

```
syms x y
f = y.*sin(x)-x.*\operatorname{cos(y);}
fsurf(f,[-2*pi 2*pi])
a = gca;
a.TickLabelInterpreter = 'latex';
a.Box = 'on';
a.BoxStyle = 'full';
S = sym(a.XLim(1):pi/2:a.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.XTick = double(S);
a.XTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');
S = sym(a.YLim(1):pi/2:a.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.YTick = double(S);
a.YTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');
xlabel('x','Interpreter','latex');
ylabel('y','Interpreter','latex');
```

        zlabel('z','Interpreter','latex');
        zlabel('z','Interpreter','latex');
        title(['$' latex(f) '$ for $x$ and $y$ in $[-2\pi,2\pi]$'],'Interpreter','latex')
        title(['$' latex(f) '$ for $x$ and $y$ in $[-2\pi,2\pi]$'],'Interpreter','latex')
            \(y \sin (x)-x \cos (y)\) for \(x\) and \(y\) in \([-2 \pi, 2 \pi]\)
    

## Input Arguments

## S - Input

symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

See Also<br>ccode|fortran|pretty|texlabel<br>Introduced before R2006a

## Icm

Least common multiple

## Syntax

$\operatorname{lcm}(A)$
$\operatorname{lcm}(A, B)$

## Description

$\operatorname{lcm}(A)$ finds the least common multiple of all elements of $A$.
$\operatorname{lcm}(A, B)$ finds the least common multiple of $A$ and $B$.

## Examples

## Least Common Multiple of Four Integers

To find the least common multiple of three or more values, specify those values as a symbolic vector or matrix.

Find the least common multiple of these four integers, specified as elements of a symbolic vector.

```
A = sym([4420, -128, 8984, -488])
lcm(A)
A =
[4420, -128, 8984, -488]
ans=
9689064320
```

Alternatively, specify these values as elements of a symbolic matrix.

```
A = sym([4420, -128; 8984, -488])
lcm(A)
A =
[4420, -128]
[8984, -488]
ans =
9689064320
```


## Least Common Multiple of Rational Numbers

lcm lets you find the least common multiple of symbolic rational numbers.
Find the least common multiple of these rational numbers, specified as elements of a symbolic vector.
lcm(sym([3/4, 7/3, 11/2, 12/3, 33/4]))
ans $=$
924

## Least Common Multiple of Complex Numbers

lcm lets you find the least common multiple of symbolic complex numbers.
Find the least common multiple of these complex numbers, specified as elements of a symbolic vector.

```
lcm(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))
ans =
- 60 + 30i
```


## Least Common Multiple of Elements of Matrices

For vectors and matrices, lcm finds the least common multiples element-wise. Nonscalar arguments must be the same size.

Find the least common multiples for the elements of these two matrices.

```
A = sym([309, 186; 486, 224]);
B = sym([558, 444; 1024, 1984]);
lcm(A,B)
ans =
[57474, 13764]
[248832, 13888]
```

Find the least common multiples for the elements of matrix A and the value 99. Here, lcm expands 99 into the 2-by-2 matrix with all elements equal to 99 .

```
lcm(A,99)
ans =
[10197, 6138]
[5346, 22176]
```


## Least Common Multiple of Polynomials

Find the least common multiple of univariate and multivariate polynomials.
Find the least common multiple of these univariate polynomials.

```
syms x
lcm(x^3 - 3* x^2 + 3*x - 1, x^2 - 5*x + 4)
ans =
(x - 4)*(}\mp@subsup{x}{}{\wedge}3-3*\mp@subsup{x}{}{\wedge}2+3*x - 1
```

Find the least common multiple of these multivariate polynomials. Because there are more than two polynomials, specify them as elements of a symbolic vector.

```
syms x y
lcm([x^2*y + x^3, (x + y)^2, x^2 + x* y^2 + x*y + x + y^3 + y])
ans =
(x^3 + y*x^2)*(x^2 + x* y^2 + x*y + x + y^3 + y)
```


## Input Arguments

## A - Input value

[^1]Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## B - Input value

number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

## Tips

- Calling lcm for numbers that are not symbolic objects invokes the MATLAB lcm function.
- The MATLAB lcm function does not accept rational or complex arguments. To find the least common multiple of rational or complex numbers, convert these numbers to symbolic objects by using sym, and then use lcm.
- Nonscalar arguments must have the same size. If one input arguments is nonscalar, then lcm expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.


## See Also

gcd

## Introduced in R2014b

## Idivide. 1

Symbolic array left division

## Syntax

B. $\backslash \mathrm{A}$
ldivide(B, A)

## Description

B. $\backslash \mathrm{A}$ divides A by B .
ldivide ( $B, A$ ) is equivalent to $B . \backslash A$.

## Examples

## Divide Scalar by Matrix

Create a 2-by-3 matrix.
B = sym('b', [2 3])
B $=$
[ b1_1, b1_2, b1_3]
[ b2_1, b2_2, b2_3]
Divide the symbolic expression sin(a) by each element of the matrix B.

```
syms a
B.\sin(a)
ans =
[sin(a)/b1 1, sin(a)/b1 2, sin(a)/b1 3]
[sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]
```


## Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```
H = sym(hilb(3))
d = diag(sym([llll))
H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]
```

Divide d by H by using the elementwise left division operator . $\backslash$. This operator divides each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

```
H.\d
ans =
[1, 0, 0]
[0, 6, 0]
[0, 0, 15]
```


## Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

```
syms f(x)
f(x) = x^2;
f1 = f.\(x^2 + 5*x + 6)
f1(x) =
(x^2 + 5*x + 6)/x^2
```


## Input Arguments

```
A - Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression
```

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

## B - Input

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

## See Also

ctranspose|minus |mldivide |mpower|mrdivide |mtimes | plus | power | rdivide|times|transpose

## Introduced before R2006a

## le

Define less than or equal to relation

## Syntax

$A<=B$
le(A, B)

## Description

$A<=B$ creates a less than or equal to relation.
$\operatorname{le}(A, B)$ is equivalent to $A<=B$.

## Examples

## Set and Use Assumption Using Less Than or Equal To

Use assume and the relational operator <= to set the assumption that x is less than or equal to 3 :

```
syms x
assume(x <= 3)
```

Solve this equation. The solver takes into account the assumption on variable x , and therefore returns these three solutions.

```
solve((x-1)*(x-2)*(x-3)*(x - 4) == 0, x)
ans =
 1
 2
 3
```


## Find Values that Satisfy Condition

Use the relational operator $<=$ to set this condition on variable x :

```
syms x
cond = (abs(sin(x)) <= 1/2);
for i = 0:sym(pi/12):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end
```

Use the for loop with step $\Pi / 24$ to find angles from 0 to $\Pi$ that satisfy that condition:
0
pi/12
pi/6
(5*pi)/6
(11*pi)/12
pi

## Input Arguments

## A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## Tips

- Calling $<=$ or le for non-symbolic A and B invokes the MATLAB le function. This function returns a logical array with elements set to logical 1 (true) where $A$ is less than or equal to $B$; otherwise, it returns logical 0 (false).
- If both $A$ and $B$ are arrays, then these arrays must have the same dimensions. $A<=B$ returns an array of relations $A(i, j, \ldots)<=B(i, j, \ldots)$
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, $x$ ), and $B$ is an $m$-by- $n$ matrix, then $A$ is expanded into $m$-by- $n$ matrix of elements, each set to $x$.
- The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, $x<=i$ becomes $x<=0$, and $x<=$ $3+2 *$ i becomes $x<=3$.


## Alternatives

You can also define this relation by combining an equation and a less than relation. Thus, $A<=B$ is equivalent to $(A<B) \mid(A==B)$.

## See Also

eq | ge | gt | isAlways | lt | ne

## Topics

"Set Assumptions" on page 1-28

## Introduced in R2012a

## legendreP

Legendre polynomials

## Syntax

legendreP( $n, x$ )

## Description

legendreP $(n, x)$ returns the $n$th degree Legendre polynomial on page 4-1067 at $x$.

## Examples

## Find Legendre Polynomials for Numeric and Symbolic Inputs

Find the Legendre polynomial of degree 3 at 5.6.
legendreP $(3,5.6)$
ans $=$
430.6400

Find the Legendre polynomial of degree 2 at $x$.
syms $x$
legendreP(2,x)
ans =
$\left(3 * x^{\wedge} 2\right) / 2-1 / 2$
If you do not specify a numerical value for the degree $n$, the legendreP function cannot find the explicit form of the polynomial and returns the function call.

```
syms n
legendreP(n,x)
```

```
ans =
legendreP(n, x)
```


## Find Legendre Polynomial with Vector and Matrix Inputs

Find the Legendre polynomials of degrees 1 and 2 by setting $n=\left[\begin{array}{ll}1 & 2\end{array}\right]$.

```
syms x
legendreP([1 2],x)
ans =
[x, (3*x^2)/2 - 1/2]
```

legendreP acts element-wise on n to return a vector with two elements.
If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs must be the same size. Find the Legendre polynomials where input arguments n and x are matrices.

```
n = [2 3; 1 2];
xM = [x^2 11/7; -3.2 -x];
legendreP(n,xM)
ans =
[(3*x^4)/2 - 1/2,
```

legendreP acts element-wise on n and x to return a matrix of the same size as n and x .

## Differentiate and Find Limits of Legendre Polynomials

Use limit to find the limit of a Legendre polynomial of degree 3 as $x$ tends to $-\infty$.

```
syms x
expr = legendreP(4,x);
limit(expr,x,-Inf)
ans =
Inf
```

Use diff to find the third derivative of the Legendre polynomial of degree 5.

```
syms n
expr = legendreP(5,x);
diff(expr,x,3)
ans =
(945*x^2)/2 - 105/2
```


## Find Taylor Series Expansion of Legendre Polynomial

Use taylor to find the Taylor series expansion of the Legendre polynomial of degree 2 at $x=0$.
syms x
expr = legendreP(2,x);
taylor(expr,x)
ans =
$\left(3^{*} x^{\wedge} 2\right) / 2-1 / 2$

## Plot Legendre Polynomials

Plot Legendre polynomials of orders 1 through 4. Prior to R2016a, use ezplot instead of fplot.

```
syms x y
fplot(legendreP(1:4, x))
axis([-1.5 1.5 -1 1])
grid on
ylabel('P_n(x)')
title('Legendre polynomials of degrees 1 through 4')
legend('1','2','3','4','Location','best')
```



## Find Roots of Legendre Polynomial

Use vpasolve to find the roots of the Legendre polynomial of degree 7.

```
syms x
roots = vpasolve(legendreP(7,x) == 0)
roots =
 -0.94910791234275852452618968404785
 -0.74153118559939443986386477328079
 -0.40584515137739716690660641207696

\section*{Input Arguments}

\section*{n - Degree of polynomial}
nonnegative number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a nonnegative number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array. All elements of nonscalar inputs should be nonnegative integers or symbols.

\section*{x - Input}
number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, function, or multidimensional array.

\section*{Definitions}

\section*{Legendre Polynomial}

The Legendre polynomials are defined as
\[
P(n, x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} .
\]

They satisfy the recursion formula
\[
P(n, x)=\frac{2 n-1}{n} x P(n-1, x)-\frac{n-1}{n} P(n-2, x),
\]
where
\[
\begin{aligned}
& P(0, x)=1 \\
& P(1, x)=x .
\end{aligned}
\]

The Legendre polynomials are orthogonal on the interval \([-1,1]\) with respect to the weight function \(w(x)=1\).

The relation with Gegenbauer polynomials \(\mathrm{G}(n, a, x)\) is
\[
P(n, x)=G\left(n, \frac{1}{2}, x\right)
\]

The relation with Jacobi polynomials \(\mathrm{P}(n, a, b, x)\) is
\[
P(n, x)=P(n, 0,0, x) .
\]

\section*{See Also}
chebyshevT|chebyshevU | gegenbauerC| hermiteH| hypergeom | jacobiP | laguerreL

\section*{Introduced in R2014b}

\section*{Ihs}

Left side (LHS) of equation

\section*{Syntax}
lhs(eqn)

\section*{Description}
lhs (eqn) returns the left side of the symbolic equation eqn. The value of eqn also can be a symbolic condition, such as \(x>0\). If eqn is an array, then lhs returns an array of the left sides of the equations in eqn.

\section*{Examples}

\section*{Find Left Side of Equation}

Find the left side of the equation \(2 * y==x^{\wedge} 2\) by using lhs.
First, declare the equation.
```

syms x y
eqn = 2*y == x^2
eqn =
2*y == x^2

```

Find the left side of eqn by using lhs.
lhsEqn \(=\) lhs(eqn)
lhsEqn =
\(2 * y\)

\section*{Find Left Side of Condition}

Find the left side of the condition \(x+y<1\) by using lhs.
First, declare the condition.
```

syms x y
cond = x + y < 1
cond =
x + y < 1

```

Find the left side of cond by using lhs.
```

lhsCond = lhs(cond)
lhsCond =
x + y

```

Note Conditions that use the > operator are internally rewritten using the < operator. Therefore, lhs returns the original right side. For example, lhs (\(x>a\)) returns \(a\).

\section*{Find Left Side of Equations in Array}

For an array that contains equations and conditions, lhs returns an array of the left sides of those equations or conditions. The output array is the same size as the input array.

Find the left side of the equations and conditions in the vector V.
```

syms x y
V = [y^2 == x^2, x ~= 0, x*y >= 1]
V =
[ y^2 == x^2, x ~= 0, 1 <= x*y]
lhsV = lhs(V)
lhsV =
[ y^2, x, 1]

```

Because any condition using the >= operator is internally rewritten using the <= operator, the sides of the last condition in V are exchanged.

\section*{Input Arguments}

\section*{eqn - Equation or condition}
symbolic equation | symbolic condition | vector of symbolic equations or conditions | matrix of symbolic equations or conditions | multidimensional array of symbolic equations or conditions

Equation or condition, specified as a symbolic equation or condition, or a vector, matrix, or multidimensional array of symbolic equations or conditions.

\author{
See Also \\ assume | children|rhs|subs
}

Introduced in R2017a

\section*{limit}

Limit of symbolic expression

\section*{Syntax}
```

limit(f,var,a)
limit(f,a)
limit(f)
limit(f,var,a,'left')
limit(f,var,a,'right')

```

\section*{Description}
limit(f,var, a) returns the "Bidirectional Limit" on page 4-1074 of the symbolic expression \(f\) when var approaches a.
limit(f,a) uses the default variable found by symvar.
limit (f) returns the limit at 0 .
limit(f,var,a,'left') returns the "Left Side Limit" on page 4-1074 of fas var approaches a.
limit(f,var, a, 'right') returns the "Right Side Limit" on page 4-1074 of f as var approaches a.

\section*{Examples}

\section*{Limit of Symbolic Expression}

Calculate the bidirectional limit of this symbolic expression as x approaches 0 .
```

syms x h
f= sin(x)/x;
limit(f,x,0)
ans =
1

```

Calculate the limit of this expression as h approaches 0.
```

f = (sin(x+h)-sin(x))/h;
limit(f,h,0)
ans =
cos(x)

```

\section*{Right and Left Limits of Symbolic Expression}

Calculate the right and left limits of symbolic expressions.
```

syms x
f = 1/x;
limit(f,x,0,'right')
ans =
Inf
limit(f,x,0,'left')
ans =
-Inf

```

\section*{Limit of Expressions in Symbolic Vector}

Calculate the limit of expressions in a symbolic vector. limit acts element-wise on the vector.
```

syms x a
V = [(1+a/x)^x exp(-x)];
limit(V,x,Inf)

```
```

ans =
[ exp(a), 0]

```

\section*{Input Arguments}

\section*{f - Input}
symbolic expression | symbolic function | symbolic vector | symbolic matrix
Input, specified as a symbolic expression, function, vector, or matrix.

\section*{var - Independent variable}
\(x\) (default) | symbolic variable
Independent variable, specified as a symbolic variable. If you do not specify var, then symvar determines the independent variable.

\section*{a - Limit point}
number | symbolic number | symbolic variable | symbolic expression
Limit point, specified as a number or a symbolic number, variable, or expression.

\section*{Definitions}

\section*{Bidirectional Limit}
\[
L=\lim _{x \rightarrow a} f(x), x-a \in \mathbb{R} \backslash\{0\} .
\]

\section*{Left Side Limit}
\[
L=\lim _{x \rightarrow a^{-}} f(x), x-a<0 .
\]

\section*{Right Side Limit}
\[
L=\lim _{x \rightarrow a^{+}} f(x), x-a>0 .
\]

\author{
See Also \\ diff|poles|taylor \\ Introduced before R2006a
}

\section*{linsolve}

Solve linear equations in matrix form

\section*{Syntax}
```

X = linsolve(A,B)
[X,R] = linsolve(A,B)

```

\section*{Description}
\(X=\) linsolve \((A, B)\) solves the matrix equation \(A X=B\), where \(B\) is a column vector.
\([X, R]=\) linsolve \((A, B)\) also returns the reciprocal of the condition number of \(A\) if \(A\) is a square matrix. Otherwise, linsolve returns the rank of \(A\).

\section*{Examples}

\section*{Solve Linear Equations in Matrix Form}

Solve this system of linear equations in matrix form by using linsolve.
\[
\left[\begin{array}{ccc}
2 & 1 & 1 \\
-1 & 1 & -1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
3 \\
-10
\end{array}\right]
\]
```

A = [ 2 1 1;
-1 1 -1;
1 2 3];
B = [2; 3; -10];
X = linsolve(A,B)

```

\section*{X =}

3
1
-5
From \(X, x=3, y=1\) and \(z=-5\).

\section*{Compute Condition Number of Square Matrix}

Compute the reciprocal of the condition number of the square coefficient matrix by using two output arguments.
```

syms a x y z
A = [a 0 0; 0 a 0; 0 0 1];
B = [x; y; z];
[X, R] = linsolve(A, B)
X =
x/a
y/a
z
R =
1/(max(abs(a), 1)*max(1/abs(a), 1))

```

\section*{Compute Rank of Non-Square Matrix}

If the coefficient matrix is rectangular, linsolve returns the rank of the coefficient matrix as the second output argument.
```

syms a b x y
A = [a 0 1; 1 b 0];
B = [x; y];
[X, R] = linsolve(A, B)
Warning: Solution is not unique because the system is rank-deficient.
In sym.linsolve at 67
X =
-(x - a*y)/(a*b)
0

```
- "Solve System of Algebraic Equations" on page 2-157

\section*{Input Arguments}

A - Coefficient matrix
symbolic matrix
Coefficient matrix, specified as a symbolic matrix.

\section*{B - Right side of equations}
symbolic vector | symbolic matrix
Right side of equations, specified as a symbolic vector or matrix.

\section*{Output Arguments}

\author{
X - Solution
}
symbolic vector | symbolic matrix
Solution, returned as a symbolic matrix or vector.
R - Reciprocal condition number or rank
symbolic number | symbolic expression
Reciprocal of the condition number of \(A\) if \(A\) is a square matrix. Otherwise, the rank of \(A\).

\section*{Definitions}

\section*{Matrix Representation of System of Linear Equations}

A system of linear equations
\[
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
\]
can be represented as the matrix equation \(A \cdot \vec{x}=\vec{b}\), where \(A\) is the coefficient matrix:
\[
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
\]
and \(\vec{b}\) is the vector containing the right sides of equations:
\[
\vec{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
\]

\section*{Tips}
- If the solution is not unique, linsolve issues a warning, chooses one solution and returns it.
- If the system does not have a solution, linsolve issues a warning and returns X with all elements set to Inf.
- Calling linsolve for numeric matrices that are not symbolic objects invokes the MATLAB linsolve function. This function accepts real arguments only. If your system of equations uses complex numbers, use sym to convert at least one matrix to a symbolic matrix, and then call linsolve.

\section*{See Also}
cond | dsolve | equationsToMatrix | inv | norm | odeToVectorField|rank| solve | symvar | vpasolve

\section*{Topics}
"Solve System of Algebraic Equations" on page 2-157

Introduced in R2012b

\section*{\(\log\)}

Natural logarithm of entries of symbolic matrix

\section*{Syntax}
\(Y=\log (X)\)

\section*{Description}
\(Y=\log (X)\) returns the natural logarithm of \(X\).

\section*{Examples}

\section*{Compute Natural Logarithm}

Compute the natural logarithm of each entry of this symbolic matrix:
syms x
\(M=x * h i l b(2) ;\)
\(\log (M)\)
ans \(=\)
[\(\log (x), \log (x / 2)]\)
[\(\log (x / 2), \log (x / 3)]\)

\section*{Differentiate Symbolic Expression}

Differentiate this symbolic expression:
```

syms x
diff(log(x^3), x)
ans =
3/x

```

\section*{Input Arguments}
```

X - Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

```

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{See Also}
log10| log2

Introduced before R2006a

\section*{\(\log 10\)}

Log base 10 of symbolic input

\section*{Syntax}
log10(x)

\section*{Description}
\(\log 10(x)\) returns the logarithm to the base 10 of \(x\). If \(x\) is an array, \(\log 10\) acts elementwise on \(x\).

\section*{Examples}

\section*{Log Base 10 of Numeric and Symbolic Input}

Compute the log base 10 of numeric input.
log10(20)
ans \(=\)
1.3010

Compute the log base 10 of symbolic input. The result is in terms of log.
syms x
\(\mathrm{f}=\mathrm{x}^{\wedge} 2\);
fLog10 \(=\log 10(f)\)
fLog10 =
\(\log \left(x^{\wedge} 2\right) / \log (10)\)
Convert symbolic output to double by substituting for x with a number using subs, and then using double.
```

fLog10 = subs(fLog10,x,5); % x is 5
fLog10 = double(fLog10)
fLog10 =
1.3979

```

\section*{Input Arguments}

\section*{x - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{See Also}
\(\log \mid \log 2\)

\section*{Introduced before R2006a}

\section*{\(\log 2\)}

Log base 2 of symbolic input

\section*{Syntax}
\(\log 2(x)\)

\section*{Description}
\(\log 2(x)\) returns the logarithm to the base 2 of \(x\). If \(x\) is an array, \(\log 2\) acts element-wise on \(x\).

\section*{Examples}

\section*{Log Base 2 of Numeric and Symbolic Input}

Compute the log base 2 of numeric input.
\(\log 2(20)\)
ans \(=\)
4.3219

Compute the log base 2 of symbolic input. The result is in terms of log.
syms x
\(\mathrm{f}=\mathrm{x}^{\wedge} 2\);
\(\mathrm{fLog} 2=\log 2(f)\)
fLog2 =
\(\log \left(x^{\wedge} 2\right) / \log (2)\)
Convert symbolic output to double by substituting for x with a number by using subs, and then using double.
```

fLog2 = subs(fLog2,x,5); % x is 5
fLog2 = double(fLog2)
fLog2 =
4.6439

```

\section*{Input Arguments}

\section*{x - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{See Also}
log | log10

\section*{Introduced before R2006a}

\section*{logical}

Check validity of equation or inequality

\section*{Syntax}
logical(cond)

\section*{Description}
logical (cond) checks whether the condition cond is valid. To test conditions that require assumptions or simplifications, use isAlways instead of logical.

\section*{Examples}

\section*{Test Condition Using logical}

Use logical to check if \(3 / 5\) is less than 2/3:
```

logical(sym(3)/5 < sym(2)/3)

```
```

ans =

```
 logical
 1

\section*{Test Equation Using logical}

Check the validity of this equation using logical. Without an additional assumption that \(x\) is nonnegative, this equation is invalid.
```

syms x
logical(x == sqrt(x^2))ans =
logical
0

```

Use assume to set an assumption that \(x\) is nonnegative. Now the expression sqrt (\(x^{\wedge} 2\)) evaluates to \(x\), and logical returns 1 :
```

assume(x >= 0)
logical(x == sqrt(x^2))
ans =
logical
1

```

Note that logical typically ignores assumptions on variables.
```

syms x
assume(x == 5)
logical(x == 5)
ans =
logical
0

```

To compare expressions taking into account assumptions on their variables, use isAlways:
```

isAlways(x == 5)
ans =
logical
l

```

For further computations, clear the assumption on x :
syms x clear

\section*{Test Multiple Conditions Using logical}

Check if the following two conditions are both valid. To check if several conditions are valid at the same time, combine these conditions by using the logical operator and or its shortcut \&
```

syms x
logical(1 < 2 \& x == x)
ans =
logical
l

```

\section*{Test Inequality Using logical}

Check this inequality. Note that logical evaluates the left side of the inequality.
```

logical(sym(11)/4 - sym(1)/2 > 2)
ans =
logical
1

```
logical also evaluates more complicated symbolic expressions on both sides of equations and inequalities. For example, it evaluates the integral on the left side of this equation:
```

syms x
logical(int(x, x, 0, 2) - 1 == 1)
ans =
logical
l

```

\section*{Compare logical and isAlways}

Do not use logical to check equations and inequalities that require simplification or mathematical transformations. For such equations and inequalities, logical might return unexpected results. For example, logical does not recognize mathematical equivalence of these expressions:
```

syms x
logical(sin(x)/\operatorname{cos(x) == tan(x))}
ans =
logical
0

```
logical also does not realize that this inequality is invalid:
logical(sin(x)/cos(x) ~= \(\tan (x))\)
ans =
 logical
 1

To test the validity of equations and inequalities that require simplification or mathematical transformations, use isAlways:
```

isAlways(sin(x)/\operatorname{cos}(x)== tan(x))
ans =
logical
1
isAlways(sin(x)/cos(x) ~= tan(x))
Warning: Unable to prove 'sin(x)/cos(x) ~= tan(x)'.
ans =
logical
0

```

\section*{Input Arguments}

\section*{cond - Input}
symbolic equation | symbolic inequality | symbolic array of equations or inequalities
Input, specified as a symbolic equation, inequality, or a symbolic array equations or inequalities. You also can combine several conditions by using the logical operators and, or, xor, not, or their shortcuts.

\section*{Tips}
- For symbolic equations, logical returns logical 1 (true) only if the left and right sides are identical. Otherwise, it returns logical 0 (false).
- For symbolic inequalities constructed with \(\sim=\), logical returns logical 0 (false) only if the left and right sides are identical. Otherwise, it returns logical 1 (true).
- For all other inequalities (constructed with \(<,<=,>\), or \(>=\)), logical returns logical 1 if it can prove that the inequality is valid and logical 0 if it can prove that the inequality is invalid. If logical cannot determine whether such inequality is valid or not, it throws an error.
- logical evaluates expressions on both sides of an equation or inequality, but does not simplify or mathematically transform them. To compare two expressions applying mathematical transformations and simplifications, use isAlways.
- logical typically ignores assumptions on variables.

\author{
See Also \\ assume |assumeAlso|assumptions |in |isAlways |isequal|isequaln | isfinite|isinf|isnan|sym|syms
}

\section*{Topics}
"Use Assumptions on Symbolic Variables" on page 1-28
"Clear Assumptions and Reset the Symbolic Engine" on page 3-68
Introduced in R2012a

\section*{logint}

Logarithmic integral function

\section*{Syntax}

\section*{logint(X)}

\section*{Description}
logint \((X)\) represents the logarithmic integral function on page 4-1095 (integral logarithm).

\section*{Examples}

\section*{Integral Logarithm for Numeric and Symbolic Arguments}

Depending on its arguments, logint returns floating-point or exact symbolic results.
Compute integral logarithms for these numbers. Because these numbers are not symbolic objects, logint returns floating-point results.
```

A = logint([-1, 0, 1/4, 1/2, 1, 2, 10])
A =
0.0737 + 3.4227i 0.0000 + 0.0000i -0.1187 + 0.0000i -0.3787 + 0.0000i...
-Inf + 0.0000i 1.0452 + 0.0000i 6.1656 + 0.0000i

```

Compute integral logarithms for the numbers converted to symbolic objects. For many symbolic (exact) numbers, logint returns unresolved symbolic calls.
```

symA = logint(sym([-1, 0, 1/4, 1/2, 1, 2, 10]))
symA =
[ logint(-1), 0, logint(1/4), logint(1/2), -Inf, logint(2), logint(10)]

```

Use vpa to approximate symbolic results with floating-point numbers:
```

vpa(symA)
ans =
[ 0.07366791204642548599010096523015...
+ 3.4227333787773627895923750617977i,...
0,...
-0.11866205644712310530509570647204,...
-0.37867104306108797672720718463656,...
-Inf,...
1.0451637801174927848445888891946,...
6.1655995047872979375229817526695]

```

\section*{Plot Integral Logarithm}

Plot the integral logarithm function on the interval from 0 to 10. Before R2016a, use ezplot instead of fplot.
syms x
fplot(logint(x), [0, 10])
grid on

Many functions, such as diff and limit, can handle expressions containing logint.
Find the first and second derivatives of the integral logarithm:
```

syms x
diff(logint(x), x)
diff(logint(x), x, x)
ans =
1/log(x)

```
```

ans =
-1/(x*}\operatorname{log}(x\mp@subsup{)}{}{\wedge}2

```

Find the right and left limits of this expression involving logint:
```

limit(exp(1/x)/logint(x + 1), x, 0, 'right')
ans =
Inf
limit(exp(1/x)/logint(x + 1), x, 0, 'left')
ans =
0

```

\section*{Input Arguments}

\section*{X - Input}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

\section*{Definitions}

\section*{Logarithmic Integral Function}

The logarithmic integral function, also called the integral logarithm, is defined as follows:
\[
\operatorname{logint}(x)=\operatorname{Li}(x)=\int_{0}^{x} \frac{1}{\ln (t)} d t
\]

\section*{Tips}
- logint(sym(0)) returns 1.
- logint(sym(1)) returns -Inf.
- \(\operatorname{logint(z)}=\mathrm{ei}(\log (z))\) for all complex \(z\).

\section*{References}
[1] Gautschi, W., and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

\section*{See Also}
coshint |cosint|ei|expint|int|log|sinhint|sinint|ssinint

Introduced in R2014a

\section*{logm}

Matrix logarithm

\section*{Syntax}
\(R=\log m(A)\)

\section*{Description}
\(R=\operatorname{logm}(A)\) computes the matrix logarithm of the square matrix \(A\).

\section*{Examples}

\section*{Matrix Logarithm}

Compute the matrix logarithm for the 2-by-2 matrix.
syms x
\(\mathrm{A}=[\mathrm{x} 1\); \(0-\mathrm{x}]\);
\(\operatorname{logm}(A)\)
ans \(=\)
\(\left[\begin{array}{rr}{[\log (x),} & \log (x) /(2 * x)-\log (-x) /(2 * x)] \\ 0, & \log (-x)]\end{array}\right.\)

\section*{Input Arguments}

A - Input matrix
square matrix
Input matrix, specified as a square symbolic matrix.

\section*{Output Arguments}

R — Resulting matrix
symbolic matrix
Resulting function, returned as a symbolic matrix.

\author{
See Also \\ eig | expm|funm|jordan | sqrtm \\ Introduced in R2014b
}

\section*{It}

Define less than relation

\section*{Syntax}

A \(<B\)
\(\operatorname{lt}(A, B)\)

\section*{Description}
\(A<B\) creates a less than relation.
\(\operatorname{lt}(A, B)\) is equivalent to \(A<B\).

\section*{Examples}

\section*{Set and Use Assumption Using Less}

Use assume and the relational operator < to set the assumption that \(x\) is less than 3:
```

syms x
assume(x < 3)

```

Solve this equation. The solver takes into account the assumption on variable \(x\), and therefore returns these two solutions.
```

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)
ans =
1
2

```

\section*{Find Values that Satisfy Condition}

Use the relational operator \(<\) to set this condition on variable x :
```

syms x
cond = abs(sin(x)) + abs(cos(x)) < 6/5;

```

Use the for loop with step п/24 to find angles from 0 to п that satisfy that condition:
```

for i = 0:sym(pi/24):sym(pi)
if subs(cond, x, i)
disp(i)
end
end
0
pi/24
(11*pi)/24
pi/2
(13*pi)/24
(23*pi)/24
pi

```

\section*{Input Arguments}

\section*{A - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{B - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{Tips}
- Calling < or lt for non-symbolic A and B invokes the MATLAB lt function. This function returns a logical array with elements set to logical 1 (true) where \(A\) is less than B; otherwise, it returns logical 0 (false).
- If both \(A\) and \(B\) are arrays, then these arrays must have the same dimensions. \(A<B\) returns an array of relations \(A(i, j, \ldots)<B(i, j, \ldots)\)
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, \(x\)), and \(B\) is an \(m\)-by- \(n\) matrix, then \(A\) is expanded into \(m\)-by- \(n\) matrix of elements, each set to \(x\).
- The field of complex numbers is not an ordered field. MATLAB projects complex numbers in relations to a real axis. For example, \(x<i\) becomes \(x<0\), and \(x<3\) \(+2 *\) i becomes \(x<3\).

\section*{See Also}
eq | ge |gt|isAlways|le|ne

\section*{Topics}
"Set Assumptions" on page 1-28

\section*{Introduced in R2012a}

\section*{lu}

LU factorization

\section*{Syntax}
```

[L,U] = lu(A)
[L,U] = lu(A)
[L,U,p] = lu(A,'vector')
[L,U,p,q] = lu(A,'vector')
[L,U,p,Q,R] = lu(A)
[L,U,p,q,R] = lu(A,'vector')
lu(A)

```

\section*{Description}
\([\mathrm{L}, \mathrm{U}]=\mathrm{lu}(\mathrm{A})\) returns an upper triangular matrix U and a matrix L , such that \(\mathrm{A}=\) \(\mathrm{L} * \mathrm{U}\). Here, L is a product of the inverse of the permutation matrix and a lower triangular matrix.
\([\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{A})\) returns an upper triangular matrix U , a lower triangular matrix L , and a permutation matrix \(P\), such that \(P^{*} A=L * U\). The syntax \(l u(A, ' m a t r i x ')\) is identical.
\([L, U, p]=\operatorname{lu}\left(A,{ }^{\prime}\right.\) vector') returns the permutation information as a vector \(p\), such that \(A(p,:)=L * U\).
\([L, U, p, q]=l u\left(A,{ }^{\prime} v e c t o r '\right)\) returns the permutation information as two row vectors \(p\) and \(q\), such that \(A(p, q)=L^{*} U\).
\([L, U, p, Q, R]=l u(A)\) returns an upper triangular matrix \(U\), a lower triangular matrix \(L\), permutation matrices \(P\) and \(Q\), and a scaling matrix \(R\), such that \(P *(R \backslash A) * Q=L * U\). The syntax lu(A,'matrix') is identical.
\([L, U, p, q, R]=l u(A, ' v e c t o r ')\) returns the permutation information in two row vectors \(p\) and \(q\), such that \(R(:, p) \backslash A(:, q)=L * U\).
\(l u(A)\) returns the matrix that contains the strictly lower triangular matrix \(L\) (the matrix without its unit diagonal) and the upper triangular matrix \(U\) as submatrices. Thus, lu(A)
returns the matrix \(U+L\) - eye(size(A)), where \(L\) and \(U\) are defined as \([L, U, P]=\) lu(A). The matrix A must be square.

\section*{Examples}

\section*{Compute LU factorization of Matrix}

Compute the LU factorization of this matrix. Because these numbers are not symbolic objects, you get floating-point results.
```

M = [2 -3 -1; 1/2 1 -1; 0 1 -1];
[L, U] = lu(M)
L =
1.0000 0 0
0.2500 1.0000 0
0.5714 1.0000
U =
2.0000

```

Now convert this matrix to a symbolic object, and compute the LU factorization.
```

M = sym(M);
[L, U] = lu(M)
L =
[ 1, 0, 0]
[ 1/4, 1, 0]
[ 0, 4/7, 1]
U =
[ 2, -3, -1]
[ 0, 7/4, -3/4]
[ 0, 0, -4/7]

```

\section*{Compute Lower, Upper Triangular and Permutation Matrices}

Return the lower and upper triangular matrices and the permutation matrix by providing three output arguments.
syms a
[L, U, P] = lu(sym([0 0 a; a 2 3; 0 a 2]))
\(\mathrm{L}=\)
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
U =
[a, 2, 3]
[0, a, 2]
[0, 0, a]
\(P=\)
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{tabular}

\section*{Return Permutation as Vector}

Return the permutation information as a vector by using the 'vector' flag.
syms a
A = [0 0 a; a 2 3; 0 a 2];
[L, U, p] = lu(A, 'vector')
```

L =
[ 1, 0, 0]
[ 0, 1, 0]
[ 0, 0, 1]
U =
[ a, 2, 3]
[ 0, a, 2]
[ 0, 0, a]
p =

```
 23
 1

Check that \(A(p,:)=L * U\) by using isAlways.
isAlways(A(p,:) == L*U)
```

ans =
3\times3 logical array

1	1	1
1	1	1
1	1	1

```

Restore the permutation matrix \(P\) from the vector \(p\).
```

P = zeros(3, 3);
for i = 1:3
P(i, p(i)) = 1;
end
P
P =

0	1	0
0	0	1
1	0	0

```

\section*{Return Permutation as Two Vectors}

Return the permutation information as two vectors \(p\) and \(q\).
```

syms a
A = [a, 2, 3*a; 2*a, 3, 4*a; 4*a, 5, 6*a];
[L, U, p, q] = lu(A, 'vector')
=
[ 1, 0, 0]
[ 2, 1, 0]
[4, 3, 1]
U =
[a, 2, 3*a]
[ 0, -1, -2*a]
[ 0, 0, 0]
p =
1 2 3
q =
1 2

```

Check that \(A(p, q)=L * U\) by using isAlways.
isAlways(A(p, q) == L*U)
```

ans =

$3 \times 3$	logical	array
1	1	1
1	1	1
1	1	1

```

\section*{Compute Scaling Matrix with Other Matrices}

Return the lower and upper triangular matrices, permutation matrices, and the scaling matrix.
```

syms a
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, P, Q, R] = lu(A)
L =
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 1/(5*a), 1, 0]
[ 0, -1/a, 0, 1]
U =
[ 1/a, 0]
0, a]
[ 0, 0]
[ 0, 0]
P =

0	1	0	0
1	0	0	0
0	0	1	0
0	0	0	1

Q =
1 0
0 1
R =
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 1, 0]
[ 0, 0, 0, 1]

```

Check that \(P^{*}(R \backslash A) * Q=L * U\) by using isAlways.
isAlways(\(\left.\mathrm{P}^{*}(\mathrm{R} \backslash \mathrm{A}) * \mathrm{Q}=\mathrm{L} * \mathrm{U}\right)\)
```

ans =
4\times2 logical array
1 1
1 1
1 1
1 1

```

\section*{Return Permutation As Two Vectors with Scaling Matrix}

Return the permutation information as vectors \(p\) and \(q\) by using the 'vector' flag. Also compute the scaling matrix R.
```

syms a
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, p, q, R] = lu(A,'vector')
L =
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 1/(5*a), 1, 0]
[ 0, -1/a, 0, 1]
U =
[ 1/a, 0]
[ 0, a]
[ 0, 0]
[ 0, 0]
p =
2 1 1 3 4
q =
2
R =
[ 1, 0, 0, 0]
[ 0, 1, 0, 0]
[ 0, 0, 1, 0]
[0, 0, 0, 1]

```

Check that \(\mathrm{R}(:, \mathrm{p}) \backslash \mathrm{A}(:, q)=\mathrm{L} * \mathrm{U}\) by using isAlways.
isAlways(R(:,p) \A(:,q) == L*U)
ans =
 \(4 \times 2\) logical array
```

1
1
1

```

\section*{Return Triangular Matrices as Sub Matrices}

Return Triangular Matrices as Sub Matrices by specifying one or no output arguments.
```

syms a
A = [0 0 a; a 2 3; 0 a 2];
lu(A)
ans =
[ a, 2, 3]
[ 0, a, 2]
[ 0, 0, a]

```

Verify that the resulting matrix is equal to \(U+L\) - eye (size(A)), where \(L\) and \(U\) are defined as \([L, U, P]=\operatorname{lu}(A)\).
[L,U,P] = lu(A);
U + L - eye(size(A))
ans \(=\)
[a, 2, 3]
[0, a, 2]
[0, 0, a]

\section*{Input Arguments}

\section*{A - Input}
numeric matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

\section*{Definitions}

\section*{LU Factorization of a Matrix}

LU factorization expresses an \(m\)-by- \(n\) matrix \(A\) as \(P^{*} A=L * U\). Here, \(L\) is an \(m\)-by- \(m\) lower triangular matrix, \(U\) is an \(m\)-by- \(n\) upper triangular matrix, and \(P\) is a permutation matrix.

\section*{Permutation Vector}

Permutation vector \(p\) contains numbers corresponding to row exchanges in the matrix A. For an \(m\)-by- \(m\) matrix, \(p\) represents the following permutation matrix with indices \(i\) and \(j\) ranging from 1 to \(m\).
\[
P_{i j}=\delta_{p_{i}, j}=\left\{\begin{array}{l}
1 \text { if } j=p_{i} \\
0 \text { if } j \neq p_{i}
\end{array}\right.
\]

\section*{Tips}
- Calling lu for numeric arguments that are not symbolic objects invokes the MATLAB lu function.
- The thresh option supported by the MATLAB lu function does not affect symbolic inputs.
- If you use 'matrix' instead of 'vector', then lu returns permutation matrices, as it does by default.
- \(L\) and \(U\) are nonsingular if and only if \(A\) is nonsingular. lu also can compute the LU factorization of a singular matrix \(A\). In this case, \(L\) or \(U\) is a singular matrix.
- Most algorithms for computing LU factorization are variants of Gaussian elimination.

\section*{See Also}
chol|eig|isAlways|lu|qr|svd|vpa

\section*{Introduced in R2013a}

\section*{massMatrixForm}

Extract mass matrix and right side of semilinear system of differential algebraic equations

\section*{Syntax}
\([M, F]=\) massMatrixForm(eqs,vars)

\section*{Description}
\([M, F]=\) massMatrixForm(eqs, vars) returns the mass matrix \(M\) and the right side of equations \(F\) of a semilinear system of first-order differential algebraic equations (DAEs). Algebraic equations in eqs that do not contain any derivatives of the variables in vars correspond to empty rows of the mass matrix M.

The mass matrix \(M\) and the right side of equations \(F\) refer to this form.
\[
M(t, x(t)) \dot{x}(t)=F(t, x(t))
\]

\section*{Examples}

\section*{Convert DAE System to Mass Matrix Form}

Convert a semilinear system of differential algebraic equations to mass matrix form.
Create the following system of differential algebraic equations. Here, the functions \(x 1\) (\(t\)) and \(\times 2\) (\(t\)) represent state variables of the system. The system also contains symbolic parameters \(r\) and \(m\), and the function \(f(t, x 1, x 2)\). Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.
```

syms x1(t) x2(t) f(t, x1, x2) r m;
eqs = [m*x2(t)*diff(x1(t), t) + m*t*diff(x2(t), t) == f(t,x1(t),x2(t)),...
x1(t)^2 + x2(t)^2 == r^2];
vars = [x1(t) x2(t)];

```

Find the mass matrix form of this system.
```

[M,F] = massMatrixForm(eqs, vars)
M =
[ m*x2(t), m*t]
[ 0, 0]
F =
f(t, x1(t), x2(t))

```

Solve this system using the numerical solver ode15s. Before you use ode15s, assign the following values to symbolic parameters of the system: \(m=100, r=1, f(t, x 1, x 2)\) \(=t+x 1 * x 2\). Also, replace the state variables \(\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t})\) by variables \(\mathrm{Y} 1, \mathrm{Y} 2\) acceptable by matlabFunction.
```

syms Y1 Y2;

```
\(M=\operatorname{subs}(M, \quad[v a r s, m, r, f],[Y 1, Y 2,100,1, @(t, x 1, x 2)\) t+x1*x2]);
\(F=\operatorname{subs}\left(F,[\operatorname{vars}, m, r, f],\left[Y 1, Y 2,100,1, @(t, x 1, x 2) t+x 1^{*} \times 2\right]\right)\);

Create the following function handles MM and FF. You can use these function handles as input arguments for odeset and ode15s. These functions require state variables to be specified as column vectors.
```

MM = matlabFunction(M,'vars',{t,[Y1;Y2]});
FF = matlabFunction(F,'vars',{t,[Y1;Y2]});

```

Solve the system using ode15s.
```

opt = odeset('Mass', MM, 'InitialSlope', [0.005;0]);
ode15s(FF, [0,1], [0.5; 0.5*sqrt(3)], opt)

```


\section*{Input Arguments}

\section*{eqs - System of semilinear first-order DAEs}
vector of symbolic equations | vector of symbolic expressions
System of semilinear first-order DAEs, specified as a vector of symbolic equations or expressions.

\section*{vars - State variables}
vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as \(x(t)\).

\section*{Example: [x(t),y(t)] or [x(t);y(t)]}

\section*{Output Arguments}

\section*{M - Mass matrix}
symbolic matrix
Mass matrix of the system, returned as a symbolic matrix. The number of rows is the number of equations in eqs, and the number of columns is the number of variables in vars.

\section*{F - Right sides of equations}
symbolic column vector of symbolic expressions
Right sides of equations, returned as a column vector of symbolic expressions. The number of elements in this vector is equal to the number of equations in eqs.
```

See Also
daeFunction|decic | findDecoupledBlocks | incidenceMatrix|
isLowIndexDAE |matlabFunction|ode15s|odeFunction|odeset|
reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies

```

\section*{Topics}
"Solve DAEs Using Mass Matrix Solvers" on page 2-218

Introduced in R2014b

\section*{matlabFunction}

Convert symbolic expression to function handle or file

\section*{Syntax}
\(g=\) matlabFunction(f)
\(\mathrm{g}=\) matlabFunction(f1,...,fN)
g = matlabFunction(___, Name,Value)

\section*{Description}
\(g=\) matlabFunction (\(f\)) converts the symbolic expression or function \(f\) to a MATLAB function with handle g. The function can be used without Symbolic Math Toolbox.
\(g=\) matlabFunction(\(f 1, \ldots, f N\)) converts \(f 1, \ldots, f N\) to a MATLAB function with \(N\) outputs. The function handle is g . Each element of \(\mathrm{f} 1, \ldots, \mathrm{fN}\) can be a symbolic expression, function, or a vector of symbolic expressions or functions.
\(\mathrm{g}=\) matlabFunction (__ , Name, Value) converts symbolic expressions, functions, or vectors of symbolic expressions or functions to a MATLAB function using additional options specified by one or more Name, Value pair arguments. You can specify Name, Value after the input arguments used in the previous syntaxes.

\section*{Examples}

\section*{Convert Symbolic Expression to Anonymous Function}

Convert the symbolic expression \(r\) to a MATLAB function with the handle ht. The function can be used without Symbolic Math Toolbox.
```

syms x y
r= sqrt( (x^2 + y^2);
ht = matlabFunction(r)

```
```

ht =
function handle with value:
@(x,y)sqrt(x.^2+y.^2)

```

Convert multiple symbolic expressions using comma-separated input.
```

ht = matlabFunction(r, r^2)

```
ht =
 function_handle with value:
 @(x,y)deal(sqrt(x.^2+y.^2), x.^2+y.^2)

\section*{Convert Symbolic Function to Anonymous Function}

Create a symbolic function and convert it to a MATLAB function with the handle ht.
```

syms x y
f(x,y) = x^3 + y^3;
ht = matlabFunction(f)
ht =
function_handle with value:
@(x,y)x.^3+y.^3

```

\section*{Write MATLAB Function to File with Comments}

Write the generated MATLAB function to a file by specifying the File option. Existing files are overwritten. When writing to a file, mat labFunction optimizes the code using intermediate variables named \(\mathrm{t} 0, \mathrm{t} 1, \ldots\). Include comments in the file by using the Comments option.

Write the MATLAB function generated from \(f\) to the file myfile.
```

syms x
f = x^2 + log(x^2);
matlabFunction(f,'File','myfile');
function f = myfile(x)
%MYFILE
% F = MYFILE(X)

```
```

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00
t2 = x.^2;
f = t2+log(t2);

```

Include the comment Version: 1.1 in the file.
```

matlabFunction(f,'File','myfile','Comments','Version: 1.1')
function f = myfile(x)

```
\%Version: 1.1
t2 = \(\mathrm{x} .{ }^{\wedge}\) 2;

\section*{Disable Code Optimization}

When you convert a symbolic expression to a MATLAB function and write the resulting function to a file, mat labFunction optimizes the code by default. This approach can help simplify and speed up further computations that use the file. However, generating the optimized code from some symbolic expressions and functions can be very time consuming. Use Optimize to disable code optimization.

Create a symbolic expression.

\section*{syms \(x\)}
\(r=x^{\wedge} 2^{*}\left(x^{\wedge} 2+1\right)\);
Convert \(r\) to a MATLAB function and write the function to the file myfile. By default, matlabFunction creates a file containing the optimized code.
```

f = matlabFunction(r,'File','myfile');
function r = myfile(x)
%MYFILE
% R = MYFILE(X)
t2 = x.^2;
r = t2.*(t2+1.0);

```

Disable the code optimization by setting the value of Optimize to false.
f = matlabFunction(r,'File','myfile','Optimize',false);
```

function r = myfile(x)
%MYFILE
% R = MYFILE(X)
r = x.^2.*(x.^2+1.0);

```

\section*{Generate Sparse Matrices}

When you convert a symbolic matrix to a MATLAB function, matlabFunction represents it by a dense matrix by default. If most of the elements of the input symbolic matrix are zeros, the more efficient approach is to represent it by a sparse matrix.

Create a 3-by-3 symbolic diagonal matrix:
```

syms x
A = diag(x*ones(1,3))
A =
[ x, 0, 0]
[ 0, x, 0]
[ 0, 0, x]

```

Convert A to a MATLAB function representing a numeric matrix, and write the result to the file myfilel. By default, the generated MATLAB function creates the dense numeric matrix specifying each element of the matrix, including all zero elements.
```

f1 = matlabFunction(A,'File','myfile1');
function A = myfilel(x)
%MYFILE1
% A = MYFILE1(X)
A = reshape([x,0.0,0.0,0.0,x,0.0,0.0,0.0,x],[3,3]);

```

Convert A to a MATLAB function setting Sparse to true. Now, the generated MATLAB function creates the sparse numeric matrix specifying only nonzero elements and assuming that all other elements are zeros.
```

f2 = matlabFunction(A,'File','myfile2','Sparse',true);
function A = myfile2(x)
%MYFILE2
% A = MYFILE2(X)
A = sparse([1,2,3],[1,2,3],[x,x,x],3,3);

```

\section*{Specify Input Arguments for Generated Function}

When converting an expression to a MATLAB function, you can specify the order of the input arguments of the resulting function. You also can specify that some input arguments are vectors instead of single variables.

Create a symbolic expression.
```

syms x y z
r = x + y/2 + z/3;

```

Convert \(r\) to a MATLAB function and write this function to the file myfile. By default, matlabFunction uses alphabetical order of input arguments when converting symbolic expressions.
```

matlabFunction(r,'File','myfile');
function r = myfile(x,y,z)
%MYFILE
% R = MYFILE(X,Y,Z)
r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

```

Use the Vars argument to specify the order of input arguments for the generated MATLAB function.
```

matlabFunction(r,'File','myfile','Vars',[y z x]);
function r = myfile(y,z,x)
%MYFILE
% R = MYFILE (Y,Z,X)
r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

```

Now, convert an expression \(r\) to a MATLAB function whose second input argument is a vector.
```

syms x y z t
r = (x + y/2 + z/3)*exp(-t);
matlabFunction(r,'File','myfile','Vars',{t,[x y z]});
function r = myfile(t,in2)
%MYFILE
% R = MYFILE(T,IN2)
x = in2(:,1);
y = in2(:,2);

```
```

z = in2(:,3);
r = exp(-t).*(x+y.*(1.0./2.0)+z.*(1.0./3.0));

```

\section*{Specify Output Variables}

When converting a symbolic expression to a MATLAB function, you can specify the names of the output variables. Note that matlabFunction without the File argument (or with a file path specified by an empty character vector) creates a function handle and ignores the Outputs flag.

Create symbolic expressions \(r\) and \(q\).
```

syms x y z
r= x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;

```

Convert \(r\) and \(q\) to a MATLAB function and write the resulting function to a file myfile, which returns a vector of two elements, name1 and name2.
```

f = matlabFunction(r,q,'File','myfile',...
'Outputs',{'name1','name2'});
function [name1,name2] = myfile(x,y,z)
%MYFILE
% [NAME1,NAME2] = MYFILE(X,Y,Z)
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
namel = t2+t3+t4;
if nargout > 1
name2 = t2-t3-t4;
end

```
- "Generate MATLAB Functions from Symbolic Expressions" on page 2-259
- "Create MATLAB Functions from MuPAD Expressions" on page 3-72

\section*{Input Arguments}
f - Symbolic input to be converted to MATLAB function
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to a MATLAB function, specified as a symbolic expression, function, vector, or matrix. When converting sparse symbolic vectors or matrices, use the name-value pair argument 'Sparse', true.
\(\mathrm{f} 1, \ldots, \mathrm{fN}\) - Symbolic input to be converted to MATLAB function with N outputs several symbolic expressions | several symbolic functions | several symbolic vectors | several symbolic matrices

Symbolic input to be converted to MATLAB function with N outputs, specified as several symbolic expressions, functions, vectors, or matrices, separated by comma.
mat labFunction does not create a separate output argument for each element of a symbolic vector or matrix. For example, \(g=\) matlabFunction([x + 1, y + 1]) creates a MATLAB function with one output argument, while \(g=\) matlabFunction (\(x\) \(+1, y+1\)) creates a MATLAB function with two output arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.

Example: matlabFunction(f,'File','myfile','Optimize',false)

\section*{Comments - Comments to include in file header}
character vector \(\mid\) cell array of character vectors \(\mid\) string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector.

\section*{File - Path to file containing generated MATLAB function}
character vector
Path to the file containing the generated MATLAB function, specified as a character vector. The generated function accepts arguments of type double, and can be used without Symbolic Math Toolbox. If File is empty, matlabFunction generates an anonymous function. If File does not end in . m , the function appends .m.

When writing to a file, matlabFunction optimizes the code using intermediate variables named t0, t1, To disable code optimization, use the Optimize argument.

See "Write MATLAB Function to File with Comments" on page 4-1115.

\section*{Optimize - Flag preventing optimization of code written to function file true (default) | false}

Flag preventing optimization of code written to a function file, specified as false or true.

When writing to a file, ccode optimizes the code using intermediate variables named t0, t1,
mat labFunction without the File argument (or with a file path specified by an empty character vector) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting Optimize to true, then matlabFunction throws an error.

See "Disable Code Optimization" on page 4-1116.

\section*{Sparse - Flag that switches between sparse and dense matrix generation false (default)|true}

Flag that switches between sparse and dense matrix generation, specified as true or false. When you specify 'Sparse', true, the generated MATLAB function represents symbolic matrices by sparse numeric matrices. Use 'Sparse', true when you convert symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices.

See "Generate Sparse Matrices" on page 4-1117.
Vars - Order of input variables or vectors in generated MATLAB function character vector | vector of symbolic variables | one-dimensional cell array of character vectors | one-dimensional cell array of symbolic variables | one-dimensional cell array of vectors of symbolic variables

Order of input variables or vectors in a generated MATLAB function, specified as a character vector, a vector of symbolic variables, or a one-dimensional cell array of character vectors, symbolic variables, or vectors of symbolic variables.

The number of specified input variables must equal or exceed the number of free variables in f. Do not use the same names for the input variables specified by Vars and the output variables specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you convert symbolic functions, their input arguments appear in front of other variables, and all other variables are sorted alphabetically.

See "Specify Input Arguments for Generated Function" on page 4-1117.

\section*{Outputs - Names of output variables}
one-dimensional cell array of character vectors
Names of output variables, specified as a one-dimensional cell array of character vectors.
If you do not specify the output variable names, then they coincide with the names you use when calling matlabFunction. If you call matlabFunction using an expression instead of individual variables, the default names of output variables consist of the word out followed by a number, for example, out3.

Do not use the same names for the input variables specified by Vars and the output variables specified by Outputs.
matlabFunction without the File argument (or with a file path specified by an empty character vector) creates a function handle. In this case, mat labFunction ignores the Outputs flag.

See "Specify Output Variables" on page 4-1119.

\section*{Output Arguments}
g - Function handle that can serve as input argument to numerical functions
MATLAB function handle
Function handle that can serve as an input argument to numerical functions, returned as a MATLAB function handle.

\section*{Tips}
- When you use the File argument, use rehash to make the generated function available immediately. rehash updates the MATLAB list of known files for directories on the search path.
- To convert a MuPAD expression or function to a MATLAB symbolic expression, use \(\mathrm{f}=\) evalin(symengine,'MuPAD_Expression') or f = feval(symengine,'MuPAD_Function', x1, ..., xn). Then you can convert the resulting symbolic expression to a MATLAB function.
matlabFunction cannot correctly convert some MuPAD expressions to MATLAB functions. These expressions do not trigger an error message. When converting a MuPAD expression or function that is not on the "Differences Between MATLAB and MuPAD Syntax" on page 3-50 list, always check the conversion results. To verify the results, execute the resulting function.
- If the File option is empty, then an anonymous function is returned.
```

See Also
ccode| daeFunction | fortran|matlabFunctionBlock|odeFunction | rehash |
simscapeEquation| subs | sym2poly

```

\section*{Topics}
"Generate MATLAB Functions from Symbolic Expressions" on page 2-259
"Create MATLAB Functions from MuPAD Expressions" on page 3-72

\section*{Introduced in R2008b}

\section*{matlabFunctionBlock}

Convert symbolic expression to MATLAB function block

\section*{Syntax}
```

matlabFunctionBlock(block,f)
matlabFunctionBlock(block,f1,...,fN)
matlabFunctionBlock(

```
\(\qquad\)
``` , Name, Value)
```


Description

matlabFunctionBlock(block,f) converts f to a MATLAB function block that you can use in Simulink models. Here, f can be a symbolic expression, function, or a vector of symbolic expressions or functions.
block specifies the name of the block that you create or modify.
matlabFunctionBlock(block,f1,...,fN) converts symbolic expressions or functions $\mathrm{f} 1, \ldots, \mathrm{fN}$ to a MATLAB function block with N outputs. Each element of $\mathrm{f} 1, \ldots, \mathrm{fN}$ can be a symbolic expression, function, or a vector of symbolic expressions or functions.
matlabFunctionBlock(__ ,Name, Value) converts a symbolic expression, function, or a vector of symbolic expressions or functions to a MATLAB function block using additional options specified by one or more Name, Value pair arguments. You can specify Name, Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression to MATLAB Function Block

Create a new model and convert a symbolic expression to a MATLAB function block. Include comments in the block by specifying the Comments option.

Create a new model and open it.

```
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```
syms x y z
f= x^2 + (y^2 + z^2;
```

Use matlabFunctionBlock to create the block my_block containing the symbolic expression. matlabFunctionBlock overwrites existing blocks. Double-click the generated block to open and edit the function defining the block.

```
matlabFunctionBlock('my_system/my_block',f)
function f = my_block(x,y,z)
%#codegen
% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00
f = x.^2+y.^2+z.^2;
```

Include the comment Version 1.1 in the block.

```
matlabFunctionBlock('my_system/my_block',f,'Comments','Version: 1.1')
function f = my_block(x,y,z)
%Version: 1.1
f = x.^2+y.^2+z.^2;
```

Save and close my system.
save_system('my_system')
close_system('my_system')

Convert Symbolic Function MATLAB Function Block

Create a new model and convert a symbolic function to a MATLAB function block.
Create a new empty model and open it.

```
new system('my system')
open_system('my_system')
```

Create a symbolic function.
syms x y z
$f(x, y, z)=x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2$;
Convert f to a MATLAB function block. Double-click the block to see the function.

```
matlabFunctionBlock('my_system/my_block',f)
```

function f = my_block(x,y,z)
\%\#codegen
$\mathrm{f}=\mathrm{x} \cdot \wedge^{\wedge} 2+\mathrm{y} . \wedge^{\wedge} 2+z . \wedge 2$;

Create Blocks with Multiple Outputs

Convert several symbolic expressions to a MATLAB function block with multiple output ports.

Create a new empty model and open it.

```
new system('my system')
ope\overline{n_system('my_system')}
```

Create three symbolic expressions.

```
syms x y z
```

$f=x^{\wedge} 2$;
$g=y^{\wedge} 2$;
$h=z^{\wedge} 2$;

Convert them to a MATLAB function block. matlabFunctionBlock creates a block with three output ports. Double-click the block to see the function.

```
matlabFunctionBlock('my_system/my_block',f,g,h)
function [f,g,h] = my_block(x,y,z)
%#codegen
f = x.^2;
if nargout > 1
    g = y.^2;
```

```
end
if nargout > 2
    h = z.^2;
end
```


Specify Function Name for Generated Function

Specifying the name of the function defining the generated MATLAB function block.
Create a new empty model and open it.

```
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.
syms x y z
$f=x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2 ;$
Generate a block and set the function name to my_function. Double-click the block to see the function.

```
matlabFunctionBlock('my_system/my_block',f,...
function f = my_function(x,y,z)
%#codegen
f = x.^2+y.^2+z.^2;
```

 'FunctionName', 'my_function')

Disable Code Optimization

When you convert a symbolic expression to a MATLAB function block, mat labFunctionBlock optimizes the code by default. This approach can help simplify and speed up further computations that use the file. Nevertheless, generating the optimized code from some symbolic expressions and functions can be very timeconsuming. Use Optimize to disable code optimization.

Create a new empty model and open it.

```
new system('my system')
open_system('my system')
```

Create a symbolic expression.
syms x
$r=x^{\wedge} 2^{*}\left(x^{\wedge} 2+1\right) ;$
Use matlabFunctionBlock to create the block my_block containing the symbolic expression. Double-click the block to see the function defining the block. By default, matlabFunctionBlock creates a file containing the optimized code.

```
matlabFunctionBlock('my_system/my_block',r)
function r = my_block(x)
%#codegen
t2 = x.^2;
r = t2.*(t2+1.0);
```

Disable the code optimization by setting the value of Optimize to false.

```
matlabFunctionBlock('my_system/my_block',r,...
    'Optimize',false)
```

function $r=m y _b l o c k(x)$
\%\#codegen
$r=x . \wedge 2 . *(x . \wedge 2+1.0)$;

Specify Input Ports for Generated Block

Specify the order of the input variables that form the input ports in a generated block.
Create a new empty model and open it.

```
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.
syms x y z
$f=x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2 ;$
Convert the expression to a MATLAB function block. By default, matlabFunctionBlock uses alphabetical order of input arguments when converting symbolic expressions.

```
matlabFunctionBlock('my system/my_block',f)
```

```
function f = my_block(x,y,z)
%#codegen
f = x.^2+y.^2+z.^2;
```

Use the Vars argument to specify the order of the input ports.

```
matlabFunctionBlock('my_system/my_block',f,...
    'Vars', [y z x])
function f = my_block(y,z,x)
%#codegen
f = x.^2+y.^2+z.^2;
```


Specify Output Ports

When generating a block, rename the output variables and the corresponding ports.
Create a new empty model and open it.

```
new_system('my_system')
open_system('my_system')
```

Create a symbolic expression.

```
syms x y z
f = x^2 + y^2 + z^2;
```

Convert the expression to a MATLAB function block and specify the names of the output variables and ports. Double-click the block to see the function defining the block.

```
matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...
    'Outputs', {'name1','name2','name3'})
function [name1,name2,name3] = my_block(x,y,z)
%#codegen
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
name1 = t2+t3+t4;
if nargout > 1
    name2 = t2+t3+t4+1.0;
end
if nargout > 2
```

```
    name3 = t2+t3+t4+2.0;
end
```


Specify Function Name, Input and Output Ports

Call mat labFunctionBlock using several name-value pair arguments simultaneously.
Create a new empty model and open it.

```
new_system('my_system')
ope\overline{n_system('my_system')}
```

Create a symbolic expression.

```
syms x y z
f = x^2 + ( y^2 + z^2;
```

Call matlabFunctionBlock using the name-value pair arguments to specify the function name, the order of the input ports, and the names of the output ports. Double-click the block to see the function defining the block.

```
matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...
    'FunctionName', 'my_function','Vars',[y z x],...
    'Outputs',{'name1','name2','name3'})
function [name1,name2,name3] = my_function(y,z,x)
%#codegen
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
namel = t2+t3+t4;
if nargout > 1
    name2 = t2+t3+t4+1.0;
end
if nargout > 2
    name3 = t2+t3+t4+2.0;
end
```

- "Generate MATLAB Function Blocks from Symbolic Expressions" on page 2-263
- "Create MATLAB Function Blocks from MuPAD Expressions" on page 3-76

Input Arguments

block - Block to create of modify
 character vector

Block to create of modify, specified as a character vector.

f - Symbolic input to be converted to MATLAB function block
 symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to MATLAB function block, specified as a symbolic expression, function, vector, or matrix

f1, ..., fN - Symbolic input to be converted to MATLAB function block with N outputs

several symbolic expressions | several symbolic functions | several symbolic vectors | several symbolic matrices

Symbolic input to be converted to MATLAB function block with N outputs, specified as several symbolic expressions, functions, vectors, or matrices, separated by comma.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: matlabFunctionBlock('my_system/ my_block',f,'FunctionName','myfun')

Comments - Comments to include in file header

character vector | cell array of character vectors \mid string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector.

FunctionName - Name of function

coincides with the input argument block (default) | character vector
Name of the function, specified as a character vector. By default, matlabFunction(block, ...) uses block as the function name.

See "Specify Function Name for Generated Function" on page 4-1127.
Optimize - Flag preventing code optimization true (default) | false

Flag preventing code optimization, specified as false or true.
When writing to a file, mat labFunctionBlock optimizes the code using intermediate variables named t0, t1,

See "Disable Code Optimization" on page 4-1127.

Vars - Order of input variables and corresponding input ports of generated block

character vector | one-dimensional cell array of character vectors | one-dimensional cell array of symbolic variables | one-dimensional cell array of vectors of symbolic variables | vector of symbolic variables

Order of input variables and corresponding input ports of generated block, specified as a character vector, a vector of symbolic variables, or a one-dimensional cell array of character vectors, symbolic variables, or vectors of symbolic variables.

The number of specified input ports must equal or exceed the number of free variables in f. Do not use the same names for the input ports specified by Vars and the output ports specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you convert symbolic functions, their input arguments appear in front of other variables, and all other variables are sorted alphabetically.

See "Specify Input Ports for Generated Block" on page 4-1128.

Outputs - Names of output ports

out followed by output port numbers (default) | one-dimensional cell array of character vectors

Names of output ports, specified as a one-dimensional cell array of character vectors. If you do not specify the output port names, matlabFunctionBlock uses names that consist of the word out followed by output port numbers, for example, out3.

Do not use the same names for the input ports specified by Vars and the output ports specified by Outputs. See "Specify Output Ports" on page 4-1129.

Tips

- To convert a MuPAD expression or function to a MATLAB symbolic expression, use $\mathrm{f}=$ evalin(symengine,'MuPAD_Expression') or $f=$ feval(symengine,'MuPAD_Function', x1, ..., xn). Then you can convert the resulting symbolic expression to a MATLAB function block. mat labFunctionBlock cannot correctly convert some MuPAD expressions to a block. These expressions do not trigger an error message. When converting a MuPAD expression or function that is not on the MATLAB vs. MuPAD Expressions on page 3-50 list, always check the conversion results. To verify the results, you can run the simulation containing the resulting block.

See Also

ccode|fortran|matlabFunction| simscapeEquation|subs | sym2poly

Topics

"Generate MATLAB Function Blocks from Symbolic Expressions" on page 2-263
"Create MATLAB Function Blocks from MuPAD Expressions" on page 3-76
Introduced in R2009a

meijerG

Meijer G-function

Syntax

meijerG(a,b,c,d,z)

Description

meijerG(a, b, c, d, z) returns the "Meijer G-Function" on page 4-1139. meijerG is element-wise in z. The input parameters a, b, c, and d are vectors that can be empty, as in meijerG([], [], 3.2, [], 1).

Examples

Calculate Meijer G-Function for Numeric Inputs

```
syms x
meijerG(3, [], [], 2, 5)
ans =
    2 5
```

Call meijerG when z is an array. meijerG acts element-wise.

```
a = 2;
```

z = [1 2 3];
meijerG(a, [], [], [], z)
ans $=$
$0.3679 \quad 1.2131 \quad 2.1496$

Calculate Meijer G-Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Meijer G-function. For certain symbolic inputs, meijerG returns exact symbolic output using other functions.

```
meijerG(sym(2), [], [], [], sym(3))
ans =
3*\operatorname{exp}(-1/3)
meijerG(sym(2/5), [], sym(1/2), [], sym(3))
ans =
(2^(4/5)*3^(1/2)*gamma (1/10))/80
```


Find Meijer G-Function for Symbolic Variables or Expressions

For symbolic variables or expressions, meijerG returns an output in terms of simple or special functions.

```
syms a b c d z
f = meijerG(a,b,c,d,z)
f =
(gamma(c - a + 1)*(1/z)^(1 - a)*hypergeom([c - a + 1, d - a + 1],...
b - a + 1, 1/z))/(gamma(b - a + 1)*gamma(a - d))
```

Substitute values for the variables by using subs, and convert values to double by using double.

```
fVal = subs(f, [a b c d z], [1.2 3 5 7 9])
fVal =
(266*9^(1/5)*hypergeom([24/5, 34/5], 14/5, 1/9))/(25*gamma(-29/5))
double(fVal)
ans =
    5.7586e+03
```

Calculate fVal to higher precision using vpa.
vpa(fVal)

ans =

5758.5946416377834597597497022199

Differentiate Meijer G-Function

Differentiate the Meijer G-function by using diff.

```
syms a b c d z
mG = meijerG(a, b, c, d, z);
diffmG = diff(mG)
diffmG =
(gamma(c - a + 1)*(a - 1)*hypergeom([c - a + 1, d - a + 1],...
    b - a + 1, 1/z))/(z^2*gamma(b - a + 1)*gamma(a - d)*(1/z)^a)...
    - (gamma(c - a + 1)*(1/z)^(1 - a)*(c - a + 1)*(d - a + 1)...
*hypergeom([c - a + 2, d - a + 2], b - a + 2, 1/z))...
/(z^2*gamma(b - a + 1)*gamma(a - d)*(b - a + 1))
```


Relations Between Meijer G-Function and Other Functions

Show relations between meijerG and simpler functions for given parameter values.
Show that when a, b, and d are empty, and $c=0$, then meijerG reduces to $\exp (-z)$.

```
syms z
meijerG([], [], 0, [], z)
ans =
exp(-z)
```

Show that when a, b, and d are empty, and $c=[1 / 2-1 / 2]$, then meijerG reduces to $2 \mathrm{~K}_{\mathrm{v}}\left(1,2 z^{1 / 2}\right)$.

```
meijerG([], [], [1/2 -1/2], [], z)
ans =
2*besselk(1, 2*z^(1/2))
```


Plot Meijer G-Function

Plot the real and imaginary values of the Meijer G-function for values of b and z, where a $=\left[\begin{array}{ll}-2 & 2\end{array}\right]$ and c and d are empty. Fill the contours by setting Fill to on.
syms b z
f = meijerG([-2 2], b, [], [], z);

```
subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Meijer G')
xlabel('b')
ylabel('z')
subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imag. Values of Meijer G')
xlabel('b')
ylabel('z')
```


Input Arguments

a - Input

number | vector | symbolic number | symbolic variable | symbolic vector | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or expression.

b - Input

number | vector | symbolic number | symbolic variable | symbolic vector | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or expression.

c - Input

number | vector | symbolic number | symbolic variable | symbolic vector | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or expression.

d - Input

number | vector | symbolic number | symbolic variable | symbolic vector | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or expression.

z - Input

number | vector | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or expression.

Definitions

Meijer G-Function

The Meijer G-function meijerG $\left(\left[a_{1}, \ldots, a_{n}\right],\left[a_{n+1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{m}\right],\left[b_{m+1}, \ldots, b_{q}\right], z\right)$ is a general function that includes other special functions as particular cases, and is defined as

Algorithms

For the Meijer G-function meijerG $\left(\left[a_{1}, \ldots, a_{n}\right],\left[a_{n+1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{m}\right],\left[b_{m+1}, \ldots, b_{q}\right], z\right)$, for $a_{i} \in\left(a_{1}\right.$, $\left.\ldots, a_{n}\right)$ and $b_{j} \in\left(b_{1}, \ldots, b_{m}\right)$, no difference $a_{i}-b_{j}$ should be a positive integer.

The Meijer G-function involves a complex contour integral with one of the following types of integration paths:

The contour goes from $-\mathrm{i} \infty$ to $\mathrm{i} \infty$ so that all poles of $\Gamma\left(b_{j}-s\right), j=1, \ldots, m$ lie to the right of the path, and all poles of $\Gamma\left(1-a_{k}+s\right), k=1, \ldots, n$ lie to the left of the path.

The integral converges if $c=m+n-\frac{p+q}{2}>0,|\arg (z)|<c$ п. If $|\arg (z)|=c$ п, $c \geq 0$, the integral converges absolutely when $\hat{\beta}=q$ and $\mathfrak{R}(\psi)<-1$, where
$\Psi=\left(\sum_{i=1}^{q} b_{j}\right)-\left(\sum_{i=1}^{p} a_{i}\right)$. When $p \neq q$, the integral converges if you choose the contour
so that the dontour points near $\mathrm{i} \infty$ and $-\mathrm{i} \infty$ have a real part σ satisfying
$(q-p) \sigma>\mathfrak{R}(\psi)+1-\frac{q-p}{2}$.

- The contour is a loop beginning and ending at infinity and encircling all poles of $\Gamma\left(b_{j}-s\right), j=1, \ldots, m$ moving in the negative direction, but none of the poles of $\underset{\text { and }}{\Gamma}\left(1-z \mid a_{k}+s\right), k=1, \ldots, n$. The integral converges if $q \geq 1$ and either $p<q$ or $p=q$
- The contour is a loop beginning and ending at - ∞ and encircling all poles of $\Gamma\left(1-a_{k}+s\right), k=1, \ldots, n$ moving in the positive direction, but none of the poles of $\underset{z \mid}{\Gamma}\left(b_{\dot{j}}+s\right), j=1, \ldots, m$. The integral converges if $p \geq 1$ and either $p>q$ or $p=q$ and \mid

The integral represents an inverse Laplace transform or, more specifically, a MellinBarnes type of integral.

For a given set of parameters, the contour chosen in the definition of the Meijer Gfunction is the one for which the integral converges. If the integral converges for several contours, all contours lead to the same function.

The Meijer G-function satisfies a differential equation of order $\max (p, q)$ with respect to a variable z :

$$
\left.((-1))^{m+n-p} z\left(\prod_{i=1}^{p}\left(z \frac{d}{d z}-a_{i}-1\right)\right)-\prod_{j=1}^{q}\left(z \frac{d}{d z}-b_{j}\right)\right) \mathrm{G}_{p, q}^{m, n}\left(\left.\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{p}
\end{array} \right\rvert\, z\right)=0
$$

If $p<q$, this differential equation has a regular singularity at $z=0$ and an irregular singularity at $z=\infty$. If $p=q$, the points $z=0$ and $z=\infty$ are regular singularities, and there is an additional regular singularity at $z=(-1)^{m+n-p}$.

The Meijer G-function represents an analytic continuation of the hypergeometric function [1]. For particular choices of parameters, you can express the Meijer G-function through the hypergeometric function. For example, if no two of the b_{h} terms, $h=1, \ldots, m$, differ by an integer or zero and all poles are simple, then

$$
\left.\left.\left.\mathrm{G}_{p, q}^{m, n}\left(a_{1}, \ldots, a_{p} \mid z\right)=\sum_{h=1}^{m} \frac{\left(\prod_{j=1}, \ldots, b_{p} \mid, j \neq h\right.}{} \Gamma\left(b_{j}-b_{h}\right)\right)\left(\prod_{j=1}^{n} \Gamma\left(1+b_{h}-a_{j}\right)\right)_{z^{b}} \prod_{p=m+1}^{q} \Gamma\left(1+b_{h}-b_{j}\right)\right)\left(\prod_{j=n+1}^{p} \Gamma\left(a_{j}-b_{h}\right)\right) \quad A_{h} ; B_{h} ;(-1)^{p-m-n} z\right) .
$$

Here $p<q$ or $p=q$ and $|z|<1$. A_{h} denotes

$$
A_{h}=1+b_{h}-a_{1}, \ldots, 1+b_{h}-a_{p} .
$$

B_{h} denotes

$$
B_{h}=1+b_{h}-b_{1}, \ldots, 1+b_{h}-b_{(h-1)}, 1+b_{h}-b_{h+1}, \ldots, 1+b_{h}-b_{q} .
$$

Meijer G-functions with different parameters can represent the same function.

- The Meijer G-function is symmetric with respect to the parameters. Changing the order inside each of the following lists of vectors does not change the resulting Meijer G-function: $\left[a_{1}, \ldots, a_{n}\right],\left[a_{n+1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{m}\right],\left[b_{m+1}, \ldots, b_{q}\right]$.
- If z is not a negative real number and $z \neq 0$, the function satisfies the following identity:

$$
\mathrm{G}_{p, q}^{m, n}\left(\left|\begin{array}{c}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, b_{q}
\end{array}\right| z\right)=\mathrm{G}_{q, p}^{n, m}\left(\left.\begin{array}{l}
1-b_{1}, \ldots, 1-b_{p} \\
1-a_{1}, \ldots, 1-a_{p}
\end{array} \right\rvert\, \frac{1}{z}\right) .
$$

- If $0<n<p$ and $r=a_{1}-a_{p}$ is an integer, the function satisfies the following identity:

$$
\mathrm{G}_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p-1}, a_{p} \\
b_{1}, b_{2}, \ldots, b_{q-1}, b_{q}
\end{array} \right\rvert\, z\right)=\mathrm{G}_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{p}, a_{2}, \ldots, a_{p-1}, a_{1} \\
b_{1}, b_{2}, \ldots, b_{q-1}, b_{q}
\end{array} \right\rvert\, z\right) .
$$

- If $0<m<q$ and $r=b_{1}-b_{q}$ is an integer, the function satisfies the following identity:

$$
\mathrm{G}_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p-1}, a_{p} \\
b_{1}, b_{2}, \ldots, b_{q-1}, b_{q}
\end{array} \right\rvert\, z\right)=(-1)^{\gamma} \mathrm{G}_{p, q}^{m, n}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p-1}, a_{p} \\
b_{q}, b_{2}, \ldots, b_{q-1}, b_{1}
\end{array} \right\rvert\, z\right) .
$$

According to these rules, the meijerG function call can return meijerG with modified input parameters.

References

[1] Luke, Y. L., The Special Functions and Their Approximations. Vol. 1. New York: Academic Press, 1969.
[2] Prudnikov, A. P., Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol 3: More Special Functions. Gordon and Breach, 1990.
[3] Abramowitz, M., I. A. Stegun, Handbook of Mathematical Functions. 9th printing. New York: Dover Publications, 1970.

See Also

hypergeom

Introduced in R2017b

mfun

Numeric evaluation of special mathematical function

Note mfun will be removed in a future release. Instead, use the appropriate special function syntax listed in mfunlist. For example, use bernoulli(n) instead of mfun('bernoulli',n).

Syntax

```
mfun('function',par1,par2,par3,par4)
```


Description

mfun('function', par1, par2, par3, par4) numerically evaluates one of the special mathematical functions listed in mfunlist. Each par argument is a numeric quantity corresponding to a parameter for function. You can use up to four parameters. The last parameter specified can be a matrix, usually corresponding to X. The dimensions of all other parameters depend on the specifications for function. You can access parameter information for mfun functions in mfunlist.

MuPAD software evaluates function using 16-digit accuracy. Each element of the result is a MATLAB numeric quantity. Any singularity in function is returned as NaN .

See Also

mfunlist

Introduced before R2006a

mfunlist

List special functions for use with mfun

Note mfun will be removed in a future release. Instead, use the appropriate special function syntax listed below. For example, use bernoulli(n) instead of mfun('bernoulli', n).

Syntax

mfunlist

Description

mfunlist lists the special mathematical functions for use with the mfun function. The following tables describe these special functions.

The following conventions are used in the next table, unless otherwise indicated in the Arguments column.

x, y	real argument
$z, z 1, z 2$	complex argument
m, n	integer argument

mfun Special Functions

Function Name	Definition	mfun Name	Special Function Syntax	Argument s
Bernoulli numbers and polynomials	Generating functions: $\frac{e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \cdot \frac{t^{n-1}}{n!}$	$\begin{aligned} & \text { bernoulli(n) } \\ & \text { bernoulli(n,t } \\ & \text {) } \end{aligned}$	```bernoulli(n) bernoulli(n,t)```	$\begin{aligned} & n \geq 0 \\ & 0<\|t\|<2 \pi \end{aligned}$
Bessel functions	BesselI, BesselJ-Bessel functions of the first kind. BesselK, BesselY-Bessel functions of the second kind.	$\operatorname{BesselJ}(v, x)$ $\operatorname{BesselY}(v, x)$ $\operatorname{BesselI}(v, x)$ $\operatorname{BesselK}(v, x)$	besselj (v,x) bessely (v, x) besseli(v,x) besselk(v,x)	v is real.
Beta function	$B(x, y)=\frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$	$\operatorname{Beta}(x, y)$	beta (x,y)	
Binomial coefficients	$\begin{aligned} & \left(\frac{m}{n}\right)=\frac{m!}{n!(m-n)!} \\ & =\frac{\Gamma(m+1)}{\Gamma(n+1) \Gamma(m-n+1)} \end{aligned}$	binomial(m,n)	nchoosek (m, n)	
Complete elliptic integrals	Legendre's complete elliptic integrals of the first, second, and third kind. This definition uses modulus k. The numerical ellipke function and the MuPAD functions for computing elliptic integrals use the parameter $m=k^{2}=\sin ^{2} \alpha$.	$\begin{aligned} & \text { EllipticK(k) } \\ & \text { EllipticE(k) } \\ & \text { EllipticPi(a, } \\ & \text { k) } \end{aligned}$	$\begin{aligned} & \text { ellipticK(k) } \\ & \text { ellipticE(k) } \\ & \text { ellipticPi(a, } \\ & \text { k) } \end{aligned}$	a is real, $\infty<a<\infty$. k is real, 0 $<k<1$.

Function Name	Definition	mfun Name	Special Function Syntax	Argument s
Complete elliptic integrals with complementar y modulus	Associated complete elliptic integrals of the first, second, and third kind using complementary modulus. This definition uses modulus k. The numerical ellipke function and the MuPAD functions for computing elliptic integrals use the parameter $m=k^{2}=\sin ^{2} \alpha$.	EllipticCK(k) EllipticCE(k) EllipticCPi(a , k)	ellipticCK(k) ellipticCE(k) ellipticCPi(a , k)	a is real, $\infty<a<\infty$. k is real, 0 $<k<1$.
Complementar y error function and its iterated integrals	$\begin{aligned} & \operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}} \cdot \int_{z}^{\infty} e^{-t^{2}} d t=1-\operatorname{erf}(z) \\ & \operatorname{erfc}(-1, z)=\frac{2}{\sqrt{\pi}} \cdot e^{-z^{2}} \\ & \operatorname{erfc}(n, z)=\int_{z}^{\infty} \operatorname{erfc}(n-1, t) d t \end{aligned}$	$\begin{aligned} & \operatorname{erfc}(z) \\ & \operatorname{erfc}(n, z) \end{aligned}$	$\operatorname{erfc}(z)$ $\operatorname{erfc}(n, z)$	$n>0$
Dawson's integral	$F(x)=e^{-x^{2}} \cdot \int_{0}^{x} e^{t^{2}} d t$	dawson(x)	dawson(x)	
Digamma function	$\Psi(x)=\frac{d}{d x} \ln (\Gamma(x))=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$	Psi(x)	psi(x)	
Dilogarithm integral	$f(x)=\int_{1}^{x} \frac{\ln (t)}{1-t} d t$	dilog(x)	dilog(x)	$x>1$
Error function	$\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t$	erf(z)	erf(z)	

Function Name	Definition	mfun Name	Special Function Syntax	Argument s
Euler numbers and polynomials	Generating function for Euler numbers: $\frac{1}{\cosh (t)}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}$	$\begin{aligned} & \text { euler(n) } \\ & \text { euler(n, } z) \end{aligned}$	euler(n) euler(n,z)	$\begin{aligned} & n \geq 0 \\ & \|t\|<\frac{\pi}{2} \end{aligned}$
Exponential integrals	$\begin{aligned} & E i(n, z)=\int_{1}^{\infty} \frac{e^{-z t}}{t^{n}} d t \\ & E i(x)=P V\left(-\int_{-\infty}^{x} \frac{e^{t}}{t}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Ei}(\mathrm{n}, \mathrm{z}) \\ & \mathrm{Ei}(\mathrm{x}) \end{aligned}$	$\begin{aligned} & \operatorname{expint}(n, x) \\ & \operatorname{ei}(x) \end{aligned}$	$\begin{aligned} & n \geq 0 \\ & \operatorname{Real}(z)>0 \end{aligned}$
Fresnel sine and cosine integrals	$\begin{aligned} & C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t \\ & S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t \end{aligned}$	$\begin{aligned} & \text { FresnelC(x) } \\ & \text { FresnelS }(x) \end{aligned}$	$\begin{aligned} & \text { fresnelc(x) } \\ & \text { fresnels (x) } \end{aligned}$	
Gamma function	$\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$	GAMMA (z)	gamma(z)	
Harmonic function	$h(n)=\sum_{k=1}^{n} \frac{1}{k}=\Psi(n+1)+\gamma$	harmonic(n)	harmonic(n)	$n>0$

Function Name	Definition	mfun Name	Special Function Syntax	Argument s
Hyperbolic sine and cosine integrals	$\operatorname{Shi}(z)=\int_{0}^{z} \frac{\sinh (t)}{t} d t$ $\operatorname{Chi}(z)=\gamma+\ln (z)+\int_{0}^{z} \frac{\cosh (t)-1}{t} d t$	Shi(z) Chi (z)	$\begin{aligned} & \text { sinhint }(z) \\ & \text { coshint }(z) \end{aligned}$	
(Generalized) hypergeometri c function	$F(n, d, z)=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{j} \frac{\Gamma\left(n_{i}+k\right)}{\Gamma\left(n_{i}\right)} \cdot z^{k}}{\prod_{i=1}^{m} \frac{\Gamma\left(d_{i}+k\right)}{\Gamma\left(d_{i}\right)} \cdot k!}$ where j and m are the number of terms in n and d, respectively.	hypergeom(n,d ,x) where $\begin{aligned} & n= \\ & {[n 1, n 2, \ldots]} \\ & d= \\ & {[d 1, d 2, \ldots]} \end{aligned}$	hypergeom(n, d ,x) where $\begin{aligned} & n= \\ & {[n 1, n 2, \ldots]} \\ & d= \\ & {[d 1, d 2, \ldots]} \end{aligned}$	n1, n2, ... are real. d1, d2, ... are real and nonnegativ e.
Incomplete elliptic integrals	Legendre's incomplete elliptic integrals of the first, second, and third kind. This definition uses modulus k. The numerical ellipke function and the MuPAD functions for computing elliptic integrals use the parameter $m=k^{2}=\sin ^{2} \alpha$.	```EllipticF(x,k) EllipticE(x,k) EllipticPi(x, a,k)```	```ellipticF(x,k) ellipticF(x,k) ellipticPi(x, a,k)```	$0<x \leq \infty .$ a is real, $\infty<a<\infty$. k is real, 0 $<k<1$.
Incomplete gamma function	$\Gamma(a, z)=\int_{z}^{\infty} e^{-t} \cdot t^{a-1} d t$	$\begin{aligned} & \text { GAMMA }(\mathrm{z} 1, \mathrm{z2}) \\ & \mathrm{z} 1=a \\ & \mathrm{z} 2=z \end{aligned}$	$\begin{aligned} & \text { igamma }(z 1, z 2) \\ & z 1=a \\ & z 2=z \end{aligned}$	
Logarithm of the gamma function	$\operatorname{lnGAMMA}(z)=\ln (\Gamma(z))$	lnGAMMA(z)	gammaln(z)	

Function Name	Definition	mfun Name	Special Function Syntax	Argument s
Logarithmic integral	$L i(x)=P V\left\{\int_{0}^{x} \frac{d t}{\ln t}\right\}=E i(\ln x)$	Li (x)	logint (x)	$x>1$
Polygamma function	$\Psi^{(n)}(z)=\frac{d^{n}}{d z} \Psi(z)$ where $\Psi(z)$ is the Digamma function.	Psi(n,z)	psi(n,z)	$n \geq 0$
Shifted sine integral	$S s i(z)=S i(z)-\frac{\pi}{2}$	Ssi(z)	ssinint(z)	

The following orthogonal polynomials are available using mfun. In all cases, n is a nonnegative integer and x is real.

Polynomial	mfun Name	Special Function Syntax	Arguments
Chebyshev of the first and second kind	$\begin{aligned} & \mathrm{T}(\mathrm{n}, \mathrm{x}) \\ & \mathrm{U}(\mathrm{n}, \mathrm{x}) \end{aligned}$	```chebyshevT(n, x) chebyshevU(n, x)```	
Gegenbauer	$G(n, a, x)$	$\begin{aligned} & \text { gegenbauerC(n } \\ & , a, x) \end{aligned}$	a is a nonrational algebraic expression or a rational number greater than -1/2.
Hermite	$H(n, x)$	hermiteH(n,x)	
Jacobi	$\mathrm{P}(\mathrm{n}, \mathrm{a}, \mathrm{b}, \mathrm{x})$	$\begin{aligned} & \operatorname{jacobiP(n,a,b} \\ & , x) \end{aligned}$	a, b are nonrational algebraic expressions or rational numbers greater than -1 .
Laguerre	L (n, x)	$\begin{aligned} & \text { laguerreL(n,x } \\ & \text {) } \end{aligned}$	

Polynomial	mfun Name	Special Function Syntax	Arguments
Generalized Laguerre	$\mathrm{L}(\mathrm{n}, \mathrm{a}, \mathrm{x})$	laguerreL $(\mathrm{n}, \mathrm{a}$ $, \mathrm{x})$	a is a nonrational algebraic expression or a rational number greater than -1.
Legendre	$\mathrm{P}(\mathrm{n}, \mathrm{x})$	legendreP $(\mathrm{n}, \mathrm{x}$ $)$	

Limitations

- In general, the accuracy of a function will be lower near its roots and when its arguments are relatively large.
- Running time depends on the specific function and its parameters. In general, calculations are slower than standard MATLAB calculations.

See Also

mfun

Introduced before R2006a

minpoly

Minimal polynomial of matrix

Syntax

```
minpoly(A)
minpoly(A,var)
```


Description

minpoly (A) returns a vector of the coefficients of the minimal polynomial on page 41153 of A. If A is a symbolic matrix, minpoly returns a symbolic vector. Otherwise, it returns a vector with elements of type double.
minpoly (A, var) returns the minimal polynomial of A in terms of var.

Examples

Compute Minimal Polynomial of Matrix

Compute the minimal polynomial of the matrix A in terms of the variable x :

```
syms x
A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A, x)
ans =
x^2 - 2*x + 1
```


Compute Coefficients of Minimal Polynomial

To find the coefficients of the minimal polynomial of A, call minpoly with one argument. Since A is numeric, minpoly returns coefficients as double-precision values:

```
A = sym([11 1 0; 0 1 0; 0 0 1]);
minpoly(A)
ans =
[ 1, -2, 1]
```

Find the coefficients of the minimal polynomial of the symbolic matrix A. For this matrix, minpoly returns the symbolic vector of coefficients:
$A=\operatorname{sym}([020 ; 002 ; 200]) ;$
$P=\operatorname{minpoly}(A)$
$\mathrm{P}=$
[1, 0, 0, -8]

Input Arguments

A - Input

numeric matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

var - Input

symbolic variable
Input, specified as a symbolic variable. If you do not specify var, minpoly returns a vector of coefficients of the minimal polynomial instead of returning the polynomial itself.

Definitions

Minimal Polynomial of a Matrix

The minimal polynomial of a square matrix A is the monic polynomial $p(x)$ of the least degree, such that $p(A)=0$.

See Also

charpoly|eig|jordan|poly2sym| sym2poly

Introduced in R2012b

minus-

Symbolic subtraction

Syntax

```
-A
A - B
minus(A,B)
```


Description

-A returns the negation of A.
A - B subtracts B from A and returns the result.
minus (A, B) is an alternate way to execute $A-B$.

Examples

Subtract Scalar from Array

Subtract 2 from array A.

syms x

A = [x 1;-2 $\sin (x)]$;
A - 2
ans $=$
$\left[\begin{array}{rrr}x & -2, & \\ {\left[\begin{array}{ll}-1]\end{array}\right]}\end{array}\right]$
minus subtracts 2 from each element of A .
Subtract the identity matrix from matrix M:

```
syms x y z
M = [0 x; y z];
M - eye(2)
ans =
[ -1, x]
[ y, z - 1]
```


Subtract Numeric and Symbolic Arguments

Subtract one number from another. Because these are not symbolic objects, you receive floating-point results.

```
11/6 - 5/4
```

ans =
0.5833

Perform subtraction symbolically by converting the numbers to symbolic objects.

```
sym(11/6) - sym(5/4)
ans =
7/12
```

Alternatively, call minus to perform subtraction.

```
minus(sym(11/6),sym(5/4))
```

ans =
7/12

Subtract Matrices

Subtract matrices B and C from A.

```
A = sym([3 4; 2 1]);
B = sym([8 1; 5 2]);
C = sym([6 3; 4 9]);
Y = A - B - C
Y =
[ -11, 0]
[ -7, -10]
```

```
Use syntax - Y to negate the elements of Y.
```

```
-Y
ans =
[ 11, 0]
[ 7, 10]
```


Subtract Functions

Subtract function g from function f.

```
syms f(x) g(x)
f = sin(x) + 2*x;
y = f - g
y(x) =
2*x - g(x) + sin(x)
```


Input Arguments

A - Input

```
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression
```

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

B - Input

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

Tips

- All nonscalar arguments must have the same size. If one input argument is nonscalar, then minus expands the scalar into an array of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also

ctranspose | ldivide |mldivide | mpower | mrdivide |mtimes | plus | power | rdivide|times|transpose

Introduced before R2006a

mixedUnits

Split unit into sum of units

Syntax

mixedUnits(quantity,units)

Description

mixedUnits(quantity, units) splits the physical quantity quantity into a linear combination of the units in units.

- Units in units must be in descending order of magnitude.
- Units in quantity and units must be compatible.
- quantity must not contain symbolic variables.

Examples

Split Quantity into Combination of Units

Split 8000 seconds into hours, minutes, and seconds by using mixedUnits. The result is 2 hours, 13 minutes, and 20 seconds.

```
u = symunit;
t = 8000*u.s;
tunits = [u.hour u.minute u.second];
tSplit = mixedUnits(t,tunits)
tSplit =
[ 2, 13, 20]
```

Customize the displayed output by using compose.

```
compose("%d hours + %d minutes + %.lf seconds", double(tSplit))
```

```
ans =
    "2 hours + 13 minutes + 20.0 seconds"
```

Convert the geographic coordinate 15.352° into degrees $\left({ }^{\circ}\right)$, arcminutes $\left({ }^{\prime}\right)$, and arcseconds (' $'$). The result is $15^{\circ} 21^{\prime} 36 / 5^{\prime \prime}$.

```
gCoord = 15.352*u.degree;
gUnits = [u.degree u.arcmin u.arcsec];
gCoordSplit = mixedUnits(gCoord,gUnits)
gCoordSplit =
[ 15, 21, 36/5]
```

Convert the result from symbolic to floating point by using double.

```
gCoordDbl = double(gCoordSplit)
gCoordDbl =
    15.0000 21.0000 7.2000
```

Reconstruct the original coordinate by summing the split units and rewriting the result to degrees. mixedUnits returns an exact symbolic result instead of a numeric approximation. For details, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

```
gOrig = sum(gCoordSplit.*gUnits);
gOrig = rewrite(gOrig,u.degree)
g0rig =
(1919/125)*[deg]
```

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31

Input Arguments

quantity - Input

symbolic expression with units
Input, specified as a symbolic expression with units. quantity must not contain symbolic variables. Units in quantity and units must be compatible.

units - Units for representing input

vector of symbolic units

Units to represent input as, specified as a vector of symbolic units. Units must be in descending order of magnitude. Units in quantity and units must be compatible.

See Also
symunit|unitConversionFactor
\section*{Topics}
"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13
\section*{Introduced in R2018a}

mldividel

Symbolic matrix left division

Syntax

```
X = A\B
X = mldivide(A,B)
```


Description

$X=A \backslash B$ solves the symbolic system of linear equations in matrix form, $A * X=B$ for X.
If the solution does not exist or if it is not unique, the \backslash operator issues a warning.
A can be a rectangular matrix, but the equations must be consistent. The symbolic operator \does not compute least-squares solutions.
$X=m l d i v i d e(A, B)$ is equivalent to $x=A \backslash B$.

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

```
A = sym(pascal(4))
b = sym([4; 3; 2; 1])
A =
[ 1, 1, 1, 1]
[ 1, 2, 3, 4]
```

```
[ 1, 3, 6, 10]
[ 1, 4, 10, 20]
b =
    4
    3
    2
    1
```

Use the operator \to solve this system.

$X=A \backslash b$

$X=$
5

- 1

0
0

Rank-Deficient System

Create a matrix containing the coefficients of equation terms, and a vector containing the right sides of equations.

A $=\operatorname{sym}($ magic (4))
b $=\operatorname{sym}([0 ; 1 ; 1 ; 0])$
A $=$
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]
b =
0
1
1
0
Find the rank of the system. This system contains four equations, but its rank is 3 . Therefore, the system is rank-deficient. This means that one variable of the system is not independent and can be expressed in terms of other variables.

```
rank(horzcat(A,b))
```


ans =

3
Try to solve this system using the symbolic \backslash operator. Because the system is rankdeficient, the returned solution is not unique.
$A \backslash b$
Warning: Solution is not unique because the system is rank-deficient.
ans =
1/34
19/34
-9/17
0

Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

```
A = sym(magic(4))
b = sym([0; 1; 2; 3])
A =
[ 16, 2, 3, 13]
[ 5, 11, 10, 8]
[ 9, 7, 6, 12]
[ 4, 14, 15, 1]
b =
    0
    1
    2
    3
```

Try to solve this system using the symbolic \backslash operator. The operator issues a warning and returns a vector with all elements set to Inf because the system of equations is inconsistent, and therefore, no solution exists. The number of elements in the resulting vector equals the number of equations (rows in the coefficient matrix).
$A \backslash b$
Warning: Solution does not exist because the system is inconsistent.

```
ans =
    Inf
Inf
Inf
Inf
```

Find the reduced row echelon form of this system. The last row shows that one of the equations reduced to $0=1$, which means that the system of equations is inconsistent.

```
rref(horzcat(A,b))
ans =
[1, 0, 0, 1, 0]
[ 0, 1, 0, 3, 0]
[ 0, 0, 1, -3, 0]
[ 0, 0, 0, 0, 1]
```


Input Arguments

A - Coefficient matrix

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector, or matrix.

B - Right side

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or matrix.

Output Arguments

X - Solution

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.

Tips

- When dividing by zero, mldivide considers the numerator's sign and returns Inf or - Inf accordingly.

```
syms x
[sym(0)\sym(1), sym(0)\sym(-1), sym(0)\x]
ans =
[ Inf, -Inf, Inf*x]
```


See Also

ctranspose|ldivide |minus|mpower|mrdivide |mtimes |plus|power| rdivide|times|transpose

Introduced before R2006a

mod

Symbolic modulus after division

Syntax

$\bmod (a, b)$

Description

$\bmod (a, b)$ finds the modulus on page 4-1169 after division. To find the remainder, use rem.

If a is a polynomial expression, then $\bmod (a, b)$ finds the modulus for each coefficient.

Examples

Divide Integers by Integers

Find the modulus after division in case both the dividend and divisor are integers.
Find the modulus after division for these numbers.
[mod(sym(27), 4), mod(sym(27), 4), mod(sym(-27), 4), mod(sym(-27), -4)]
ans =
$[3,-1,1,-3]$

Divide Rationals by Integers

Find the modulus after division in case the dividend is a rational number, and divisor is an integer.

Find the modulus after division for these numbers.
[mod(sym(22/3), 5), mod(sym(1/2), 7), mod(sym(27/6), -11)]

```
ans =
[ 7/3, 1/2, -13/2]
```


Divide Polynomial Expressions by Integers

Find the modulus after division in case the dividend is a polynomial expression, and divisor is an integer. If the dividend is a polynomial expression, then mod finds the modulus for each coefficient.

Find the modulus after division for these polynomial expressions.

```
syms x
mod(x^3 - 2*x + 999, 10)
ans =
x^3 + 8*x + 9
mod(8*x^3 + 9*x^2 + 10*x + 11, 7)
ans =
x^3 + 2*x^2 + 3*x + 4
```


Divide Elements of Matrices

For vectors and matrices, mod finds the modulus after division element-wise. Nonscalar arguments must be the same size.

Find the modulus after division for the elements of these two matrices.
A $=\operatorname{sym}([27,28 ; 29,30])$;
$B=\operatorname{sym}([2,3 ; 4,5])$;
$\bmod (A, B)$
ans $=$
[1, 1]
[1, 0]
Find the modulus after division for the elements of matrix A and the value 9. Here, mod expands 9 into the 2-by-2 matrix with all elements equal to 9 .
$\bmod (A, 9)$

ans =

[0, 1]
[2, 3]

Input Arguments

a - Dividend (numerator)

number | symbolic number | symbolic variable | polynomial expression | vector | matrix
Dividend (numerator), specified as a number, symbolic number, variable, polynomial expression, or a vector or matrix of numbers, symbolic numbers, variables, or polynomial expressions.

b - Divisor (denominator)

number | symbolic number | vector | matrix
Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.

Definitions

Modulus

The modulus of a and b is

$$
\bmod (a, b)=a-b * \text { floor }\left(\frac{a}{b}\right)
$$

where floor rounds (a / b) towards negative infinity. For example, the modulus of -8 and -3 is -2 , but the modulus of -8 and 3 is 1 .

If $b=0$, then $\bmod (a, 0)=0$.

Tips

- Calling mod for numbers that are not symbolic objects invokes the MATLAB mod function.
- All nonscalar arguments must be the same size. If one input arguments is nonscalar, then mod expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also
powermod | quorem | rem
Introduced before R2006a

mpower^

Symbolic matrix power

Syntax

$A^{\wedge} B$
mpower(A,B)

Description

$A^{\wedge} B$ computes A to the B power.
mpower (A, B) is equivalent to $A^{\wedge} B$.

Examples

Matrix Base and Scalar Exponent

Create a 2-by-2 matrix.
A = sym('a\%d\%d', [2 2])
A =
[a11, a12]
[a21, a22]
Find $\mathrm{A}^{\wedge} 2$.
$A^{\wedge} 2$

```
ans =
[ a11^2 + a12*a21, a11*a12 + a12*a22]
[ a11*a21 + a21*a22, a22^2 + a12*a21]
```


Scalar Base and Matrix Exponent

Create a 2-by-2 symbolic magic square.

```
A = sym(magic(2))
A =
[ 1, 3]
[ 4, 2]
```

Find Π^{A}.

```
sym(pi)^A
ans =
[ (3*pi^7 + 4)/(7*pi^2), (3*(pi^7 - 1))/(7*pi^2)]
[ (4*(pi^7 - 1))/(7*pi^2), (4*pi^7 + 3)/(7*pi^2)]
```


Input Arguments

A - Base

number | symbolic number | symbolic variable | symbolic function | symbolic expression | square symbolic matrix

Base, specified as a number or a symbolic number, variable, expression, function, or square matrix. A and B must be one of the following:

- Both are scalars.
- A is a square matrix, and B is a scalar.
- B is a square matrix, and A is a scalar.

B - Exponent

number | symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic square matrix

Exponent, specified as a number or a symbolic number, variable, expression, function, or square matrix. A and B must be one of the following:

- Both are scalars.
- A is a square matrix, and B is a scalar.
- B is a square matrix, and A is a scalar.

See Also

ctranspose| ldivide |minus |mldivide |mrdivide |mtimes | plus | power | rdivide|times|transpose

Introduced before R2006a

mrdivide/

Symbolic matrix right division

Syntax

$X=B / A$
$X=\operatorname{mrdivide}(B, A)$

Description

$X=B / A$ solves the symbolic system of linear equations in matrix form, $X * A=B$ for X. The matrices A and B must contain the same number of columns. The right division of matrices B / A is equivalent to ($A^{\prime} \backslash B^{\prime}$) '.

If the solution does not exist or if it is not unique, the / operator issues a warning.
A can be a rectangular matrix, but the equations must be consistent. The symbolic operator / does not compute least-squares solutions.
$X=m r d i v i d e(B, A)$ is equivalent to $x=B / A$.

Examples

System of Equations in Matrix Form

Solve a system of linear equations specified by a square matrix of coefficients and a vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

A $=\operatorname{sym}($ pascal(4))
$b=\operatorname{sym}\left(\left[\begin{array}{llll}4 & 3 & 2 & 1\end{array}\right]\right)$

```
A =
[ 1, 1, 1, 1]
[ 1, 2, 3, 4]
[ 1, 3, 6, 10]
[ 1, 4, 10, 20]
b =
[ 4, 3, 2, 1]
```

Use the operator / to solve this system.

```
X = b/A
X =
[ 5, -1, 0, 0]
```


Rank-Deficient System

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

```
A = sym(magic(4))'
b = sym([0 1 1 0])
A =
[ 16, 5, 9, 4]
[ 2, 11, 7, 14]
[ 3, 10, 6, 15]
[ 13, 8, 12, 1]
b =
[ 0, 1, 1, 0]
```

Find the rank of the system. This system contains four equations, but its rank is 3 . Therefore, the system is rank-deficient. This means that one variable of the system is not independent and can be expressed in terms of other variables.

```
rank(vertcat(A,b))
ans =
3
```

Try to solve this system using the symbolic / operator. Because the system is rankdeficient, the returned solution is not unique.

b/A

```
Warning: Solution is not unique because the system is rank-deficient.
ans =
[ 1/34, 19/34, -9/17, 0]
```


Inconsistent System

Create a matrix containing the coefficient of equation terms, and a vector containing the right sides of equations.

```
A = sym(magic(4))'
b = sym([0 1 2 3
A =
[ 16, 5, 9, 4]
[ 2, 11, 7, 14]
[ 3, 10, 6, 15]
[ 13, 8, 12, 1]
b =
[ 0, 1, 2, 3]
```

Try to solve this system using the symbolic / operator. The operator issues a warning and returns a vector with all elements set to Inf because the system of equations is inconsistent, and therefore, no solution exists. The number of elements equals the number of equations (rows in the coefficient matrix).

b/A

```
Warning: Solution does not exist because the system is inconsistent.
```

```
ans =
[ Inf, Inf, Inf, Inf]
```

Find the reduced row echelon form of this system. The last row shows that one of the equations reduced to $0=1$, which means that the system of equations is inconsistent.

```
rref(vertcat(A,b)')
ans =
[ 1, 0, 0, 1, 0]
[ 0, 1, 0, 3, 0]
```

```
0, 0, 1, -3, 0]
[ 0, 0, 0, 0, 1]
```


Input Arguments

A - Coefficient matrix

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector, or matrix.

B - Right side

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or matrix.

Output Arguments

X - Solution

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.

Tips

- When dividing by zero, mrdivide considers the numerator's sign and returns Inf or - Inf accordingly.
syms x
[sym(1)/sym(0), sym(-1)/sym(0), x/sym(0)]
ans =
[Inf, -Inf, Inf*x]

See Also

ctranspose|ldivide|minus |mldivide | mpower | mtimes |plus | power | rdivide|times|transpose

Introduced before R2006a

mtimes*

Symbolic matrix multiplication

Syntax

A*B
mtimes(A,B)

Description

$A * B$ is the matrix product of A and B. If A is an m-by- p and B is a $p-b y-n$ matrix, then the result is an m-by-n matrix C defined as

$$
C(i, j)=\sum_{k=1}^{p} A(i, k) B(k, j)
$$

For nonscalar A and B, the number of columns of A must equal the number of rows of B. Matrix multiplication is not universally commutative for nonscalar inputs. That is, typically $A * B$ is not equal to $B^{*} A$. If at least one input is scalar, then $A * B$ is equivalent to A. $* B$ and is commutative.
mtimes (A, B) is equivalent to $A * B$.

Examples

Multiply Two Vectors

Create a 1-by-5 row vector and a 5-by-1 column vector.

syms x

$A=\left[x, 2 * x^{\wedge} 2,3 * x^{\wedge} 3, \quad 4^{*} x^{\wedge} 4\right]$
$B=\left[1 / x ; 2 / x^{\wedge} 2 ; 3 / x^{\wedge} 3 ; 4 / x^{\wedge} 4\right]$

```
A =
[ x, 2*x^2, 3*x^3, 4*x^4]
B =
    1/x
    2/x^2
    3/x^3
    4/x^4
```

Find the matrix product of these two vectors.
A*B
ans $=$
30

Multiply Two Matrices

Create a 4-by-3 matrix and a 3-by-2 matrix.
A $=\operatorname{sym}\left({ }^{\prime} a \% d \% d ',\left[\begin{array}{ll}4 & 3\end{array}\right]\right)$
B = sym('b\%d\%d', [3 2])
A =
[a11, a12, a13]
[a21, a22, a23]
[a31, a32, a33]
[a41, a42, a43]
B =
[b11, b12]
[b21, b22]
[b31, b32]
Multiply A by B.

A*B

```
ans =
[ a11*b11 + a12*b21 + a13*b31, a11*b12 + a12*b22 + a13*b32]
[ a21*b11 + a22*b21 + a23*b31, a21*b12 + a22*b22 + a23*b32]
[ a31*b11 + a32*b21 + a33*b31, a31*b12 + a32*b22 + a33*b32]
[ a41*b11 + a42*b21 + a43*b31, a41*b12 + a42*b22 + a43*b32]
```


Multiply Matrix by Scalar

Create a 4-by-4 Hilbert matrix H.

```
H = sym(hilb(4))
H =
[ 1, 1/2, 1/3, 1/4]
[1/2, 1/3, 1/4, 1/5]
[ 1/3, 1/4, 1/5, 1/6]
[ 1/4, 1/5, 1/6, 1/7]
```

Multiply H by e^{π}.

```
C = H*exp(sym(pi))
C=
exp(pi), exp(pi)/2, exp(pi)/3, exp(pi)/4]
[ exp(pi)/2, exp(pi)/3, exp(pi)/4, exp(pi)/5]
[ exp(pi)/3, exp(pi)/4, exp(pi)/5, exp(pi)/6]
[ exp(pi)/4, exp(pi)/5, exp(pi)/6, exp(pi)/7]
```

Use vpa and digits to approximate symbolic results with the required number of digits. For example, approximate it with five-digit accuracy.

```
old = digits(5);
vpa(C)
digits(old)
ans =
[ 23.141, 11.57, 7.7136, 5.7852]
[ 11.57, 7.7136, 5.7852, 4.6281]
[ 7.7136, 5.7852, 4.6281, 3.8568]
[ 5.7852, 4.6281, 3.8568, 3.3058]
```


Input Arguments

A - Input

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

B - Input

symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

See Also

ctranspose|ldivide|minus|mldivide|mpower|mrdivide|plus|power| rdivide|times|transpose

Introduced before R2006a

mupad

Start MuPAD notebook

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

```
mphandle = mupad
mphandle = mupad(file)
```


Description

mphandle $=$ mupad creates a MuPAD notebook, and keeps a handle (pointer) to the notebook in the variable mphandle. You can use any variable name you like instead of mphandle.
mphandle $=$ mupad(file) opens the MuPAD notebook named file and keeps a handle (pointer) to the notebook in the variable mphandle. The file name must be a full path unless the file is in the current folder. You also can use the argument file\#linktargetname to refer to the particular link target inside a notebook. In this case, the mupad function opens the MuPAD notebook (file) and jumps to the beginning of the link target linktargetname. If there are multiple link targets with the name linktargetname, the mupad function uses the last linktargetname occurrence.

Examples

Start or Open MuPAD Notebook

To start a new notebook and define a handle mphandle to the notebook, enter:

```
mphandle = mupad;
```

To open an existing notebook named notebook1.mn located in the current folder, and define a handle mphandle to the notebook, enter:

```
mphandle = mupad('notebook1.mn');
```

To open a notebook and jump to a particular location, create a link target at that location inside a notebook and refer to it when opening a notebook. For example, if you have the Conclusions section in notebook1.mn, create a link target named conclusions and refer to it when opening the notebook. The mupad function opens notebook1.mn and scroll it to display the Conclusions section:

```
mphandle = mupad('notebook1.mn#conclusions');
```

For information about creating link targets, see "Work with Links".

See Also

getVar | mupadwelcome | openmn | openmu | setVar

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6

Introduced in R2008b

mupadNotebookTitle

Window title of MuPAD notebook

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

```
T = mupadNotebookTitle(nb)
```


Description

$\mathrm{T}=$ mupadNotebookTitle(nb) returns a cell array containing the window title of the MuPAD notebook with the handle nb . If nb is a vector of handles to notebooks, then mupadNotebookTitle(nb) returns a cell array of the same size as nb.

Examples

Find Titles of Particular Notebooks

Knowing the handles to notebooks, find the titles of these notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
nb3 =
Notebook1
```

Find the titles of myFile1.mn and myFile2.mn:

```
mupadNotebookTitle([nb1; nb2])
```

ans =
'myFile1'
'myFile2'

List Titles of All Open Notebooks

Get a cell array containing titles of all currently open MuPAD notebooks.
Suppose that your current folder contains MuPAD notebooks named myFile1.mn and myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively. Also create a new notebook with the handle nb3:

```
nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad
nb1 =
myFile1
nb2 =
myFile2
```

nb3 =
Notebook1
Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a vector of handles to these notebooks:
allNBs = allMuPADNotebooks
allNBs =
myFile1
myFile2
Notebook1
List the titles of all open notebooks. The result is a cell array of character vectors.

```
mupadNotebookTitle(allNBs)
```


ans =

'myFile1'
'myFile2'
' Notebook1

Return Single Notebook Title as Character Vector

mupadNotebookTitle returns a cell array of titles even if there is only one element in that cell array. If mupadNotebookTitle returns a cell array of one element, you can quickly convert it to a character vector by using char.

Create a new notebook with the handle nb:
nb = mupad;
Find the title of that notebook and convert it to a character vector:
titleAsStr = char(mupadNotebookTitle(nb));
Use the title the same way as any character vector:
disp(['The current notebook title is: ' titleAsStr])
The current notebook title is: Notebook1

- "Create MuPAD Notebooks" on page 3-3
- "Open MuPAD Notebooks" on page 3-6
- "Save MuPAD Notebooks" on page 3-12
- "Evaluate MuPAD Notebooks from MATLAB" on page 3-13
- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53
- "Close MuPAD Notebooks from MATLAB" on page 3-17

Input Arguments

nb - Pointer to MuPAD notebook
 handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function. mupadNotebookTitle accepts a vector of handles returned by allMuPADNotebooks.

Output Arguments

T - Window title of MuPAD notebook
 cell array

Window title of MuPAD notebook, returned as a cell array. If nb is a vector of handles to notebooks, then T is a cell array of the same size as nb.

See Also

allMuPADNotebooks |close|evaluateMuPADNotebook|getVar|mupad|openmn | setVar

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6
"Save MuPAD Notebooks" on page 3-12
"Evaluate MuPAD Notebooks from MATLAB" on page 3-13
"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53 "Close MuPAD Notebooks from MATLAB" on page 3-17

Introduced in R2013b

mupadwelcome

Start MuPAD interfaces

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

mupadwel come

Description

mupadwel come opens a window that enables you to start various interfaces:

- MuPAD Notebook, for performing calculations
- MATLAB Editor, for writing programs and libraries
- Documentation in the First Steps pane, for information and examples

It also enables you to access recent MuPAD files or browse for files.

See Also
 mupad

Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6

Introduced in R2008b

nchoosek

Binomial coefficient

Syntax

b $=\operatorname{nchoosek}(\mathrm{n}, \mathrm{k})$
C = nchoosek (v, k)

Description

$b=n c h o o s e k(n, k)$ returns the binomial coefficient of n and k, defined as $n!/(k!(n$ - k)!). This is the number of combinations of n items taken k at a time.
$\mathrm{C}=$ nchoosek (v, k) returns a matrix containing all possible combinations of the elements of vector v taken k at a time. Matrix C has k columns and $n!/(k!(n-k)!)$ rows, where n is length (v). In this syntax, k must be a nonnegative integer.

Examples

Binomial Coefficients for Numeric and Symbolic Arguments

Compute the binomial coefficients for these expressions.

```
syms n
[nchoosek(n, n), nchoosek(n, n + 1), nchoosek(n, n - 1)]
ans =
[ 1, 0, n]
```

If one or both parameters are negative numbers, convert these numbers to symbolic objects.

```
[nchoosek(sym(-1), 3), nchoosek(sym(-7), 2), nchoosek(sym(-5), -5)]
```

ans $=$
[$-1,28,1]$

If one or both parameters are complex numbers, convert these numbers to symbolic objects.
[nchoosek(sym(i), 3), nchoosek(sym(i), i), nchoosek(sym(i), i + 1)]
ans =
$[1 / 2+1 i / 6,1,0]$

Handle Expressions Containing Binomial Coefficients

Many functions, such as diff and expand, can handle expressions containing nchoosek.
Differentiate the binomial coefficient.

```
syms n k
diff(nchoosek(n, 2))
ans =
-(psi(n - 1) - psi(n + 1))*nchoosek(n, 2)
```

Expand the binomial coefficient.

```
expand(nchoosek(n, k))
ans =
-(n*gamma(n))/(k^2*gamma(k)*gamma(n - k) - k*n*gamma(k)*gamma(n - k))
```


Pascal Triangle

Use nchoosek to build the Pascal triangle.

```
m = 5;
for n = 0:m
            C = sym([]);
    for k = 0:n
        C = horzcat(C, nchoosek(n, k));
    end
    disp(C)
end
1
[ 1, 1]
[ 1, 2, 1]
[ 1, 3, 3, 1]
```

```
[ 1, 4, 6, 4, 1]
[ 1, 5, 10, 10, 5, 1]
```


All Combinations of Vector Elements

Find all combinations of elements of a 1-by-5 symbolic row vector taken three and four at a time.

Create a 1-by-5 symbolic vector with the elements $x 1, x 2, x 3, x 4$, and $x 5$.

```
v = sym('x', [1, 5])
v =
[ x1, x2, x3, x4, x5]
```

Find all combinations of the elements of v taken three at a time.
C = nchoosek (v, 3)
C =
[x1, x2, x3]
[x1, x2, x4]
[x1, x3, x4]
[x2, x3, x4]
[x1, x2, x5]
[x1, x3, x5]
[x2, x3, x5]
[x1, x4, x5]
[x2, x4, x5]
[x3, x4, x5]
$C=$ nchoosek (v, 4)
C =
[x1, x2, x3, x4]
[x1, x2, x3, x5]
[x1, x2, x4, x5]
[x1, x3, x4, x5]
[x2, x3, x4, x5]

Input Arguments

n - Number of possible choices
symbolic number | symbolic variable | symbolic expression | symbolic function
Number of possible choices, specified as a symbolic number, variable, expression, or function.

k - Number of selected choices

symbolic number | symbolic variable | symbolic expression | symbolic function
Number of selected choices, specified as a symbolic number, variable, expression, or function. If the first argument is a symbolic vector v, then k must be a nonnegative integer.

v - Set of all choices

symbolic vector
Set of all choices, specified as a vector of symbolic numbers, variables, expressions, or functions.

Output Arguments

b - Binomial coefficient

nonnegative scalar value
Binomial coefficient, returned as a nonnegative scalar value.

C - All combinations of v
 matrix

All combinations of v, returned as a matrix of the same type as v.

Definitions

Binomial Coefficient

If n and k are integers and $0 \leq k \leq n$, the binomial coefficient is defined as:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

For complex numbers, the binomial coefficient is defined via the gamma function:

$$
\binom{n}{k}=\frac{\Gamma(n+1)}{\Gamma(k+1) \Gamma(n-k+1)}
$$

Tips

- Calling nchoosek for numbers that are not symbolic objects invokes the MATLAB nchoosek function.
- If one or both parameters are complex or negative numbers, convert these numbers to symbolic objects using sym, and then call nchoosek for those symbolic objects.

Algorithms

If $k<0$ or $n-k<0$, $\operatorname{nchoosek}(n, k)$ returns 0 .
If one or both arguments are complex, nchoosek uses the formula representing the binomial coefficient via the gamma function.

See Also
beta|factorial|gamma|psi
\section*{Introduced in R2012a}

ne

Define inequality

Syntax

A ~= B
ne(A, B)

Description

A ~= B creates a symbolic inequality.
ne (A, B) is equivalent to $A \sim=B$.

Examples

Set and Use Assumption Using Not Equal

Use assume and the relational operator $\sim=$ to set the assumption that x does not equal to 5:
syms x
assume(x ~= 5)
Solve this equation. The solver takes into account the assumption on variable x , and therefore returns only one solution.

```
solve((x - 5)*(x - 6) == 0, x)
ans =
6
```


Input Arguments

A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Tips

- Calling $\sim=$ or ne for non-symbolic A and B invokes the MATLAB ne function. This function returns a logical array with elements set to logical 1 (true) where A is not equal to B; otherwise, it returns logical 0 (false).
- If both A and B are arrays, then these arrays must have the same dimensions. $A \sim=B$ returns an array of inequalities $A(i, j, \ldots) \sim=B(i, j, \ldots)$
- If one input is scalar and the other an array, then the scalar input is expanded into an array of the same dimensions as the other array. In other words, if A is a variable (for example, x), and B is an m-by- n matrix, then A is expanded into m-by- n matrix of elements, each set to x.

Alternatives

You can also define inequality using eq (or its shortcut $==$) and the logical negation not (or \sim). Thus, $A \sim=B$ is equivalent to $\sim(A=B$).

See Also

eq|ge|gt|isAlways|le|lt

[^2]
newUnit

Define new unit

Syntax

```
newUnit(name,definition)
```


Description

newUnit (name, definition) defines the new unit name using the expression definition. The definition must be in terms of existing symbolic units. You cannot redefine a predefined unit or its alternate names.

Examples

Define New Unit and Rewrite Unit

Define the new unit speedOfLight as 3 e8 meters per second.
$u=$ symunit;
$c=$ newUnit('speedOfLight', 3e8*u.m/u.s)

C =
[speed0fLight]
Define the famous equation $E=m c^{2}$ using the new unit.

```
syms mass
m = mass*u.kg;
E = m* c^2
E =
mass*[kg]*[speed0fLight]^2
```

Alternatively, you can specify the unit by using u. SpeedOfLight.

Rewrite E in terms of meters per second.

```
E = rewrite(E,u.m/u.s)
E =
900000000000000000*mass*(([kg]*[m]^2)/[s]^2)
```

Since the standard unit of energy is the Joule, rewrite E in terms of Joule.

```
E = rewrite(E,u.J)
```

E =
900000000000000000*mass*[J]

Input Arguments

name - Name of new unit

character vector | string
Name of the new unit, specified as a character vector or string. You cannot redefine a predefined unit or its aliases.

definition - Definition of new unit

symbolic expression of units
Definition of the new unit, specified as a symbolic expression of units. The new unit must be defined in terms of existing symbolic units. For example, newUnit ('workday', 8*u.hour) where u = symunit.

See Also

checkUnits |isUnit|removeUnit|separateUnits| str2symunit|symunit| symunit2str|unitConversionFactor

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites
The International System of Units (SI)
Introduced in R2017a

newUnitSystem

Define unit system

Syntax

newUnitSystem(name,baseUnits)
newUnitSystem(name, baseUnits,derivedUnits)

Description

newUnitSystem(name, baseUnits) defines a new "Unit System" on page 4-1205 with the name name and the base units baseUnits. Now, you can convert units into the new unit system by using rewrite. By default, available unit systems include SI, CGS, and US. For all unit systems, see "Unit Systems List" on page 2-28.
newUnitSystem(name, baseUnits,derivedUnits) additionally specifies the derived units derivedUnits.

Examples

Define New Unit System from Existing System

A unit system is a collection of units to express quantities. The easiest way to define a new unit system is to modify a default unit system, such as SI, CGS, or US.

Modify SI to use kilometer for length and hour for time by getting the base units using baseunits and modifying them by using subs.

```
u = symunit;
SIUnits = baseUnits('SI')
SIUnits =
[ [kg], [s], [m], [A], [cd], [mol], [K]]
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr])
```

```
newUnits =
[ [kg], [h], [km], [A], [cd], [mol], [K]]
```

Note Do not define a variable called baseUnits because the variable will prevent access to the baseUnits function.

Define the new unit system SI_km_hr using the new base units.

```
newUnitSystem('SI_km_hr',newUnits)
```

```
ans =
    "SI km hr"
```

Rewrite 5 meter/second to the SI_km_hr unit system. As expected, the result is in terms of kilometers and hours.

```
rewrite(5*u.m/u.s,'SI_km_hr')
ans =
18*([km]/[h])
```


Specify Base and Derived Units Directly

Specify a new unit system by specifying the base and derived units directly. A unit system has up to 7 base units. For details, see "Unit System" on page 4-1205.

Define a new unit system with these base units: gram, hour, meter, ampere, candela, mol, and celsius. Specify these derived units: kilowatt, newton, and volt.

```
u = symunit;
sysName = 'myUnitSystem';
bunits = [u.g u.hr u.m u.A u.cd u.mol u.Celsius];
dunits = [u.kW u.N u.V];
newUnitSystem(sysName,bunits,dunits)
ans =
    "myUnitSystem"
```

Rewrite 2000 Watts to the new system. By default, rewrite uses base units, which can be hard to read.

```
rewrite(2000*u.W,sysName)
```

```
ans =
93312000000000000*(([g]*[m]^2)/[h]^3)
```

Instead, for readability, rewrite 2000 Watts to derived units of myUnitSystem by specifying 'Derived' as the third argument. Converting to the derived units of a unit system attempts to select convenient units. The result uses the derived unit, kilowatt, instead of base units. For more information, see "Unit Conversions and Unit Systems" on page 2-31.

```
rewrite(2000*u.W,sysName,'Derived')
ans =
2*[kW]
```


Input Arguments

name - Name of unit system

string | character vector
Name of unit system, specified as a string or character vector.

baseUnits - Base units of unit system

vector of symbolic units
Base units of unit system, specified as a vector of symbolic units. The base units must be independent in terms of the dimensions mass, time, length, electric current, luminous intensity, amount of substance, and temperature. Thus, in a unit system, there are up to 7 base units.

derivedUnits - Derived units of unit system

vector of symbolic units
Derived units of unit system, specified as a vector of symbolic units. Derived units are optional and added for convenience of representation.

Definitions

Unit System

A unit system is a collection of base units and derived units that follows these rules:

- Base units must be independent in terms of the dimensions mass, time, length, electric current, luminous intensity, amount of substance, and temperature. Therefore, a unit system has up to 7 base units. As long as the independence is satisfied, any unit can be a base unit, including units such as newton or watt.
- A unit system can have less than 7 base units. For example, mechanical systems need base units only for the dimensions length, mass, and time.
- Derived units in a unit system must have a representation in terms of the products of powers of the base units for that system. Unlike base units, derived units do not have to be independent.
- Derived units are optional and added for convenience of representation. For example, $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$ is abbreviated by newton.
- An example of a unit system is the SI unit system, which has 7 base units: kilogram, second, meter, ampere, candela, mol, and kelvin. There are 22 derived units found by calling derivedUnits('SI').

See Also

baseUnits|derivedUnits|removeUnitSystem|rewrite|symunit| unitSystems

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)
Introduced in R2017b

nextprime

Next prime number

Syntax

nextprime(n)

Description

nextprime (n) returns the next prime number greater than or equal to n . If n is a vector or matrix, then nextprime acts element-wise on n.

Examples

Find Next Prime Number

Find the next prime number greater than 100.

```
nextprime(100)
```

ans =
101

Find the next prime numbers greater than 1000, 10000, and 100000 by specifying the input as a vector.

```
v = [1000 10000 100000];
nextprime(v)
ans =

\section*{Find Large Prime Number}

When finding large prime numbers, return exact symbolic integers by using symbolic input. Further, if your input has 15 or more digits, then use quotation marks and wrap the
number in sym to represent the number accurately. For more information, see "Numeric to Symbolic Conversion" on page 2-126.

Find a large prime number by using \(10^{\wedge} \operatorname{sym}(18)\).
nextprime(10^sym(18))
ans \(=\)
1000000000000000003
Find the next prime number to 823572345728582545 by using quotation marks.
```

nextprime(sym('823572345728582545'))

```
ans \(=\)
823572345728582623

\section*{Input Arguments}

\section*{n - Input}
number | vector | matrix | array | symbolic number | symbolic array
Input, specified as a number, vector, matrix, array, or a symbolic number or array.

\section*{See Also}
isprime|nthprime|prevprime|primes

\section*{Introduced in R2016b}

\section*{norm}

Norm of matrix or vector

\section*{Syntax}

\author{
norm(A) \\ norm(A, p) \\ norm(V) \\ norm(V,P)
}

\section*{Description}
norm (A) returns the 2-norm of matrix A. Because symbolic variables are assumed to be complex by default, the norm can contain unresolved calls to conj and abs.
norm \((A, p)\) returns the \(p\)-norm of matrix \(A\).
norm (V) returns the 2-norm of vector V.
norm ( \(\mathrm{V}, \mathrm{P}\) ) returns the P -norm of vector V .

\section*{Examples}

\section*{Compute 2-Norm of Matrix}

Compute the 2 -norm of the inverse of the 3 -by- 3 magic square \(A\) :
```

A = inv(sym(magic(3)))
norm2 = norm(A)
A =
[53/360, -13/90, 23/360]
[-11/180, 1/45, 19/180]
[-7/360, 17/90, -37/360]

```
```

norm2 =
3^(1/2)/6

```

Use vpa to approximate the result with 20-digit accuracy:
```

vpa(norm2, 20)

```
ans \(=\)
0.28867513459481288225

\section*{Effect of Assumptions on Norm}

Compute the norm of [ \(x \mathrm{y}\) ] and simplify the result. Because symbolic variables are assumed to be complex by default, the calls to abs do not simplify.
```

syms x y
simplify(norm([x y]))
ans =
(abs(x)^2 + abs(y)^2)^(1/2)

```

Assume x and y are real, and repeat the calculation. Now, the result is simplified.
```

assume([x y],'real')
simplify(norm([x y]))
ans =
(x^2 + y^2)^^(1/2)

```

Remove assumptions on x for further calculations. For details, see "Use Assumptions on Symbolic Variables" on page 1-28.
```

assume(x,'clear')

```

\section*{Compute Different Types of Norms of Matrix}

Compute the 1-norm, Frobenius norm, and infinity norm of the inverse of the 3-by-3 magic square A:
```

A = inv(sym(magic(3)))
norm1 = norm(A, 1)
normf = norm(A, 'fro')
normi = norm(A, inf)

```
```

A =
[53/360, -13/90, 23/360]
[-11/180, 1/45, 19/180]
[-7/360, 17/90, -37/360]
norm1 =
16/45
normf =
391^(1/2)/60
normi =
16/45

```

Use vpa to approximate these results to 20-digit accuracy:
```

vpa(norm1, 20)
vpa(normf, 20)
vpa(normi, 20)
ans =
0.355555555555555555556
ans =
0.32956199888808647519
ans =
0.355555555555555555556

```

\section*{Compute Different Types of Norms of Vector}

Compute the 1-norm, 2-norm, and 3-norm of the column vector V = [Vx; Vy; Vz]:
```

syms Vx Vy Vz

```
V = [Vx; Vy; Vz];
norm1 \(=\operatorname{norm}(\mathrm{V}, 1)\)
norm2 \(=\) norm(V)
norm3 \(=\) norm(V, 3)
norm1 =
abs(Vx) + abs(Vy) + abs(Vz)
norm2 =
```

(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)
norm3 =
(abs(Vx)^3 + abs(Vy)^3 + abs(Vz)^3)^(1/3)

```

Compute the infinity norm, negative infinity norm, and Frobenius norm of V:
```

normi = norm(V, inf)
normni = norm(V, -inf)
normf = norm(V, 'fro')
normi =
max(abs(Vx), abs(Vy), abs(Vz))
normni =
min(abs(Vx), abs(Vy), abs(Vz))
normf =
(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

```

\section*{Input Arguments}

\section*{A - Input}

\section*{symbolic matrix}

Input, specified as a symbolic matrix.

\section*{p - Input \\ 2 (default)| 1 |inf|'fro'}

One of these values \(1,2, i n f\), or 'fro'.
- \(\operatorname{norm}(A, 1)\) returns the 1 -norm of \(A\).
- \(\operatorname{norm}(A, 2)\) or norm( \(A)\) returns the 2-norm of \(A\).
- norm(A, inf) returns the infinity norm of \(A\).
- norm(A,'fro') returns the Frobenius norm of A.

\section*{V - Input}
symbolic vector
Input, specified as a symbolic vector.

\section*{P - Input \\ 2 (default) | 1 | inf |'fro'}
- \(\operatorname{norm}(V, P)\) is computed as \(\operatorname{sum}\left(a b s(V) .{ }^{\wedge} P\right)^{\wedge}(1 / P)\) for \(1<=P<i n f\).
- norm(V) computes the 2-norm of \(V\).
- norm(A,inf) is computed as max(abs(V)).
- norm( \(\mathrm{A},-\mathrm{inf}\) ) is computed as min(abs(V)).

\section*{Definitions}

\section*{1-Norm of a Matrix}

The 1-norm of an \(m\)-by- \(n\) matrix \(A\) is defined as follows:
\[
\|A\|_{1}=\max _{j}\left(\sum_{i=1}^{m}\left|A_{i j}\right|\right), \text { where } j=1 \ldots n
\]

\section*{2-Norm of a Matrix}

The 2-norm of an \(m\)-by- \(n\) matrix \(A\) is defined as follows:
\[
\|A\|_{2}=\sqrt{\max \text { eigenvalue of } \mathrm{A}^{H} A}
\]

The 2-norm is also called the spectral norm of a matrix.

\section*{Frobenius Norm of a Matrix}

The Frobenius norm of an \(m\)-by- \(n\) matrix \(A\) is defined as follows:
\[
\|A\|_{F}=\sqrt{\sum_{i=1}^{m}\left(\sum_{j=1}^{n}\left|A_{i j}\right|^{2}\right)}
\]

\section*{Infinity Norm of a Matrix}

The infinity norm of an \(m\)-by- \(n\) matrix \(A\) is defined as follows:
\[
\|A\|_{\infty}=\max \left(\sum_{j=1}^{n}\left|A_{1 j}\right|, \sum_{j=1}^{n}\left|A_{2 j}\right|, \ldots, \sum_{j=1}^{n}\left|A_{m j}\right|\right)
\]

\section*{P-Norm of a Vector}

The P -norm of a 1-by- \(n\) or \(n\)-by- 1 vector \(V\) is defined as follows:
\[
\|V\|_{P}=\left(\sum_{i=1}^{n}\left|V_{i}\right|^{P}\right)^{1 / P}
\]

Here \(n\) must be an integer greater than 1.

\section*{Frobenius Norm of a Vector}

The Frobenius norm of a 1-by-n or \(n\)-by- 1 vector \(V\) is defined as follows:
\[
\|V\|_{F}=\sqrt{\sum_{i=1}^{n}\left|V_{i}\right|^{2}}
\]

The Frobenius norm of a vector coincides with its 2-norm.

\section*{Infinity and Negative Infinity Norm of a Vector}

The infinity norm of a 1-by-n or \(n\)-by- 1 vector \(V\) is defined as follows:
\[
\|V\|_{\infty}=\max \left(\left|V_{i}\right|\right), \text { where } i=1 \ldots n
\]

The negative infinity norm of a 1-by-n or \(n\)-by- 1 vector \(V\) is defined as follows:
\[
\|V\|_{-\infty}=\min \left(\left|V_{i}\right|\right), \text { where } i=1 \ldots n
\]

\section*{Tips}
- Calling norm for a numeric matrix that is not a symbolic object invokes the MATLAB norm function.

\author{
See Also \\ cond |equationsToMatrix|inv| linsolve | rank \\ Introduced in R2012b
}

\section*{not}

Logical NOT for symbolic expressions

\section*{Syntax \\ ~A \\ \(\operatorname{not}(A)\)}

\section*{Description}
\(\sim A\) represents the logical negation. \(\sim A\) is true when \(A\) is false and false when \(A\) is true. \(\operatorname{not}(A)\) is equivalent to \(\sim A\).

\section*{Examples}

\section*{Set Assumption Using Not}

Create a logical condition by using \(\sim\).
```

syms x y
cond = ~(x > y);

```

Set the assumption represented by the condition by using assume.
assume (cond)
Verify that the assumption is set.
assumptions

\section*{Evaluate Logical Expressions}

Specify a range for \(x\) by creating a condition by using the logical operators \(\sim\) and \(\&\).
```

syms x
range = abs(x) < 1 \& ~(abs(x)<1/3);

```

Return the conditions at 0 and \(2 / 3\) by substituting for \(x\) by using subs. The subs function does not automatically evaluate the conditions.
```

x1 = subs(range,x,0)
x2 = subs(range,x,2/3)
x1 =
0<1\&~0< 1/3
x2 =
2/3<1\& ~2/3< 1/3

```

Evaluate these inequalities to logical 1 or 0 by using isAlways.
isAlways(x1)
isAlways(x2)
```

ans =
logical
0
ans =
logical
l

```

\section*{Input Arguments}

\section*{A - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{Tips}
- If you call simplify for a logical expression that contains symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use logical.

\section*{See Also}
all|and|any|isAlways|or|piecewise|xor

Introduced in R2012a

\section*{nthprime}
nth prime number

\section*{Syntax}

\section*{nthprime(n)}

\section*{Description}
nthprime ( \(n\) ) returns the nth prime number. nthprime acts element-wise on array inputs.

\section*{Examples}

\section*{Find Nth Prime Number}

Find the 223rd prime number.
nthprime(223)
ans \(=\)
1409
For large prime numbers, return exact symbolic integers by using symbolic input.
\(\mathrm{n}=\operatorname{sym}(223222222)\);
nthprime(n)
ans \(=\)
4738278383
Find the 10th, 100th, and 1000th prime numbers.
\(\mathrm{n}=[10100\) 1000];
nthprime(n)

\section*{Generate Random Prime Number}

Generate a random prime number between the 100,000th and 200,000th prime numbers.
```

rng default % for reproducibility
range = [100000 200000];
nthprime(randi(range))
ans =
2476423

```

\section*{Input Arguments}
```

n - Input
number | vector | matrix | array | symbolic number | symbolic array

```

Input, specified as a number, vector, matrix, array, or a symbolic number or array. n must be a positive integer.

\section*{See Also}
nextprime| prevprime

Introduced in R2018a

\section*{null}

Form basis for null space of matrix

\section*{Syntax}
\(Z=\operatorname{null}(A)\)

\section*{Description}
\(Z=\operatorname{null}(A)\) returns a list of vectors that form the basis for the null space of a matrix \(A\). The product \(A * Z\) is zero. size \((Z, \quad 2)\) is the nullity of \(A\). If \(A\) has full rank, \(Z\) is empty.

\section*{Examples}

\section*{Form Basis for Null Space of Matrix}

Find the basis for the null space and the nullity of the magic square of symbolic numbers. Verify that \(A * Z\) is zero.
```

A = sym(magic(4));
Z = null(A)
nullityOfA = size(Z, 2)
A*Z
Z =
-1
-3
3
1
nullityOfA =
1
ans =
0

```
```

0
0
0

```

\section*{Form Basis for Null Space of Matrix of Full Rank}

Find the basis for the null space of the matrix \(B\) that has full rank.
\(B=\operatorname{sym}(h i l b(3))\)
Z \(=\operatorname{null}(B)\)
\(B=\)
[ 1, 1/2, 1/3]
\([1 / 2,1 / 3,1 / 4]\)
\([1 / 3,1 / 4,1 / 5]\)
Z =
Empty sym: 1-by-0

\section*{Input Arguments}

A - Input
numeric matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

\section*{See Also}
rank|rref|svd
Introduced before R2006a

\section*{numden}

Extract numerator and denominator

\section*{Syntax}
\([\mathrm{N}, \mathrm{D}]=\operatorname{numden}(\mathrm{A})\)

\section*{Description}
\([\mathrm{N}, \mathrm{D}]=\) numden \((\mathrm{A})\) converts A to a rational form where the numerator and denominator are relatively prime polynomials with integer coefficients. The function returns the numerator and denominator of the rational form of an expression.

If \(A\) is a symbolic or a numeric matrix, then \(N\) is the symbolic matrix of numerators, and \(D\) is the symbolic matrix of denominators. Both \(N\) and \(D\) are matrices of the same size as \(A\).

\section*{Examples}

\section*{Numerators and Denominators of Symbolic Numbers}

Find the numerator and denominator of a symbolic number.
```

[n, d] = numden(sym(4/5))

```
\(\mathrm{n}=\)
4
d \(=\)
5

\section*{Numerators and Denominators of Symbolic Expressions}

Find the numerator and denominator of the symbolic expression.
```

syms x y
[n,d] = numden(x/y + y/x)
n =
x^2 + y^2
d =
x*y

```

\section*{Numerators and Denominators of Matrix Elements}

Find the numerator and denominator of each element of a symbolic matrix.
```

syms a b
[n,d] = numden([a/b, 1/b; 1/a, 1/(a*b)])
n =
[a, 1]
[1, 1]
d =
[b, b]
[a, a*b]

```

\section*{Input Arguments}

\section*{A - Input}
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, expression, function, vector, or matrix.

\section*{Output Arguments}

\section*{N - Numerator}
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Numerator, returned as a symbolic number, expression, function, vector, or matrix.

\section*{D - Denominator \\ symbolic number \(\mid\) symbolic expression \(\mid\) symbolic function \(\mid\) symbolic vector \(\mid\) symbolic matrix}

Denominator, returned as a symbolic number, expression, function, vector, or matrix.

\author{
See Also \\ divisors|partfrac|simplifyFraction \\ \section*{Topics} \\ "Extract Numerators and Denominators of Rational Expressions" on page 2-106 \\ Introduced before R2006a
}

\section*{odeFunction}

Convert symbolic expressions to function handle for ODE solvers

\section*{Syntax}
```

f = odeFunction(expr,vars)
f = odeFunction(expr,vars,pl,···,pN)
f = odeFunction(

```
\(\qquad\)
``` ,Name, Value)
```


## Description

$\mathrm{f}=$ odeFunction(expr, vars) converts a system of symbolic algebraic expressions to a MATLAB function handle. This function handle can be used as input to the numerical MATLAB ODE solvers, except for ode15i. The argument vars specifies the state variables of the system.
$\mathrm{f}=$ odeFunction(expr,vars, $\mathrm{p} 1, \ldots, \mathrm{pN}$ ) specifies the symbolic parameters of the system as p1, . . . pN.
$\mathrm{f}=$ odeFunction (__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

## Create Function Handle for ODE Solvers and Solve DAEs

Convert a system of symbolic differential algebraic equations to a function handle suitable for the MATLAB ODE solvers. Then solve the system by using the ode15s solver.

Create the following second-order differential algebraic equation.

```
syms y(t);
eqn = diff(y(t),t,2) == (1-y(t)^2)*diff(y(t),t) - y(t);
```

Use reduceDifferential0rder to rewrite that equation as a system of two first-order differential equations. Here, vars is a vector of state variables of the system. The new variable $\operatorname{Dy}(\mathrm{t})$ represents the first derivative of $\mathrm{y}(\mathrm{t})$ with respect to t .

```
[eqs,vars] = reduceDifferentialOrder(eqn,y(t))
eqs =
 diff(Dyt(t), t) + y(t) + Dyt(t)*(y(t)^2 - 1)
 Dyt(t) - diff(y(t), t)
vars =
 y(t)
Dyt(t)
```

Set initial conditions for $y(t)$ and its derivative $\operatorname{Dy}(\mathrm{t})$ to 2 and 0 respectively.

```
initConditions = [2 0];
```

Find the mass matrix $M$ of the system and the right sides of the equations $F$.

```
[M,F] = massMatrixForm(eqs,vars)
M =
[0, 1]
[-1, 0]
```

```
F =
```

F =
- y(t) - Dyt(t)*(y(t)^2 - 1)
- y(t) - Dyt(t)*(y(t)^2 - 1)
-Dyt(t)

```
 -Dyt(t)
```

$M$ and F refer to the form $M(t, x(t)) \dot{x}(t)=F(t, x(t))$.. To simplify further computations, rewrite the system in the form $\dot{x}(t)=f(t, x(t))$.

```
f = M\F
f =
 Dyt(t) - y(t) - Dyt(t)*y(t)^2
```

Convert f to a MATLAB function handle by using odeFunction. The resulting function handle is input to the MATLAB ODE solver ode15s.

```
odefun = odeFunction(f,vars);
ode15s(odefun, [0 10], initConditions)
```



## Function Handles for System Containing Symbolic Parameters

Convert a system of symbolic differential equations containing both state variables and symbolic parameters to a function handle suitable for the MATLAB ODE solvers.

Create the system of differential algebraic equations. Here, the symbolic functions $x 1(t)$ and $\times 2(t)$ represent the state variables of the system. The system also contains constant symbolic parameters $a, b$, and the parameter function $r(t)$. These parameters do not represent state variables. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t) x2(t)];
```

Find the mass matrix $M$ and vector of the right side $F$ for this system. $M$ and $F$ refer to the

```
form M(t,x(t))\dot{x}(t)=F(t,x(t))..
[M,F] = massMatrixForm(eqs,vars)
M =
[1, 0]
[0, 0]
F =
 b*x2(t)^2 + a*x1(t)
 r(t)^2 - x1(t)^2 - x2(t)^2
```

Use odeFunction to generate MATLAB function handles from $M$ and $F$. The function handle F contains symbolic parameters.

```
M = odeFunction(M,vars)
F = odeFunction(F,vars,a,b,r(t))
M =
 function handle with value:
 @(t,in2)reshape([1.0,0.0,0.0,0.0],[2,2])
F =
 function handle with value:
 @(t,in2,param1,param2,param3)[param1.*in2(1,:)+...
 param2.*in2(2,:).^2;param3.^2-in2(1,:).^2-in2(2,:).^2]
```

Specify the parameter values.
a $=-0.6$;
b = -0.1;
$r=@(t) \cos (t) /\left(1+t^{\wedge} 2\right)$;
Create the reduced function handle $F$.
$F=@(t, Y) F(t, Y, a, b, r(t)) ;$
Specify consistent initial conditions for the DAE system.

```
t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*\operatorname{cos(0.1)];}
yp0 = [a*y0(1) + b*y0(2)^2; 1.234];
```

Create an option set that contains the mass matrix M of the system and vector yp0 of initial conditions for the derivatives.

```
opt = odeset('mass',M,'InitialSlope',yp0);
```

Now, use ode15s to solve the system of equations.

```
ode15s(F, [t0, 1], y0, opt)
```



## Write Function Handles to File with Comments

Write the generated function handles to files by using the File option. When writing to files, odeFunction optimizes the code using intermediate variables named t0, t1, .... Include comments the files by specifying the Comments option.

Define the system of differential equations. Find the mass matrix $M$ and the right side $F$.

```
syms x(t) y(t)
eqs = [diff(x(t),t)+2*diff(y(t),t) == 0.1*y(t), ...
 x(t)-y(t) == cos(t)-0.2*t*sin(x(t))];
vars = [x(t) y(t)];
[M,F] = massMatrixForm(eqs,vars);
```

Write the MATLAB code for M and F to the files myfileM and myfileF. odeFunction overwrites existing files. Include the comment Version: 1.1 in the files You can open and edit the output files.

```
M = odeFunction(M,vars,'File','myfileM','Comments','Version: 1.1');
function expr = myfileM(t,in2)
%MYFILEM
% EXPR = MYFILEM(T,IN2)
% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00
%Version: 1.1
expr = reshape([1.0,0.0,2.0,0.0],[2, 2]);
F = odeFunction(F,vars,'File','myfileF','Comments','Version: 1.1');
function expr = myfileF(t,in2)
%MYFILEF
% EXPR = MYFILEF (T,IN2)
% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00
%Version: 1.1
x = in2(1,:);
y = in2(2,:);
expr = [y.*(1.0./1.0e1);-x+y+cos(t)-t.*sin(x).*(1.0./5.0)];
```

Specify consistent initial values for $x(t)$ and $y(t)$ and their first derivatives.

```
xy0 = [2; 1]; % x(t) and y(t)
xyp0 = [0; 0.05*xy0(2)]; % derivatives of x(t) and y(t)
```

Create an option set that contains the mass matrix $M$, initial conditions xyp0, and numerical tolerances for the numerical search.

```
opt = odeset('mass', M, 'RelTol', 10^(-6),...
 'AbsTol', 10^(-6), 'InitialSlope', xyp0);
```

Solve the system of equations by using ode15s.

```
ode15s(F, [0 7], xy0, opt)
```



## Sparse Matrices

Use the name-value pair argument 'Sparse', true when converting sparse symbolic matrices to MATLAB function handles.

Create the system of differential algebraic equations. Here, the symbolic functions $\times 1$ ( $t$ ) and $\mathrm{x} 2(\mathrm{t})$ represent the state variables of the system. Specify the equations and state variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x1(t) x2(t)
a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);
eqs = [diff(x1(t),t) == a*x1(t) + b**2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t) x2(t)];
```

Find the mass matrix $M$ and vector of the right side $F$ for this system. $M$ and $F$ refer to the

```
form M(t,x(t))\dot{x}(t)=F(t,x(t))..
[M,F] = massMatrixForm(eqs,vars)
M =
[1, 0]
[0, 0]
F=
2/10
```

Generate MATLAB function handles from $M$ and $F$. Because most of the elements of the mass matrix $M$ are zeros, use the Sparse argument when converting $M$.

```
M = odeFunction(M,vars,'Sparse',true)
F = odeFunction(F,vars)
M =
 function handle with value:
 @(t,in\overline{2})sparse([1],[1],[1.0],2,2)
F =
```

```
function handle with value:
 @(t,in\overline{2})[in2(1,:).*(-3.0./5.0)-in2(2,:).^2.*(1.0./1.0e1);...
 cos(t).^2.*1.0./(t.^2+1.0).^2-in2(1,:).^2-in2(2,:).^2]
```

Specify consistent initial conditions for the DAE system.

```
t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0= [a*y0(1) + b*y0(2)^2; 1.234];
```

Create an option set that contains the mass matrix $M$ of the system and vector yp0 of initial conditions for the derivatives.

```
opt = odeset('mass',M,'InitialSlope', yp0);
```

Solve the system of equations using ode15s.

```
ode15s(F, [t0, 1], y0, opt)
```



- "Solve DAEs Using Mass Matrix Solvers" on page 2-218


## Input Arguments

## expr - System of algebraic expressions

vector of symbolic expressions
System of algebraic expressions, specified as a vector of symbolic expressions.

## vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $x(t)$.

Example: $[x(t), y(t)]$ or $[x(t) ; y(t)]$
p1, . . . pN - Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector | symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls, such as $f(t)$. You can also specify parameters of the system as a vector or matrix of symbolic variables, functions, or function calls. If expr contains symbolic parameters other than the variables specified in vars, you must specify these additional parameters as $\mathrm{p} 1, \ldots, \mathrm{pN}$.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: odeFunction(expr,vars,'File','myfile')

## Comments - Comments to include in file header

character vector | cell array of character vectors $\mid$ string vector
Comments to include in the file header, specified as a character vector, cell array of character vectors, or string vector.

## File - Path to file containing generated code

character vector

Path to the file containing generated code, specified as a character vector. The generated file accepts arguments of type double, and can be used without Symbolic Math Toolbox. If the value is empty, odeFunction generates an anonymous function. If the character vector does not end in . m , the function appends. m .

By default, odeFunction with the File argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter t followed by an automatically generated number, for example t32. To disable code optimization, use the Optimize argument.

## Optimize - Flag preventing optimization of code written to function file true (default) | false

Flag preventing optimization of code written to a function file, specified as false or true.

By default, odeFunction with the File argument generates a file containing optimized code. Optimized means intermediate variables are automatically generated to simplify or speed up the code. MATLAB generates intermediate variables as a lowercase letter $t$ followed by an automatically generated number, for example t32.
odeFunction without the File argument (or with a file path specified by an empty character vector) creates a function handle. In this case, the code is not optimized. If you try to enforce code optimization by setting Optimize to true, then odeFunction throws an error.

## Sparse - Flag that switches between sparse and dense matrix generation false (default)|true

Flag that switches between sparse and dense matrix generation, specified as true or false. When you specify 'Sparse', true, the generated function represents symbolic matrices by sparse numeric matrices. Use 'Sparse' , true when you convert symbolic matrices containing many zero elements. Often, operations on sparse matrices are more efficient than the same operations on dense matrices. See "Sparse Matrices" on page 41232.

## Output Arguments

## f - Function handle that is input to numerical MATLAB ODE solvers, except ode15i <br> MATLAB function handle

Function handle that can serve as input argument to all numerical MATLAB ODE solvers, except for ode15i, returned as a MATLAB function handle.
odeFunction returns a function handle suitable for the ODE solvers such as ode45, ode15s, ode23t, and others. The only ODE solver that does not accept this function handle is the solver for fully implicit differential equations, ode15i. To convert the system of equations to a function handle suitable for ode15i, use daeFunction.

# See Also <br> daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE |massMatrixForm|matlabFunction|ode15i|ode15s |ode23t | ode45 | reduceDAEIndex | reduceDAEToODE \| reduceDifferential0rder | reduceRedundancies 

## Topics

"Solve DAEs Using Mass Matrix Solvers" on page 2-218

## Introduced in R2015a

## odeToVectorField

Reduce order of differential equations to 1

Note Character vector inputs will be removed in a future release. Instead, use syms to declare variables, and replace inputs such as odeToVectorField('D2y = x') with syms $y(x)$, odeToVectorField(diff(y, $x, 2)==x)$.

## Syntax

```
V = odeToVectorField(eqn1,...,eqnN)
[V,S] = odeToVectorField(eqn1,...,eqnN)
```


## Description

V = odeToVectorField(eqn1,...,eqnN) converts higher-order differential equations eqn1, . . . eqnN to a system of first-order differential equations, returned as a symbolic vector.
$[\mathrm{V}, \mathrm{S}]=$ odeToVectorField(eqn1,...,eqnN) converts eqn1,...,eqnN and returns two symbolic vectors. The first vector $V$ is the same as the output of the previous syntax. The second vector S shows the substitutions made to obtain V.

## Examples

## Convert Higher-Order Equation to First-Order System

Convert this second-order differential equation to a system of first-order differential equations.

$$
\frac{d^{2} y}{d t^{2}}+y^{2} t=3 t
$$

```
syms y(t)
eqn = diff(y,2) + y^2*t == 3*t;
V = odeToVectorField(eqn)
V =
 Y[2]
 3*t - t*Y[1]^2
```

The elements of V represent the system of differential equations because $y=Y[1]$ and $Y[i]$ ' = V[i]. Here, this particular output represents these equations:

- diff(Y[1],t) $=Y[2]$
- diff(Y[2],t) $=3 * t-t * Y[1] \wedge 2$

For details on the relation between the input and output, see "Algorithms" on page 41244.

## Return Substitutions Made When Reducing Order

When reducing the order of differential equations, return the substitutions that odeToVectorField makes by specifying a second output argument.

```
syms f(t) g(t)
eqn1 = diff(g) == g-f;
eqn2 = diff(f,2) == g+f;
eqns = [eqn1 eqn2];
[V,S] = odeToVectorField(eqns)
V =
```

    \(Y[1]+Y[2]\)
    \(Y[3]-Y[1]\)
    S =
f
Df
g

From S, we have $S[1]=Y[1]=f, S[2]=Y[2]=\operatorname{diff(f),~and~S[3]~=~Y[3]~=~}$ g.

## Numerically Solve Higher-Order Differential Equation

Numerically solve a higher-order differential equation by reducing the order of the equation, generating a MATLAB function handle, and then finding the numerical solution using the ode45 function.

Convert this second-order differential equation to a system of first-order differential equations.

$$
\frac{d y^{2}}{d x^{2}}=\left(1-y^{2}\right) \frac{d y}{d x}-y .
$$

```
syms y(t)
eqn = diff(y,2) == (1-y^2)*diff(y)-y;
V = odeToVectorField(eqn)
V =
```

```
Y[2]
```

Y[2]

- (Y[1]^2 - 1)*Y[2] - Y[1]

```
- (Y[1]^2 - 1)*Y[2] - Y[1]
```

Generate a MATLAB function handle from V by using mat labFunction.

```
M = matlabFunction(V,'vars', {'t','Y'})
```

$\mathrm{M}=$
function handle with value:
@(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

Solve this system over the interval [0 20] with initial conditions $y^{\prime}(0)=2$ and $y^{\prime \prime}(0)=0$ by using the ode45 function.

```
interval = [0 20];
y0 = [2 0];
ySol = ode45(M,interval,y0);
```

Generate values of $t$ in the interval by using the linspace function. For these values, evaluate the solution for $y$, which is the first index in $y S o l$, by calling the deval function with an index of 1 . Plot the solution.

```
tValues = linspace(0,20,100);
yValues = deval(ySol,tValues,1);
plot(tValues,yValues)
```



## Convert Higher-Order System with Initial Condition

Convert the second-order differential equation $y^{\prime \prime}(x)=x$ with the initial condition $y(0)=a$ to a first-order system.

```
syms y(x) a
eqn = diff(y,x,2) == x;
cond = y(0) == a;
V = odeToVectorField(eqn,cond)
V =
 Y[2]
 x
```


## Input Arguments

## eqn1, . . . eqnN - Higher-order differential equations <br> symbolic differential equation | array of symbolic differential equations | commaseparated list of symbolic differential equations

Higher-order differential equations, specified as a symbolic differential equation or an array or comma-separated list of symbolic differential equations. Use the == operator to create an equation. Use the diff function to indicate differentiation. For example, represent $d^{2} y(t) / d t^{2}=t * y(t)$.

```
syms y(t)
```

eqn $=\operatorname{diff}(\mathrm{y}, 2)=\mathrm{t}^{*} \mathrm{y}$;

## Output Arguments

## V - First-order differential equations <br> symbolic expression | vector of symbolic expressions

First-order differential equations, returned as a symbolic expression or a vector of symbolic expressions. Each element of this vector is the right side of the first-order differential equation $Y[i]^{\prime}=V[i]$.

## S - Substitutions in first-order equations

vector of symbolic expressions
Substitutions in first-order equations, returned as a vector of symbolic expressions. The elements of the vector represent the substitutions, such that $\mathrm{S}(1)=\mathrm{Y}[1], \mathrm{S}(2)=$ Y[2],....

## Tips

- To solve the resulting system of first-order differential equations, generate a MATLAB function handle using matlabFunction with V as an input. Then, use the generated MATLAB function handle as an input for the MATLAB numerical solver ode23 or ode45.
- odeToVectorField can convert only quasi-linear differential equations. That is, the highest-order derivatives must appear linearly. For example, odeToVectorField can
convert $y^{*} y^{\prime \prime}(t)=-t^{2}$ because it can be rewritten as $y^{\prime \prime}(t)=-t^{2} / y$. However, it cannot convert $y^{\prime \prime}(t)^{2}=-t^{2}$ or $\sin \left(y^{\prime \prime}(t)\right)=-t^{2}$.


## Algorithms

To convert an $n$ th-order differential equation

$$
a_{n}(t) y^{(n)}+a_{n-1}(t) y^{(n-1)}+\ldots+a_{1}(t) y^{\prime}+a_{0}(t) y+r(t)=0
$$

into a system of first-order differential equations, odetovectorfield makes these substitutions.

$$
\begin{aligned}
& Y_{1}=y \\
& Y_{2}=y^{\prime} \\
& Y_{3}=y^{\prime} \\
& \ldots \\
& Y_{n-1}=y^{(n-2)} \\
& Y_{n}=y^{(n-1)}
\end{aligned}
$$

Using the new variables, it rewrites the equation as a system of $n$ first-order differential equations:

$$
\begin{aligned}
& Y_{1}^{\prime}=y^{\prime}=Y_{2} \\
& Y_{2}^{\prime}=y^{\prime \prime}=Y_{3} \\
& \ldots \\
& Y_{n-1}^{\prime}=y^{(n-1)}=Y_{n} \\
& Y_{n}^{\prime}=-\frac{a_{n-1}(t)}{a_{n}(t)} Y_{n}-\frac{a_{n-2}(t)}{a_{n}(t)} Y_{n-1}-\ldots-\frac{a_{1}(t)}{a_{n}(t)} Y_{2}-\frac{a_{0}(t)}{a_{n}(t)} Y_{1}+\frac{r(t)}{a_{n}(t)}
\end{aligned}
$$

odeToVectorField returns the right sides of these equations as the elements of vector V and the substitutions made as the second output S .

See Also<br>dsolve|matlabFunction|ode23|ode45<br>Introduced in R2012a

## openmn

Open MuPAD notebook

## Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

## Syntax

h = openmn(file)

## Description

$h=o p e n m n(f i l e)$ opens the MuPAD notebook file named file, and returns a handle to the file in h . The file name must be a full path unless the file is in the current folder. The command $\mathrm{h}=$ mupad(file) accomplishes the same task.

## Examples

## Open MuPAD notebook

To open a notebook named e-e-x.mn in the folder \Documents $\backslash$ Notes of drive H : , enter:
h = openmn('H:\Documents \Notes $\backslash e-e-x . m n ') ;$

## See Also

mupad | open | openmu | openxvc | openxvz

## Topics

"Create MuPAD Notebooks" on page 3-3
"Open MuPAD Notebooks" on page 3-6
Introduced in R2008b

## openmu

Open MuPAD program file

## Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

## Syntax

## openmu(file)

## Description

openmu(file) opens the MuPAD program file named file in the MATLAB Editor. The command open(file) accomplishes the same task.

## Examples

## Open MuPAD Program File

To open a program file named yyx.mu located in the folder \Documents $\backslash$ Notes on drive H : , enter:

```
openmu('H:\Documents\Notes\yyx.mu')
```

This command opens yyx.mu in the MATLAB Editor.

See Also<br>mupad | open | openmn | openxvc |openxvz<br>Topics<br>"Open MuPAD Notebooks" on page 3-6<br>Introduced in R2008b

## openxvc

Open MuPAD uncompressed graphics file (XVC)

## Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

## Syntax

openxvc(file)

## Description

openxvc (file) opens the MuPAD XVC graphics file named file. The file name must be a full path unless the file is in the current folder.

## Examples

## Open MuPAD Uncompressed Graphics File (XVC)

To open a graphics file named image1.xvc in the folder \Documents $\backslash$ Notes of drive $\mathrm{H}:$, enter:

```
openxvc('H:\Documents\Notes\image1.xvc')
```


## Input Arguments

## file - name of MuPAD file

character vector
Name of MuPAD file, specified as a character vector.

See Also<br>mupad | open | openmn | openmu |openxvz<br>\section*{Topics}<br>"Open MuPAD Notebooks" on page 3-6<br>Introduced in R2008b

## openxvz

Open MuPAD compressed graphics file (XVZ)

## Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

## Syntax

openxvz(file)

## Description

openxvz (file) opens the MuPAD XVZ graphics file named file. The file name must be a full path unless the file is in the current folder.

## Examples

## Open MuPAD Compressed Graphics File (XVZ)

To open a graphics file named image1. xvz in the folder \Documents $\backslash$ Notes of drive $\mathrm{H}:$, enter:

```
openxvz('H:\Documents\Notes\image1.xvz')
```


## Input Arguments

## file - name of MuPAD file

character vector
Name of MuPAD file, specified as a character vector.

See Also<br>mupad | open | openmn | openmu | openxvc<br>\section*{Topics}<br>"Open MuPAD Notebooks" on page 3-6<br>Introduced in R2008b

## or

Logical OR for symbolic expressions

## Syntax

A | B
$\operatorname{or}(A, B)$

## Description

A \| B represents the logical OR. A \| B is true when either A or B or both are true. $\operatorname{or}(A, B)$ is equivalent to $A \mid B$.

## Examples

## Set Assumption Using OR

Combine these symbolic inequalities into the logical expression using $\mid$.
syms $x$ y
$x y=x>=0 \mid y>=0 ;$
Set the assumption represented by the condition by using assume.
assume(xy)
Verify that the assumptions are set.
assumptions
ans =
$0<=x \mid 0<=y$

## Set and Evaluate Condition

Combine two symbolic inequalities into the logical expression by using $\mid$.

```
range = x < -1 | x > 1;
```

Substitute x with 0 and 10. Though the inequalities have values now, subs does not evaluate them to logical 1 or 0 .

```
x1 = subs(range, x, 10)
x2 = subs(range, x, 0)
x1 =
1< 10 | 10< - 1
x2 =
0<-1 | 1<0
```

Evaluate these inequalities by using isAlways.

```
isAlways(x1)
```

ans $=$
logical
1
isAlways(x2)
ans =
logical
0

## Combine Multiple Conditions

Combine multiple conditions by applying or to the conditions by using the fold function.
Set the condition that $x$ equals an integer between 1 and 10.

```
syms x
cond = fold(@or, x == 1:10);
assume(cond)
assumptions
```

```
ans =
x == 1 | x == 2 | x == 3 | x == 4 | x == 5 |...
 x==6 | x == 7 | x == 8 | x == 9 | x == 10
```


## Input Arguments

## A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

## Tips

- If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.


## See Also

all|and|any|isAlways|not|piecewise|xor
Introduced in R2012a

## orth

Orthonormal basis for range of symbolic matrix

## Syntax

orth (A)
orth(A,'real')
orth(A,'skipnormalization')
orth(A,'real','skipnormalization')

## Description

orth (A) computes an orthonormal basis on page 4-1260 for the range of $A$.
orth (A, 'real') computes an orthonormal basis using a real scalar product in the orthogonalization process.
orth(A,'skipnormalization') computes a non-normalized orthogonal basis. In this case, the vectors forming the columns of $B$ do not necessarily have length 1.
orth(A,'real','skipnormalization') computes a non-normalized orthogonal basis using a real scalar product in the orthogonalization process.

## Examples

## Compute Orthonormal Basis

Compute an orthonormal basis of the range of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [2 -3 -1; 1 1 -1; 0 1 -1];
B = orth(A)
B =
 -0.9859 -0.1195 0.1168
```

0.0290	-0.8108	-0.5846
0.1646	-0.5729	0.8029

Now, convert this matrix to a symbolic object, and compute an orthonormal basis:

```
A = sym([2 -3 -1; 1 1 -1; 0 1 -1]);
B = orth(A)
B =
[(2*5^(1/2))/5, -6^(1/2)/6, -(2^(1/2)*15^(1/2))/30]
[5^(1/2)/5, 6^(1/2)/3, (2^(1/2)*15^(1/2))/15]
[0, 6^(1/2)/6, -(2^(1/2)*15^(1/2))/6]
```

You can use double to convert this result to the double-precision numeric form. The resulting matrix differs from the matrix returned by the MATLAB orth function because these functions use different versions of the Gram-Schmidt orthogonalization algorithm:

```
double(B)
ans =
 0.8944 -0.4082 -0.1826
 0.4472 0.8165 0.3651
 0 0.4082 -0.9129
```

Verify that $\mathrm{B}^{\prime}{ }^{*} \mathrm{~B}=\mathrm{I}$, where I is the identity matrix:

```
B'*B
ans =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
```

Now, verify that the 2 -norm of each column of $B$ is 1 :

```
norm(B(:, 1))
norm(B(:, 2))
norm(B(:, 3))
ans =
1
ans =
1
```

ans =
1

## Compute Real Orthonormal Basis

Compute an orthonormal basis of this matrix using 'real' to avoid complex conjugates:

```
syms a
A = [a 1; 1 a];
B = orth(A,'real')
B =
[a/(a^2 + 1)^(1/2), -(a^2 - 1)/((a^2 + 1)*((a^2 -...
1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^^)/(a^2 + 1)^2)^(1/2))]
[1/(a^2 + 1)^(1/2), (a*(a^2 - 1))/((a^2 + 1)*((a^2 -...
1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]
```


## Compute Orthogonal Basis by Skipping Normalization

Compute an orthogonal basis of this matrix using 'skipnormalization'. The lengths of the resulting vectors (the columns of matrix B) are not required to be 1

```
syms a
A = [a 1; 1 a];
B = orth(A,'skipnormalization')
B =
[a, -(a^2 - 1)/(a*conj(a) + 1)]
[1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]
```


## Compute Real Orthogonal Basis

Compute an orthogonal basis of this matrix using 'skipnormalization' and 'real':

```
syms a
A = [a 1; 1 a];
B = orth(A,'skipnormalization','real')
B =
[a, -(a^2 - 1)/(a^2 + 1)]
[1, (a*(a^2 - 1))/(a^2 + 1)]
```


## Input Arguments

A - Input
symbolic matrix
Input, specified as a symbolic matrix.

## Definitions

## Orthonormal Basis

An orthonormal basis for the range of matrix $A$ is matrix $B$, such that:

- $\mathrm{B}^{\prime} * \mathrm{~B}=\mathrm{I}$, where I is the identity matrix.
- The columns of $B$ span the same space as the columns of $A$.
- The number of columns of $B$ is the rank of $A$.


## Tips

- Calling orth for numeric arguments that are not symbolic objects invokes the MATLAB orth function. Results returned by MATLAB orth can differ from results returned by orth because these two functions use different algorithms to compute an orthonormal basis. The Symbolic Math Toolbox orth function uses the classic GramSchmidt orthogonalization algorithm. The MATLAB orth function uses the modified Gram-Schmidt algorithm because the classic algorithm is numerically unstable.
- Using 'skipnormalization' to compute an orthogonal basis instead of an orthonormal basis can speed up your computations.


## Algorithms

orth uses the classic Gram-Schmidt orthogonalization algorithm.

## See Also

norm|null|orth|rank|svd

## Introduced in R2013a

## pade

Pade approximant

## Syntax

```
pade(f,var)
pade(f,var,a)
pade(
```

$\qquad$

``` ,Name, Value)
```


## Description

pade ( $\mathrm{f}, \mathrm{var}$ ) returns the third-order Padé approximant of the expression f at var $=0$. For details, see "Padé Approximant" on page 4-1268.

If you do not specify var, then pade uses the default variable determined by symvar(f, $1)$.
pade ( $\mathrm{f}, \mathrm{var}, \mathrm{a}$ ) returns the third-order Padé approximant of expression $f$ at the point var = a.
pade (__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments. You can specify Name, Value after the input arguments in any of the previous syntaxes.

## Examples

## Find Padé Approximant for Symbolic Expressions

Find the Padé approximant of $\sin (x)$. By default, pade returns a third-order Padé approximant.

```
syms x
pade(sin(x))
```

```
ans =
-((x* (7* x^2 - 60))/(3* (}\mp@subsup{x}{}{\wedge}2+20)
```


## Specify Expansion Variable

If you do not specify the expansion variable, symvar selects it. Find the Padé approximant of $\sin (x)+\cos (y)$. The symvar function chooses $x$ as the expansion variable.

```
syms x y
pade(sin(x) + cos(y))
ans =
(- 7*x^3 + 3*\operatorname{cos(y)*x^2 + 60*x + 60*cos(y))/(3*(x^2 + 20))}
```

Specify the expansion variable as $y$. The pade function returns the Padé approximant with respect to $y$.

```
pade(sin(x) + cos(y),y)
ans =
(12*}\operatorname{sin}(x)+\mp@subsup{y}{}{\wedge}2*\operatorname{sin}(x)-5*\mp@subsup{y}{}{\wedge}2 + 12)/(y^2 + 12
```


## Approximate Value of Function at Particular Point

Find the value of $\tan \left(3^{*}\right.$ pi/4). Use pade to find the Padé approximant for $\tan (x)$ and substitute into it using subs to find $\tan \left(3^{*}\right.$ pi/4).

```
syms x
f = tan(x);
P = pade(f);
y = subs(P,x,3*pi/4)
y =
(pi*((9*pi^2)/16 - 15))/(4*((9*pi^2)/8 - 5))
```

Use vpa to convert y into a numeric value.
vpa(y)
ans $=$
$-1.2158518789569086447244881326842$

## Increase Accuracy of Padé Approximant

You can increase the accuracy of the Padé approximant by increasing the order. If the expansion point is a pole or a zero, the accuracy can also be increased by setting OrderMode to relative. The OrderMode option has no effect if the expansion point is not a pole or zero.

Find the Padé approximant of $\tan (x)$ using pade with an expansion point of 0 and Order of [11]. Find the value of $\tan (1 / 5)$ by substituting into the Pade approximant using subs, and use vpa to convert $1 / 5$ into a numeric value.

```
syms x
p11 = pade(tan(x),x,0,'Order',[1 1])
p11 = subs(p11,x,vpa(1/5))
p11 =
x
p11 =
0.2
```

Find the approximation error by subtracting p11 from the actual value of $\tan (1 / 5)$.

```
y = tan(vpa(1/5));
error = y - pll
error =
0.0027100355086724833213582716475345
```

Increase the accuracy of the Padé approximant by increasing the order using Order. Set Order to [2 2], and find the error.

```
p22 = pade(tan(x),x,0,'Order',[2 2])
p22 = subs(p22,x,vpa(1/5));
error = y - p22
p22 =
-(3*x)/(x^2 - 3)
error =
0.0000073328059697806186555689448317799
```

The accuracy increases with increasing order.
If the expansion point is a pole or zero, the accuracy of the Pade approximant decreases.
Setting the OrderMode option to relative compensates for the decreased accuracy. For
details, see "Padé Approximant" on page 4-1268. Because the tan function has a zero at 0 , setting OrderMode to relative increases accuracy. This option has no effect if the expansion point is not a pole or zero.

```
p22Rel = pade(tan(x),x,0,'Order',[2 2],'OrderMode','relative')
p22Rel = subs(p22Rel,x,vpa(1/5));
error = y - p22Rel
p22Rel =
(x*(x^2 - 15))/(3*(2*x^2 - 5))
error =
0.0000000084084014806113311713765317725998
```

The accuracy increases if the expansion point is a pole or zero and OrderMode is set to relative.

## Plot Accuracy of Pade Approximant

Plot the difference between $\exp (x)$ and its Pade approximants of orders [11] through [4 4]. Use axis to focus on the region of interest. The plot shows that accuracy increases with increasing order of the Pade approximant. Prior to R2016a, use ezplot instead of fplot.

```
syms x
expr = exp(x);
hold on
grid on
for i = 1:4
 fplot(expr - pade(expr,'Order',i))
end
axis([-4 4 -4 4])
legend('Order [1,1]','Order [2,2]','Order [3,3]','Order [4,4]',...
 Location','Best')
title('Difference Between exp(x) and its Pade Approximant')
ylabel('Error')
```



## Input Arguments

## f - Input to approximate

symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input to approximate, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## var - Expansion variable

symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then pade uses the default variable determined by symvar( $f, 1$ ).

## a - Expansion point

number | symbolic number | symbolic variable | symbolic function | symbolic expression
Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You also can specify the expansion point as a Name, Value pair argument. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: pade(f,'Order', [2 2]) returns the Padé approximant of f of order $\mathrm{m}=2$ and $\mathrm{n}=2$.

## ExpansionPoint - Expansion point

number | symbolic number | symbolic variable | symbolic function | symbolic expression
Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You can also specify the expansion point using the input argument a. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

## Order - Order of Padé approximant

integer | vector of two integers | symbolic integer | symbolic vector of two integers
Order of the Padé approximant, specified as an integer, a vector of two integers, or a symbolic integer, or vector of two integers. If you specify a single integer, then the integer specifies both the numerator order $m$ and denominator order $n$ producing a Padé approximant with $m=n$. If you specify a vector of two integers, then the first integer specifies $m$ and the second integer specifies $n$. By default, pade returns a Padé approximant with $m=n=3$.

## OrderMode - Flag that selects absolute or relative order for Padé approximant

 character vectorFlag that selects absolute or relative order for Padé approximant, specified as a character vector. The default value of absolute uses the standard definition of the Padé approximant. If you set OrderMode to relative, it only has an effect when there is a pole or a zero at the expansion point a. In this case, to increase accuracy, pade multiplies the numerator by (var - a $)^{\mathrm{p}}$ where p is the multiplicity of the zero or pole at the expansion point. For details, see "Padé Approximant" on page 4-1268.

## Definitions

## Padé Approximant

By default, pade approximates the function $f(x)$ using the standard form of the Padé approximant of order $[m, n]$ around $x=x_{0}$ which is

$$
\frac{a_{0}+a_{1}\left(x-x_{0}\right)+\ldots+a_{m}\left(x-x_{0}\right)^{m}}{1+b_{1}\left(x-x_{0}\right)+\ldots+b_{n}\left(x-x_{0}\right)^{n}}
$$

When OrderMode is relative, and a pole or zero exists at the expansion point $x=x_{0}$, the pade function uses this form of the Padé approximant

$$
\frac{\left(x-x_{0}\right)^{p}\left(a_{0}+a_{1}\left(x-x_{0}\right)+\ldots+a_{m}\left(x-x_{0}\right)^{m}\right)}{1+b_{1}\left(x-x_{0}\right)+\ldots+b_{n}\left(x-x_{0}\right)^{n}} .
$$

The parameters $p$ and $a_{0}$ are given by the leading order term $f=a_{0}\left(x-x_{0}\right)^{p}+O\left(\left(x-x_{0}\right)^{p}\right.$ ${ }^{+1}$ ) of the series expansion of $f$ around $x=x_{0}$. Thus, $p$ is the multiplicity of the pole or zero at $x_{0}$.

## Tips

- If you use both the third argument a and ExpansionPoint to specify the expansion point, the value specified via ExpansionPoint prevails.


## Algorithms

- The parameters $a_{1}, \ldots, b_{n}$ are chosen such that the series expansion of the Pade approximant coincides with the series expansion of $f$ to the maximal possible order.
- The expansion points $\pm \infty$ and $\pm \mathrm{i} \infty$ are not allowed.
- When pade cannot find the Padé approximant, it returns the function call.
- For pade to return the Padé approximant, a Taylor or Laurent series expansion of $f$ must exist at the expansion point.


## See Also

series|taylor

## Topics

"Padé Approximant" on page 2-71

## Introduced in R2014b

## partfrac

Partial fraction decomposition

## Syntax

```
partfrac(expr,var)
partfrac(expr,var,Name,Value)
```


## Description

partfrac (expr, var) finds the partial fraction decomposition of expr with respect to var. If you do not specify var, then partfrac uses the variable determined by symvar.
partfrac (expr, var, Name, Value) finds the partial fraction decomposition using additional options specified by one or more Name, Value pair arguments.

## Examples

## Partial Fraction Decomposition

Find partial fraction decomposition of univariate and multivariate expressions.
First, find partial fraction decomposition of univariate expressions. For expressions with one variable, you can omit specifying the variable.

```
syms x
partfrac(x^2/(x^3 - 3*x + 2))
ans =
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))
```

For some expressions, partfrac returns visibly simpler forms.

```
partfrac((x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247)/...
(x^6 + 14* x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108))
```

```
ans =
1/(x+1) + 1/(x+2)^2 + 1/(x + 3)^3 + 1
```

Next, find partial fraction decomposition of a multivariate expression with respect to a particular variable.

```
syms a b
partfrac(a^2/(a^2 - b^2),a)
partfrac(a^2/(a^2 - b^2),b)
ans =
b/(2*(a - b)) - b/(2*(a + b)) + 1
ans =
a/(2*(a + b)) + a/(2*(a - b))
```

If you do not specify the variable, then partfrac computes partial fraction decomposition with respect to a variable determined by symvar.

```
symvar(a^2/(a^2 - b^2),1)
partfrac(a^2/(a^2 - b^2))
ans =
b
ans =
a/(2*(a + b)) + a/(2*(a - b))
```


## Factorization Modes

Use the FactorMode argument to choose a particular factorization mode.
Find the partial fraction decomposition without specifying the factorization mode. By default, partfrac uses factorization over rational numbers. In this mode, partfrac keeps numbers in their exact symbolic form.

```
syms x
partfrac(1/(x^3 + 2), x)
ans =
1/(x^3 + 2)
```

Find the partial fraction decomposition of the same expression, but this time use numeric factorization over real numbers. In this mode, partfrac factors the denominator into
linear and quadratic irreducible polynomials with real coefficients. This mode converts all numeric values to floating-point numbers.

```
partfrac(1/(x^3 + 2), x, 'FactorMode', 'real')
ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) - ...
(0.2099868416491455274612017678797*x - 0.52913368398939982491723521309077)/(x^2 -...
1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723)
```

Find the partial fraction decomposition of this expression using factorization over complex numbers. In this mode, partfrac reduces quadratic polynomials in the denominator to linear expressions with complex coefficients. This mode converts all numeric values to floating-point numbers.

```
partfrac(1/(x^3 + 2), x, 'FactorMode', 'complex')
ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i) +...
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i)
```

Find the partial fraction decomposition of this expression using the full factorization mode. In this mode, partfrac factors the denominator into linear expressions, reducing quadratic polynomials to linear expressions with complex coefficients. This mode keeps numbers in their exact symbolic form.

```
partfrac(1/(x^3 + 2), x, 'FactorMode', 'full')
ans =
2^(1/3)/(6*}(x+\mp@subsup{2}{}{\wedge}(1/3))) +..
(2^(1/3)*((3^(1/2)*1i)/2 - 1/2))/(6*(x+2^(1/3)*((3^(1/2)*1i)/2 - 1/2))) - ...
(2^(1/3)*((3^(1/2)*1i)/2 + 1/2))/(6*(x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2)))
```

Approximate the result with floating-point numbers by using vpa. Because the expression does not contain any symbolic parameters besides the variable $x$, the result is the same as in complex factorization mode.

```
vpa(ans)
ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/...
```

```
(x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i) +...
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i)
```

Replace 2 in the same expression with a symbolic parameter a and find partial fraction decomposition in the complex and full factorization modes. In the complex mode, partfrac factors only those expressions in the denominator whose coefficients can be converted to floating-point numbers. Thus, it returns this expression unchanged.

```
syms a
partfrac(1/(x^3 + a), x, 'FactorMode', 'complex')
ans =
1/(x^3 + a)
```

When you use the full factorization mode, partfrac factors expressions in the denominator symbolically. Thus, the partial fraction decomposition of the same expression in the full factorization mode is the following expression.

```
partfrac(1/(x^3 + a), x, 'FactorMode', 'full')
ans =
1/(3*(-a)^(2/3)*(x - (-a)^(1/3))) -...
((3^(1/2)*1i)/2 + 1/2)/(3*(-a)^(2/3)*(x + (-a)^(1/3)*((3^(1/2)*1i)/2 + 1/2))) +...
((3^(1/2)*1i)/2 - 1/2)/(3*(-a)^(2/3)*(x - (-a)^(1/3)*((3^(1/2)*1i)/2 - 1/2)))
```


## Full Factorization Mode

In the full factorization mode, partfrac can also return partial fraction decomposition as a symbolic sum of polynomial roots expressed as RootOf.

Find the partial fraction decomposition of this expression.

```
syms x
s = partfrac(1/(x^3 + x - 3), x, 'FactorMode','full')
s =
symsum(-((6*root(z^3 + z - 3, z, k)^2)/247 +...
 (27*root(z^3 + z - 3, z, k))/247 +...
 4/247)/(root(z^3 + z - 3, z, k) - x), k, 1, 3)
```

Approximate the result with floating-point numbers by using vpa.

```
vpa(s)
```

```
ans =
0.1846004942289254798185772017286/(x - 1.2134116627622296341321313773815) +...
(- 0.092300247114462739909288600864302 + 0.11581130283490645120989658654914i)/
(x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i) +...
(- 0.092300247114462739909288600864302 - 0.11581130283490645120989658654914i)/...
(x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i)
```


## Numerators and Denominators of Partial Fraction Decomposition

Find a vector of numerators and a vector of denominators of the partial fraction decomposition.

Find the partial fraction decomposition of this expression.

```
syms x
P = partfrac(x^2/(x^3 - 3*x + 2), x)
P =
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))
```

Partial fraction decomposition is a sum of fractions. Use the children function to return a vector containing the terms of that sum. then use numden to extract numerators and denominators of the terms.

```
[N,D] = numden(children(P))
N =
[5, 1, 4]
D =
[9*x - 9, 3*(x - 1)^2, 9*x + 18]
```

Reconstruct the partial fraction decomposition from the vectors of numerators and denominators.

```
P1 = sum(N./D)
P1 =
1/(3*(x - 1)^2) + 5/(9*x - 9) + 4/(9*x + 18)
```

Verify that the reconstructed expression, P 1 , is equivalent to the original partial fraction decomposition, P.

```
isAlways(P1 == P)
ans =
 logical
 1
```


## Input Arguments

## expr - Rational expression

symbolic expression | symbolic function
Rational expression, specified as a symbolic expression or function.

## var - Variable of interest

symbolic variable
Variable of interest, specified as a symbolic variable.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

```
Example: partfrac(1/(x^3 - 2),x,'FactorMode','real')
```


## FactorMode - Factorization mode

'rational' (default)|'real'|'complex'|'full'
Factorization mode, specified as the comma-separated pair consisting of 'FactorMode' and one of these character vectors.

'rational '	Factorization over rational numbers.


' real '	Factorization over real numbers. A real numeric factorization is a   factorization into linear and quadratic irreducible polynomials with   real coefficients. This factorization mode requires the coefficients   of the input to be convertible to real floating-point numbers. All   other inputs (for example, those inputs containing symbolic or   complex coefficients) are treated as irreducible.
' complex'	Factorization over complex numbers. A complex numeric   factorization is a factorization into linear factors whose coefficients   are floating-point numbers. Such factorization is only available if   the coefficients of the input are convertible to floating-point   numbers, that is, if the roots can be determined numerically.   Symbolic inputs are treated as irreducible.
'full'	Full factorization. A full factorization is a symbolic factorization   into linear factors. The result shows these factors using radicals or   as a symsum ranging over a Root0f.

## Definitions

## Partial Fraction Decomposition

Partial fraction decomposition of a rational expression

$$
f(x)=g(x)+\frac{p(x)}{q(x)}
$$

where the denominator can be written as $q(x)=q_{1}(x) q_{2}(x) \ldots$, is an expression of the form

$$
f(x)=g(x)+\sum_{j} \frac{p_{j}(x)}{q_{j}(x)}
$$

Here, the denominators $q_{j}(x)$ are irreducible polynomials or powers of irreducible polynomials. Also, the numerators $p_{j}(x)$ are polynomials of smaller degrees than the corresponding denominators $q_{j}(x)$.

Partial fraction decomposition can simplify integration by integrating each term of the returned expression separately.

## See Also

children | coeffs | collect | combine | compose | divisors|expand|factor| horner|numden| rewrite| simplify| simplifyFraction

## Introduced in R2015a

## piecewise

Conditionally defined expression or function

## Syntax

```
pw = piecewise(cond1,val1,cond2,val2,...)
pw = piecewise(cond1,val1,cond2,val2,...,otherwiseVal)
```


## Description

pw = piecewise(cond1, val1, cond2, val2,...) returns the piecewise expression or function pw whose value is val1 when condition cond1 is true, is val2 when cond 2 is true, and so on. If no condition is true, the value of pw is NaN .
pw = piecewise(cond1, val1, cond2, val2,..., otherwiseVal) returns the piecewise expression or function pw that has the value otherwiseVal if no condition is true.

## Examples

## Define and Evaluate Piecewise Expression

Define the following piecewise expression by using piecewise.

$$
y=\left\{\begin{array}{cc}
-1 & x<0 \\
1 & x>0
\end{array}\right.
$$

```
syms x
y = piecewise(x<0, -1, x>0, 1)
y =
piecewise(x < 0, -1, 0 < x, 1)
```

Evaluate $y$ at $-2,0$, and 2 by using subs to substitute for $x$. Because $y$ is undefined at $x$ $=0$, the value is NaN .

```
subs(y, x, [-2 0 2])
```

ans $=$
[ -1, NaN, 1]

## Define Piecewise Function

Define the following function symbolically.

$$
y(x)=\left\{\begin{array}{cc}
-1 & x<0 \\
1 & x>0
\end{array}\right.
$$

```
syms y(x)
y(x) = piecewise(x<0, -1, x>0, 1)
y(x) =
piecewise(x < 0, -1, 0 < x, 1)
```

Because $y(x)$ is a symbolic function, you can directly evaluate it for values of $x$. Evaluate $y(x)$ at $-2,0$, and 2. Because $y(x)$ is undefined at $x=0$, the value is NaN. For details, see "Create Symbolic Functions" on page 1-7.

```
y([-2 0 2])
ans =
[-1, NaN, 1]
```


## Set Value When No Conditions Is True

Set the value of a piecewise function when no condition is true (called otherwise value) by specifying an additional input argument. If an additional argument is not specified, the default otherwise value of the function is NaN .

Define the piecewise function

$$
y(x)=\left\{\begin{array}{cc}
-2 & x<-2 \\
0 & -2<x<0 . \\
1 & \text { otherwise }
\end{array}\right.
$$

```
syms y(x)
y(x) = piecewise(x<-2, -2, -2<x<0, 0, 1)
y(x) =
piecewise(x < -2, -2, x in Dom::Interval(-2, 0), 0, 1)
```

Evaluate $y(x)$ between -3 and 1 by generating values of $x$ using linspace. At -2 and 0 , $y(x)$ evaluates to 1 because the other conditions are not true.

```
xvalues = linspace(-3,1,5)
yvalues = y(xvalues)
xvalues =
 -3
yvalues =
[-2, 1, 0, 1, 1]
```


## Plot Piecewise Expression

Plot the following piecewise expression by using fplot.

$$
y=\left\{\begin{array}{cc}
-2 & x<-2 \\
x & -2<x<2 \\
2 & x>2
\end{array}\right.
$$

syms $x$
$y=$ piecewise $(x<-2,-2,-2<x<2, x, x>2,2)$; fplot(y)


## Assumptions and Piecewise Expressions

On creation, a piecewise expression applies existing assumptions. Apply assumptions set after creating the piecewise expression by using simplify on the expression.

Assume $x>0$. Then define a piecewise expression with the same condition $x>0$. piecewise automatically applies the assumption to simplify the condition.

```
syms X
assume(x > 0)
pw = piecewise(x<0, -1, x>0, 1)
```


## pw = <br> 1

Clear the assumption on $\times$ for further computations.

```
assume(x,'clear')
```

Create a piecewise expression pw with the condition $x>0$. Then set the assumption that $x>0$. Apply the assumption to pw by using simplify.

```
pw = piecewise(x<0, -1, x>0, 1);
```

assume(x > 0)
$\mathrm{pw}=$ simplify(pw)
pw =
1

Clear the assumption on x for further computations.

```
assume(x, 'clear')
```


## Differentiate, Integrate, and Find Limits of Piecewise Expression

Differentiate, integrate, and find limits of a piecewise expression by using diff, int, and limit respectively.

Differentiate the following piecewise expression by using diff.

$$
y=\left\{\begin{array}{cl}
1 / x & x<-1 \\
\sin (x) / x & x \geq-1
\end{array}\right.
$$

```
syms x
y = piecewise(x<-1, 1/x, x>=-1, sin(x)/x);
diffy = diff(y, x)
diffy =
piecewise(x < -1, -1/x^2, -1 < x, cos(x)/x - sin(x)/x^2)
```

Integrate $y$ by using int.
inty $=$ int $(y, x)$

```
inty =
piecewise(x < -1, log(x), -1 <= x, sinint(x))
```

Find the limits of $y$ at 0 and -1 by using limit. Because limit finds the double-sided limit, the piecewise expression must be defined from both sides. Alternatively, you can find the right- or left-sided limit. For details, see limit.

```
limit(y, x, 0)
limit(y, x, -1)
ans =
1
ans =
limit(piecewise(x < -1, 1/x, -1 < x, sin(x)/x), x, -1)
```

Because the two conditions meet at -1 , the limits from both sides differ and limit cannot find a double-sided limit.

## Elementary Operations on Piecewise Expressions

Add, subtract, divide, and multiply two piecewise expressions. The resulting piecewise expression is only defined where the initial piecewise expressions are defined.

```
syms x
pw1 = piecewise(x<-1, -1, x>=-1, 1);
pw2 = piecewise(x<0, -2, x>=0, 2);
add = pw1 + pw2
sub = pw1 - pw2
mul = pw1 * pw2
div = pw1 / pw2
add =
piecewise(x < -1, -3, x in Dom::Interval([-1], 0), -1, 0 <= x, 3)
sub =
piecewise(x < -1, 1, x in Dom::Interval([-1], 0), 3, 0 <= x, -1)
mul =
piecewise(x <-1, 2, x in Dom::Interval([-1], 0), -2, 0 <= x, 2)
div =
piecewise(x < -1, 1/2, x in Dom::Interval([-1], 0), -1/2, 0 <= x, 1/2)
```


## Modify or Extend Piecewise Expression

Modify a piecewise expression by replacing part of the expression using subs. Extend a piecewise expression by specifying the expression as the otherwise value of a new
piecewise expression. This action combines the two piecewise expressions. piecewise does not check for overlapping or conflicting conditions. Instead, like an if-else ladder, piecewise returns the value for the first true condition.

Change the condition $x<2$ in a piecewise expression to $x<0$ by using subs.

```
syms x
pw = piecewise(x<2, -1, x>0, 1);
pw = subs(pw, x<2, x<0)
pw =
piecewise(x < 0, -1, 0 < x, 1)
```

Add the condition $x>5$ with the value $1 / x$ to $p w$ by creating a new piecewise expression with pw as the otherwise value.

```
pw = piecewise(x>5, 1/x, pw)
pw =
piecewise(5 < x, 1/x, x < 0, -1, 0 < x, 1)
```


## Input Arguments

## cond - Condition

symbolic condition | symbolic variable
Condition, specified as a symbolic condition or variable. A symbolic variable represents an unknown condition.

## Example: $\mathrm{x}>2$

## val - Value when condition is satisfied

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Value when condition is satisfied, specified as a number, vector, matrix, or multidimensional array, or as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## otherwiseVal - Value if no conditions are true <br> number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Value if no conditions are true, specified as a number, vector, matrix, or multidimensional array, or as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. If otherwiseVal is not specified, its value is NaN .

## Output Arguments

## pw - Piecewise expression or function

symbolic expression | symbolic function
Piecewise expression or function, returned as a symbolic expression or function. The value of pw is the value val of the first condition cond that is true. To find the value of pw , use subs to substitute for variables in pw.

## Tips

- piecewise does not check for overlapping or conflicting conditions. A piecewise expression returns the value of the first true condition and disregards any following true expressions. Thus, piecewise mimics an if-else ladder.


## See Also

and | assume | assumeAlso|assumptions|if|in|isAlways|not|or

## Introduced in R2016b

## pinv

Moore-Penrose inverse (pseudoinverse) of symbolic matrix

## Syntax

$X=\operatorname{pinv}(A)$

## Description

$X=\operatorname{pinv}(A)$ returns the pseudoinverse of $A$. Pseudoinverse is also called the MoorePenrose inverse.

## Examples

## Compute Pseudoinverse of Matrix

Compute the pseudoinverse of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [1 li 3; 1 3 2];
X = pinv(A)
X =
 0.0729 + 0.0312i 0.0417 - 0.0312i
 -0.2187 - 0.0521i 0.3125 + 0.0729i
 0.2917 + 0.0625i 0.0104 - 0.0938i
```

Now, convert this matrix to a symbolic object, and compute the pseudoinverse.

```
A = sym([1 1i 3; 1 3 2]);
X = pinv(A)
X =
[7/96 + 1i/32, 1/24 - 1i/32]
[- 7/32 - 5i/96, 5/16 + 7i/96]
[7/24 + 1i/16, 1/96 - 3i/32]
```

```
Check that A*X*A = A and X*A*X = X.
isAlways(A*X*A == A)
ans =
 2x3 logical array
 1 1 1
 1 1 1
isAlways(X*A*X == X)
ans =
 3\times2 logical array
 1
 1 1
 1 1
```

Now, verify that $A^{*} X$ and $X$ *A are Hermitian matrices.

```
isAlways(A*X == (A*X)')
```

ans =
$2 \times 2$ logical array
11
1 1
isAlways( $\mathrm{X} * \mathrm{~A}=(\mathrm{X}$ (A)')
ans $=$
$3 \times 3$ logical array
$1 \quad 1 \quad 1$
$\begin{array}{lll}1 & 1 & 1\end{array}$
$1 \quad 1 \quad 1$

## Compute Pseudoinverse of Matrix

Compute the pseudoinverse of this matrix.

## syms a

A = [1 a; -a 1];
X $=\operatorname{pinv}(\mathrm{A})$
X =
$\left[\left(a^{*} \operatorname{conj}(a)+1\right) /\left(a^{\wedge} 2^{*} \operatorname{conj}(a)^{\wedge} 2+a^{\wedge} 2+\operatorname{conj}(a)^{\wedge} 2+1\right)-.\right.$. (conj(a)*(a - conj(a)))/(a^2* conj(a)^2 + a^2 + conj(a)^2 + 1),

```
- (a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a*conj(a) + 1))/(a^2*
[(a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) +...
(conj(a)*(a*conj(a) + 1))/(a^2*}\operatorname{conj(a)^2 + a^2 + conj(a)^2 + 1),
(a*conj(a) + 1)/(a^2*}\operatorname{conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]
```

Now, compute the pseudoinverse of A assuming that a is real.

```
assume(a,'real')
A = [1 a; -a 1];
X = pinv(A)
X =
[1/(a^2 + 1), -a/(a^2 + 1)]
[a/(a^2 + 1), 1/(a^2 + 1)]
```

For further computations, remove the assumption.
syms a clear

## Input Arguments

## A - Input

symbolic matrix
Input, specified as a symbolic matrix.

## Output Arguments

## X - Pseudoinverse of matrix

symbolic matrix
Pseudoinverse of matrix, returned as a symbolic matrix, such that $A * X * A=A$ and $X * A * X$ $=X$.

## Definitions

## Moore-Penrose Pseudoinverse

The pseudoinverse of an $m$-by- $n$ matrix $A$ is an $n$-by- $m$ matrix $X$, such that $A * X * A=A$ and $X * A * X=X$. The matrices $A * X$ and $X * A$ must be Hermitian.

## Tips

- Calling pinv for numeric arguments that are not symbolic objects invokes the MATLAB pinv function.
- For an invertible matrix $A$, the Moore-Penrose inverse $X$ of $A$ coincides with the inverse of $A$.


## See Also

inv | pinv | rank | svd
Introduced in R2013a

## plus+

Symbolic addition

## Syntax

$A+B$
plus (A, B)

## Description

$\mathrm{A}+\mathrm{B}$ adds A and B .
$p l u s(A, B)$ is equivalent to $A+B$.

## Examples

## Add Scalar to Array

$p l u s$ adds $x$ to each element of the array.
syms $x$
A = [x $\sin (x) 3]$;
$A+x$
ans $=$
[ $2 * x, x+\sin (x), x+3]$

## Add Two Matrices

Add the identity matrix to matrix M .
syms $x$
M = [x x^2;Inf 0];
$M+\operatorname{eye}(2)$

```
ans =
[x + 1, x^2]
[Inf, 1]
```

Alternatively, use plus(M, eye(2)).

```
plus(M,eye(2))
ans =
[x + 1, x^2]
[Inf, 1]
```


## Add Symbolic Functions

```
syms f(x) g(x)
f(x) = x^2 + 5*x + 6;
g(x) = 3*x - 2;
h = f + g
```

$h(x)=$
$x^{\wedge} 2+8 * x+4$

## Add Expression to Symbolic Function

Add expression expr to function f .

```
syms f(x)
f(x) = x^2 + 3*x + 2;
expr = x^2 - 2;
f(x) = f(x) + expr
f(x) =
2*x^2 + 3*x
```


## Input Arguments

## A - Input

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

## B - Input

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression.

## Tips

- All nonscalar arguments must be the same size. If one input argument is nonscalar, then plus expands the scalar into an array of the same size as the nonscalar argument, with all elements equal to the scalar.


## See Also

ctranspose|ldivide|minus |mldivide | mpower |mrdivide |mtimes | power | rdivide|times|transpose

## Introduced before R2006a

## pochhammer

Pochhammer symbol

## Syntax

pochhammer (x, n)

## Description

pochhammer $(x, n)$ returns the "Pochhammer Symbol" on page 4-1297 (x) .

## Examples

## Find Pochhammer Symbol for Numeric and Symbolic Inputs

Find the Pochhammer symbol for the numeric inputs $x=3$ at $n=2$.
pochhammer $(3,2)$
ans =
12
Find the Pochhammer symbol for the symbolic input x at $\mathrm{n}=3$. The pochhammer function does not automatically return the expanded form of the expression. Use expand to force pochhammer to return the form of the expanded expression.

```
syms x
P = pochhammer(x, 3)
P = expand(P)
P =
pochhammer(x, 3)
P =
x^3 + 3* (^^2 + 2*x
```


## Rewrite and Factor Outputs of Pochhammer

If conditions are satisfied, expand rewrites the solution using gamma.

```
syms n x
assume(x>0)
assume(n>0)
P = pochhammer(x, n);
P = expand(P)
P =
gamma(n + x)/gamma(x)
```

Clear assumptions on n and x to use them in further computations.

```
syms n x clear
```

To convert expanded output of pochhammer into its factors, use factor.

```
P = expand(pochhammer(x, 4));
P = factor(P)
P =
[x, x + 3, x + 2, x + 1]
```


## Differentiate Pochhammer Symbol

Differentiate pochhammer once with respect to x .

```
syms n x
diff(pochhammer(x,n),x)
ans =
pochhammer(x, n)*(psi(n + x) - psi(x))
```

Differentiate pochhammer twice with respect to n .
diff(pochhammer(x,n),n,2)
ans $=$
pochhammer(x, n$) * \operatorname{psi}(\mathrm{n}+\mathrm{x})^{\wedge} 2+\operatorname{pochhammer}(\mathrm{x}, \mathrm{n}) * \operatorname{psi}(1, \mathrm{n}+\mathrm{x})$

## Taylor Series Expansion of Pochhammer Symbol

Use taylor to find the Taylor series expansion of pochhammer with $\mathrm{n}=3$ around the expansion point $x=2$.

```
syms x
taylor(pochhammer(x,3),x,2)
ans =
26*x + 9*(x - 2)^2 + (x - 2)^3 - 28
```


## Plot Pochhammer Symbol

Plot the Pochhammer symbol from $n=0$ to $n=4$ for $x$. Use axis to display the region of interest. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(pochhammer(x,0:4))
axis([-4 4 -4 4])
grid on
legend('n = 0','n = 1','n = 2','n = 3','n = 4','Location','Best')
title('Pochhammer symbol (x)_n for n=0 to n=4')
```



## Input Arguments

## x - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## n - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

## Definitions

## Pochhammer Symbol

Pochhammer's symbol is defined as

$$
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)},
$$

where $\Gamma$ is the Gamma function.
If $n$ is a positive integer, Pochhammer's symbol is

$$
(x)_{n}=x(x+1) \ldots(x+n-1)
$$

## Algorithms

- If $x$ and $n$ are numerical values, then an explicit numerical result is returned. Otherwise, a symbolic function call is returned.
- If both x and $\mathrm{x}+\mathrm{n}$ are nonpositive integers, then

$$
(x)_{n}=(-1)^{n} \frac{\Gamma(1-x)}{\Gamma(1-x-n)} .
$$

- The following special cases are implemented.

$$
\begin{aligned}
& (x)_{0}=1 \\
& (x)_{1}=x \\
& (x)_{-1}=\frac{1}{x-1} \\
& (1)_{n}=\Gamma(n+1) \\
& (2)_{n}=\Gamma(n+2)
\end{aligned}
$$

- If n is a positive integer, then expand (pochhammer $(\mathrm{x}, \mathrm{n})$ ) returns the expanded polynomial $x(x+1) \ldots(x+n-1)$.
- If n is not an integer, then expand ( $\operatorname{pochhammer}(\mathrm{x}, \mathrm{n})$ ) returns a representation in terms of gamma.


## See Also

factorial|gamma

Introduced in R2014b

## poles

Poles of expression or function

## Syntax

$P=$ poles(f,var)
P = poles(f,var,a,b)
[P,N] = poles( $\qquad$
$[P, N, R]=\operatorname{poles}(\ldots \quad)$

## Description

$P=$ poles ( $f$, var) finds the poles of $f$ and assigns them to vector $P$.
$P=\operatorname{poles}(f, \operatorname{var}, a, b)$ finds the poles in the interval $(a, b)$.
$[P, N]=\operatorname{poles}(\ldots \quad)$ finds the poles of $f$ and their orders. This syntax assigns the poles to vector P and their orders to vector N .
$[P, N, R]=\operatorname{poles}(\ldots \quad)$ finds the poles of $f$ and their orders and residues. This syntax assigns the poles to vector P , their orders to vector N , and their residues to vector R .

## Examples

## Find Poles of Symbolic Expressions

Find the poles of these expressions.

```
syms x
poles(sin(x)/(x - 1))
ans =
1
poles(sin(x)/(x - 1))
```

```
ans =
1
```


## Specify Independent Variable

Find the poles of this expression. If you do not specify a variable, poles uses the default variable determined by symvar.

```
syms x a
f = 1/((x-1)*(a-2));
poles(f)
ans =
1
```

To find the poles of this expression as a function of variable a, specify a as the second argument.

```
syms x a
poles(f,a)
```

ans $=$
2

## Find Poles in Interval

```
Find the poles of the tangent function in the interval (-pi, pi).
```

syms x
poles(tan(x), x, -pi, pi)

```
ans =
 -pi/2
 pi/2
```

The tangent function has an infinite number of poles. If you do not specify the interval, poles cannot find all of them. It issues a warning and returns an empty symbolic object.

```
syms x
poles(tan(x))
```

```
Warning: Unable to determine poles.
ans =
Empty sym: 0-by-1
```

If poles can prove that the input does not have poles in the interval, it returns empty without issuing a warning.

```
syms x
poles(tan(x), x, -1, 1)
ans =
Empty sym: 0-by-1
```


## Return Order of Poles

Return orders along with poles by using two output arguments. Restrict the search interval to (-pi, 10*pi).
syms $x$

```
[Poles, Orders] = poles(tan(x)/(x-1)^3, x, -pi, pi)
```

```
Poles =
 pi/2
 pi/2
 1
Orders =
 1
 1
 3
```


## Return Order and Residue of Poles

Return the residues and orders along with the poles by specifying three output arguments.

```
syms x a
[Poles, Orders, Residues] = poles(a/x^2/(x-1), x)
Poles =
 1
```

```
0
Orders =
 1
 2
Residues =
 a
 -a
```


## Input Arguments

## f - Input

symbolic expression | symbolic function.
Input, specified as a symbolic expression or function.

## var - Independent variable

symbolic variable
Independent variable, specified as a symbolic variable.
$\mathbf{a}, \mathbf{b}$ - Search interval for poles
vector of two real numbers | vector of two real symbolic numbers
Search interval for poles, specified as a vector of two real numeric or symbolic numbers (including infinities).

## Tips

- If poles cannot find all nonremovable singularities and cannot prove that they do not exist, it issues a warning and returns an empty symbolic object.
- If poles can prove that the input does not have poles (in the specified interval or complex plane), it returns empty without issuing a warning.
- $a$ and $b$ must be real numbers or infinities. If you provide complex numbers, poles uses an empty interval and returns an empty symbolic object.

See Also<br>limit| solve | symvar|vpasolve<br>Introduced in R2012b

## poly2sym

Create symbolic polynomial from vector of coefficients

## Syntax

$\mathrm{p}=$ poly2sym(c)
$p=\operatorname{poly2sym}(c, v a r)$

## Description

$p=p o l y 2 s y m(c)$ creates the symbolic polynomial expression $p$ from the vector of coefficients $c$. The polynomial variable is $x$. If $c=[c 1, c 2, \ldots, c n]$, then $p=$
poly2sym(c) returns $c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n}$.
This syntax does not create the symbolic variable $x$ in the MATLAB Workspace.
$p=p o l y 2 s y m(c, v a r)$ uses var as a polynomial variable when creating the symbolic polynomial expression $p$ from the vector of coefficients $c$.

## Examples

## Create Polynomial Expression

Create a polynomial expression from a symbolic vector of coefficients. If you do not specify a polynomial variable, poly2sym uses $x$.

```
syms a b c d
p = poly2sym([a, b, c, d])
p =
a*x^3 + b* *^2 + c*x + d
```

Create a polynomial expression from a symbolic vector of rational coefficients.

```
p = poly2sym(sym([1/2, -1/3, 1/4]))
p =
x^2/2 - x/3 + 1/4
```

Create a polynomial expression from a numeric vector of floating-point coefficients. The toolbox converts floating-point coefficients to rational numbers before creating a polynomial expression.

```
p = poly2sym([0.75, -0.5, 0.25])
p =
(3*x^2)/4 - x/2 + 1/4
```


## Specify Polynomial Variable

Create a polynomial expression from a symbolic vector of coefficients. Use t as a polynomial variable.

```
syms a b c d t
p = poly2sym([a, b, c, d], t)
p =
a*t^3 + b*t^2 + c*t + d
```

To use a symbolic expression, such as $t^{\wedge} 2+1$ or $\exp (t)$, instead of a polynomial variable, substitute the variable using subs.

```
p1 = subs(p, t, t^2 + 1)
p2 = subs(p, t, exp(t))
p1 =
d + a*(t^2 + 1)^3 + b*(t^2 + 1)^2 + c*(t^2 + 1)
p2 =
d + c*exp(t) + a*exp(3*t) + b*exp(2*t)
```


## Input Arguments

## c - Polynomial coefficients

numeric vector | symbolic vector

Polynomial coefficients, specified as a numeric or symbolic vector. Argument can be a column or row vector.

## var - Polynomial variable <br> symbolic variable

Polynomial variable, specified as a symbolic variable.

## Output Arguments

p - Polynomial
symbolic expression
Polynomial, returned as a symbolic expression.

## Tips

- When you call poly2sym for a numeric vector $c$, the toolbox converts the numeric vector to a vector of symbolic numbers using the default (rational) conversion mode of sym.


## See Also

coeffs | sym | sym2poly

Introduced before R2006a

## polylog

Polylogarithm

## Syntax

```
polylog(n,x)
```


## Description

polylog( $n, x$ ) returns the polylogarithm of the order $n$ and the argument $x$.

## Examples

## Polylogarithm for Numeric and Symbolic Arguments

Depending on its arguments, polylog returns floating-point or exact symbolic results.
Compute polylogarithms for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [polylog(3,-1/2), polylog(4,1/3), polylog(5,3/4)]
A =
 -0.4726 0.3408 0.7697
```

Compute polylogarithms for the same numbers converted to symbolic objects. For most symbolic (exact) numbers, polylog returns unresolved symbolic calls.

```
symA = [polylog(3,sym(-1/2)), polylog(sym(4),1/3), polylog(5,sym(3/4))]
symA =
[polylog(3, -1/2), polylog(4, 1/3), polylog(5, 3/4)]
```

Use vpa to approximate symbolic results with the required number of digits.

```
vpa(symA)
```

```
ans =
[-0.47259784465889687461862319312655,...
0.3407911308562507524776409440122,...
0.76973541059975738097269173152535]
```


## Explicit Expressions for Polylogarithms

If the order of the polylogarithm is 0,1 , or a negative integer, then polylog returns an explicit expression.

The polylogarithm of $n=1$ is a logarithm function.

```
syms x
polylog(1,x)
ans =
-log(1 - x)
```

The polylogarithms of $\mathrm{n}<1$ are rational expressions.

```
polylog(0,x)
ans =
-x/(x - 1)
polylog(-1,x)
ans =
x/(x - 1)^2
polylog(-2,x)
ans =
-(x^2 + x)/(x - 1)^3
polylog(-3,x)
ans =
(x^3 + 4*x^2 + x)/(x - 1)^4
polylog(-10,x)
ans =
-(x^10 + 1013*x^9 + 47840*x^8 + 455192*x^7 + ...
1310354*x^6 + 1310354*x^5 + 455192*x^4 +...
47840*x^3 + 1013*x^2 + x)/(x - 1)^11
```


## More Special Values

The polylog function has special values for some parameters.
If the second argument is 0 , then the polylogarithm equals 0 for any integer value of the first argument. If the second argument is 1 , then the polylogarithm is the Riemann zeta function of the first argument.

```
syms n
[polylog(n,0), polylog(n,1)]
ans =
[0, zeta(n)]
```

If the second argument is -1 , then the polylogarithm has a special value for any integer value of the first argument except 1.

```
assume(n ~= 1)
polylog(n,-1)
ans =
zeta(n)*(2^(1 - n) - 1)
```

For further computations, clear the assumption.
syms $n$ clear
Other special values of the polylogarithm include the following.

```
[polylog(4,sym(1)), polylog(sym(5),-1), polylog(2,sym(i))]
ans =
[pi^4/90, -(15*zeta(5))/16, catalan*1i - pi^2/48]
```


## Plot Polylogarithm

Plot the polylogarithms of the orders from -3 to 1. Prior to R2016a, use ezplot instead of fplot. Prior to R2016a, use ezplot instead of fplot.

```
syms x
for n = -3:1
 fplot(polylog(n,x),[-5 1])
 hold on
end
```



## Handle Expressions Containing Polylogarithms

Many functions, such as diff and int, can handle expressions containing polylog.
Differentiate these expressions containing polylogarithms.

```
syms n x
diff(polylog(n, x), x)
diff(x*polylog(n, x), x)
```

```
ans =
polylog(n - 1, x)/x
ans =
polylog(n, x) + polylog(n - 1, x)
```

Compute integrals of these expressions containing polylogarithms.

```
int(polylog(n, x)/x, x)
int(polylog(n, x) + polylog(n - 1, x), x)
ans =
polylog(n + 1, x)
ans =
x*polylog(n, x)
```


## Input Arguments

## n - Index of polylogarithm

## integer

Index of the polylogarithm, specified as an integer.

## x - Argument of polylogarithm

number | symbolic variable | symbolic expression | symbolic function | vector | matrix
Argument of the polylogarithm, specified as a number, symbolic variable, expression, function, vector, or matrix.

## Definitions

## Polylogarithm

For a complex number $z$ of modulus $|z|<1$, the polylogarithm of order $n$ is defined as follows.

$$
\operatorname{Li}_{n}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{n}}
$$

This function is extended to the whole complex plane by analytic continuation, with a branch cut along the real interval $[1, \infty)$ for $n \geq 1$.

## Tips

- polylog $(2, x)$ is equivalent to $\operatorname{dilog}(1-x)$.
- The logarithmic integral function (the integral logarithm) uses the same notation, $\mathrm{Li}(x)$, but without an index. The toolbox provides the logint function for the integral logarithm.


## See Also

dilog|log|log10|log2|logint|zeta

Introduced in R2014b

## polynomialDegree

Degree of polynomial

## Syntax

```
polynomialDegree(p)
polynomialDegree(p,vars)
```


## Description

polynomialDegree $(p)$ returns the degree of polynomial $p$ with respect to all variables found in $p$ by symvar.
polynomialDegree ( $p$, vars) returns the degree of $p$ with respect to the variables in vars.

## Examples

## Degree of Polynomial

Find the degree of the polynomial $x^{\wedge} 3+x+1$.
syms x
$p=x^{\wedge} 3+x+1$;
deg $=$ polynomialDegree $(p)$
deg $=$
3

## Degree of Multivariate Polynomial with Respect to Variable

Specify variables as the second argument of polynomialDegree. Find the degree of the polynomial $a^{\wedge} 2^{*} x^{\wedge} 3+b^{\wedge} 6 * x$ with the default independent variables found by symvar, the variable $x$, and the variables [a $x$ ].

When using the default variables, the degree is 7 because, by default, $a$ and $b$ are variables. So the total degree of $b^{\wedge} 6^{*} x$ is 7 .

```
syms a b x
p = a^2*x^3 + b^6*x;
deg = polynomialDegree(p) % uses symvar
deg =
 7
deg = polynomialDegree(p,x)
deg =
 3
vars = [a x];
deg = polynomialDegree(p,vars)
deg =
 5
```


## Input Arguments

## p - Polynomial

symbolic expression | symbolic function
Polynomial, specified as a symbolic expression or function.

## vars - Polynomial variables

vector of symbolic variables
Polynomial variables, specified as a vector of symbolic variables.

See Also<br>coeffs | polynomialReduce

## Introduced in R2018a

## polynomialReduce

Reduce polynomials by division

## Syntax

$r=\operatorname{polynomialReduce}(p, d)$
$r=p o l y n o m i a l R e d u c e(p, d, v a r s)$
$r=$ polynomialReduce( __ , 'MonomialOrder', MonomialOrder)
[r,q] = polynomialReduce( $\qquad$

## Description

$r=$ polynomialReduce ( $p, d$ ) returns the "Polynomial Reduction" on page 4-1320 of $p$ by $d$ with respect to all variables in $p$ determined by symvar. The input $d$ can be a vector of polynomials.
$r=$ polynomialReduce ( $p, d$, vars ) uses the polynomial variables in vars.
 specified monomial order in addition to the input arguments in previous syntaxes. Options are 'degreeInverseLexicographic', 'degreeLexicographic', or
'lexicographic'. By default, polynomialReduce uses
'degreeInverseLexicographic'.
[r,q] = polynomialReduce( $\qquad$ ) also returns the quotient in $q$.

## Examples

## Divide Two Polynomials

Find the quotient and remainder when $x^{\wedge} 3-x^{*} y^{\wedge} 2+1$ is divided by $x+y$.

```
syms x y
p = x^3 - x* y^2 + 1;
```

```
d = x + y;
[r,q] = polynomialReduce(p,d)
r =
1
q =
x^2 - y*x
```

Reconstruct the original polynomial from the quotient and remainder. Check that the reconstructed polynomial equals $p$ by using isAlways.

```
pOrig = expand(sum(q.*d) + r);
isAlways(p == pOrig)
```

ans =
logical
1

## Specify Polynomial Variables

Specify the polynomial variables as the second argument of polynomialReduce.
Divide $\exp (a){ }^{*} x^{\wedge} 2+2 * x^{*} y+1$ by $x-y$ with the polynomial variables [ $x y$ ], treating a as a symbolic parameter.

```
syms a x y
p = exp(a)*x^2 + 2*x*y + 1;
d = x - y;
vars = [x y];
r = polynomialReduce(p,d,vars)
r =
(exp(a) + 2)*y^2 + 1
```


## Reduce Polynomial by Several Polynomials

Reduce $x^{\wedge} 5-x^{*} y^{\wedge} 6-x^{*} y$ by $x^{\wedge} 2+y$ and $x^{\wedge} 2-y^{\wedge} 3$.
syms x y
$\mathrm{p}=\mathrm{x}^{\wedge} 5-\mathrm{x}^{*} \mathrm{y}^{\wedge} 6-\mathrm{x}^{*} \mathrm{y}$;
$d=\left[x^{\wedge} 2+y, x^{\wedge} 2-y^{\wedge} 3\right] ;$
[r,q] = polynomialReduce(p,d)

```
r =
-x*y
q =
[x^3 - x*y^3, x*y^3 - x*y]
```

Reconstruct the original polynomial from the quotient and remainder. Check that the reconstructed polynomial equals $p$ by using isAlways.

```
pOrig = expand(q*d.' + r);
isAlways(p == pOrig)
ans =
 logical
 1
```


## Specify Term Order of Polynomials

By default, polynomialReduce orders the terms in the polynomials with the term order degreeInverseLexicographic. Change the term order to lexicographic or degreeLexicographic by using the 'MonomialOrder' name-value pair argument.

Divide two polynomials by using the lexicographic term order.

```
syms x y
p = x^2 + y^3 + 1;
d = x - y^2;
r = polynomialReduce(p,d,'MonomialOrder','lexicographic')
r=
y^4 + y^3 + 1
```

Divide the same polynomials by using the degreeLexicographic term order.

```
r = polynomialReduce(p,d,'MonomialOrder','degreeLexicographic')
r =
x^2 + y*x + 1
```


## Input Arguments

## p - Polynomial to divide

symbolic expression | symbolic function

Polynomial to divide, specified as a symbolic expression or function.

## d - Polynomials to divide by <br> symbolic expression or function | vector of symbolic expressions or functions

Polynomials to divide by, specified as a symbolic expression or function or a vector of symbolic expressions or functions.

## vars - Polynomial variables

vector of symbolic variables
Polynomial variables, specified as a vector of symbolic variables.

## MonomialOrder - Monomial order of divisors

'degreeInverseLexicographic' (default)|'degreeLexicographic'|
'lexicographic'
Monomial order of divisors, specified as 'degreeInverseLexicographic', 'degreeLexicographic', or 'lexicographic'. If you specify vars, then polynomialReduce sorts variables based on the order of variables in vars.

- lexicographic sorts the terms of a polynomial using lexicographic ordering.
- degreeLexicographic sorts the terms of a polynomial according to the total degree of each term. If terms have equal total degrees, polynomialReduce sorts the terms using lexicographic ordering.
- degreeInverseLexicographic sorts the terms of a polynomial according to the total degree of each term. If terms have equal total degrees, polynomialReduce sorts the terms using inverse lexicographic ordering.


## Output Arguments

## r-Remainder of polynomial division

symbolic polynomial
Remainder of polynomial division, returned as a symbolic polynomial.

## q - Quotient of polynomial division

symbolic polynomial | vector of symbolic polynomials

Quotient of polynomial division, returned as a symbolic polynomial or a vector of symbolic polynomials.

## Definitions

## Polynomial Reduction

Polynomial reduction is the division of the polynomial $p$ by the divisor polynomials $d_{1}, d_{2}$, ,$d_{\mathrm{n}}$. The terms of the divisor polynomials are ordered according to a certain term order. The quotients $q_{1}, q_{2}, \ldots, q_{\mathrm{n}}$ and the remainder $r$ satisfy this equation.

$$
p=q_{1} d_{1}+q_{2} d_{2}+\ldots+q_{n} d_{n}+r
$$

No term in $r$ can be divided by the leading terms of any of the divisors $d_{1}, d_{2}, \ldots, d_{\mathrm{n}}$.

## See Also

eliminate|gbasis|polynomialDegree
Introduced in R2018a

## potential

Potential of vector field

## Syntax

```
potential(V,X)
```

potential(V,X,Y)

## Description

potential ( $\mathrm{V}, \mathrm{X}$ ) computes the potential of the vector field V with respect to the vector $X$ in Cartesian coordinates. The vector field $V$ must be a gradient field.
potential ( $\mathrm{V}, \mathrm{X}, \mathrm{Y}$ ) computes the potential of vector field V with respect to X using Y as base point for the integration.

## Examples

## Compute Potential of Vector Field

Compute the potential of this vector field with respect to the vector $[x, y, z]$ :

```
syms x y z
P = potential([x, y, z*exp(z)], [x y z])
P =
x^2/2 + y^2/2 + exp(z)*(z - 1)
```

Use the gradient function to verify the result:

```
simplify(gradient(P, [x y z]))
```

ans =
x
y
$z^{*} \exp (z)$

## Specify Integration Base Point

Compute the potential of this vector field specifying the integration base point as [0 0 0]:

```
syms x y z
```

$P=\operatorname{potential}([x, y, z * \exp (z)],[x y z],[000])$
$P=$
$x^{\wedge} 2 / 2+y^{\wedge} 2 / 2+\exp (z) *(z-1)+1$
Verify that $P\left(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\right)=0$ :
subs (P, [x y z], [0 0 0])
ans =
0

## Test Potential for Field Without Gradient

If a vector field is not gradient, potential returns NaN :

```
potential([x*y, y], [x y])
```

```
ans =
```

NaN

## Input Arguments

## V - Vector field <br> 3-D symbolic vector of symbolic expressions or functions (default)

Vector field, specified as a 3-D vector of symbolic expressions or functions.

## X - Input

vector of three symbolic variables
Input, specified as a vector of three symbolic variables with respect to which you compute the potential.

## Y - Input

symbolic vector

Input, specified as a symbolic vector of variables, expressions, or numbers that you want to use as a base point for the integration. If you use this argument, potential returns $P(X)$ such that $P(Y)=0$. Otherwise, the potential is only defined up to some additive constant.

## Definitions

## Scalar Potential of Gradient Vector Field

The potential of a gradient vector field $V(X)=\left[v_{1}\left(x_{1}, x_{2}, \ldots\right), v_{2}\left(x_{1}, x_{2}, \ldots\right), \ldots\right]$ is the scalar $P(X)$ such that $V(X)=\nabla P(X)$.

The vector field is gradient if and only if the corresponding Jacobian is symmetrical:

$$
\left(\frac{\partial v_{i}}{\partial x_{j}}\right)=\left(\frac{\partial v_{j}}{\partial x_{i}}\right)
$$

The potential function represents the potential in its integral form:

$$
P(X)=\int_{0}^{1}(X-Y) \cdot V(Y+\lambda(X-Y)) d \lambda
$$

## Tips

- If potential cannot verify that V is a gradient field, it returns NaN .
- Returning NaN does not prove that V is not a gradient field. For performance reasons, potential sometimes does not sufficiently simplify partial derivatives, and therefore, it cannot verify that the field is gradient.
- If $Y$ is a scalar, then potential expands it into a vector of the same length as $X$ with all elements equal to Y .

See Also<br>curl|diff|divergence | gradient|hessian| jacobian|laplacian| vectorPotential<br>Introduced in R2012a

## power.^

Symbolic array power

## Syntax

A. ${ }^{\wedge}$ B
power (A, B)

## Description

A. $\wedge B$ computes $A$ to the $B$ power and is an elementwise operation.
power $(A, B)$ is equivalent to $A .{ }^{\wedge} B$.

## Examples

## Square Each Matrix Element

Create a 2-by-3 matrix.

```
A = sym('a', [2 3])
A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]
```

Square each element of the matrix.
A. $\wedge^{2}$
ans $=$
[ a1_1^2, a1_2^2, a1_3^2]
[ a2_1^2, a2_2^2, a2_3^2]

## Use Matrices for Base and Exponent

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```
H = sym(hilb(3))
d = diag(sym([1 2 3]))
H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]
```

Raise the elements of the Hilbert matrix to the powers of the diagonal matrix. The base and the exponent must be matrices of the same size.

```
H.^d
ans =
[1, 1, 1]
[1, 1/9, 1]
[1, 1, 1/125]
```


## Input Arguments

## A - Input

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

## B - Input

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

```
See Also
ctranspose| ldivide | minus |mldivide|mpower|mrdivide|mtimes | plus |
rdivide|times|transpose
```

Introduced before R2006a

## powermod

Modular power of number

## Syntax

```
powermod(a,b,m)
```


## Description

powermod ( $a, b, m$ ) returns the modular power $a^{b} \bmod m$. Use powermod to compute the modular power without calculating $a^{b}$.

## Examples

## Compute Modular Power

Compute the modular power $a^{b} \bmod m$ by using powermod. The powermod function is efficient because it does not calculate the exponential $a^{b}$.

Compute mod ( $3^{\wedge} 5,7$ ).

```
powermod(3,5,7)
```

ans $=$
5

## Prove Fermat's Little Theorem

Fermat's little theorem states that where $p$ is prime and $a$ is not divisible by $p, a^{(p-1)} \bmod p$ is 1 .

Test Fermat's little theorem for $p=5, a=3$. As expected, powermod returns 1 .

```
p = 5;
a = 3;
powermod(a,p-1,p)
ans =
1
```

Test the same case for all values of $a$ less than $p$. The function powermod acts elementwise to return a vector of ones.

```
p = 5;
a = 1:p-1;
powermod(a,p-1,p)
ans =
 1 1 1 1 1
```


## Compute Fermat Primes Using Fermat Primality Test

Fermat's little theorem states that where $p$ is prime and $a$ is not divisible by $p, a^{(p-1)} \bmod p$ is 1 . Test numbers from 300 to 400 for primality by using Fermat's little theorem with base 2. Find Fermat pseudoprimes by comparing results with isprime.

Test numbers from 300 to 400 for primality.

```
N = 300:400;
remainder = powermod(2,N-1,N);
primesFermat = N(remainder == 1)
primesFermat =
 307 311 313 317 331 337 341 347 349 353...
 359
```

Find Fermat pseudoprimes by comparing with isprime. 341 is a Fermat pseudoprime.

```
primeNumbers = N(isprime(N));
```

setdiff(primesFermat, primeNumbers)

## Input Arguments

```
a - Input
number | vector | matrix | array | symbolic number | symbolic array
```

Input, specified as a number, vector, matrix, array, or a symbolic number or array. a must be an integer.

## b - Input

number | vector | matrix | array | symbolic number | symbolic array
Input, specified as a number, vector, matrix, array, or a symbolic number or array. b must be a nonnegative integer.

## m - Input

number | vector | matrix | array | symbolic number | symbolic array
Input, specified as a number, vector, matrix, array, or a symbolic number or array. m must be a nonnegative integer.

See Also<br>mod|nextprime | nthprime | prevprime<br>\section*{Introduced in R2018a}

## pretty

Prettyprint symbolic expressions

Note pretty is not recommended. Use Live Scripts instead. Live Scripts provide full math rendering while pretty uses plain-text formatting. See "What Is a Live Script or Function?" (MATLAB)

## Syntax

pretty (X)

## Description

pretty (X) prints X in a plain-text format that resembles typeset mathematics. For true typeset rendering, use Live Scripts instead. See "What Is a Live Script or Function?" (MATLAB)

## Examples

## Pretty Print Symbolic Expressions

Pretty print symbolic expressions.

```
A = sym(pascal(2))
B = eig(A)
pretty(B)
A =
[1, 1]
[1, 2]
B =
 3/2 - 5^(1/2)/2
```

```
5^(1/2)/2 + 3/2
| 3 ccqrt(5)
```


## Pretty Print Long Expressions

Solve this equation, and then use pretty to represent the solutions in the format similar to typeset mathematics. For better readability, pretty uses abbreviations when representing long expressions.

```
syms x
s = solve(x^4 + 2*x + 1, x,'MaxDegree',3);
pretty(s)
```


where

```
 sqrt(3) {
#1 == -------------------------
 2
 / sqrt(11) sqrt(27) 17 \1/3
```

```
#2 == | ---------------- -- - |
```

Introduced before R2006a

## prevprime

Previous prime number

## Syntax

prevprime(n)

## Description

prevprime( $n$ ) returns the largest prime number smaller than or equal to $n$. If $n$ is a vector or matrix, then prevprime acts element-wise on $n$.

## Examples

## Find Previous Prime Number

Find the largest prime number smaller than 100.

```
prevprime(100)
```

ans =
97

Find the largest prime numbers smaller than 1000,10000 , and 100000 by specifying the input as a vector.

```
v = [1000 10000 100000];
prevprime(v)
ans =

\section*{Find Large Prime Number}

When finding large prime numbers, return exact symbolic integers by using symbolic input. Further, if your input has 15 or more digits, then use quotation marks and wrap the
number in sym to represent the number accurately. For more information, see "Numeric to Symbolic Conversion" on page 2-126.

Find a large prime number by using 10^sym (18).
prevprime(10^sym(18))
ans =
999999999999999989
Find the prime number previous to 823572345728582545 by using quotation marks.
prevprime(sym('823572345728582545'))
ans =
823572345728582543

\section*{Input Arguments}

\section*{n - Input}
number | vector | matrix | array | symbolic number | symbolic array
Input, specified as a number, vector, matrix, array, or a symbolic number or array.

\section*{See Also}
isprime|nextprime|nthprime|primes

\section*{Introduced in R2016b}

\section*{psi}

Digamma function

\section*{Syntax}
```

psi(x)
psi(k,x)

```

\section*{Description}
psi(x) computes the digamma function on page 4-1339 of \(x\).
psi(\(k, x\)) computes the polygamma function on page 4-1340 of \(x\), which is the kth derivative of the digamma function at \(x\).

\section*{Examples}

\section*{Compute Digamma and Polygamma for Numeric Inputs}

Compute the digamma and polygamma functions for these numbers. Because these numbers are not symbolic objects, you get the floating-point results.
```

[psi(1/2) psi(2, 1/2) psi(1.34) psi(1, sin(pi/3))]
ans =
-1.9635 -16.8288 -0.1248 2.0372

```

\section*{Compute Digamma and Polygamma for Symbolic Inputs}

Compute the digamma and polygamma functions for the numbers converted to symbolic objects.
[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]
```

ans =
[ - eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]

```

For some symbolic (exact) numbers, psi returns unresolved symbolic calls.
```

psi(sym(sqrt(2)))
ans =
psi(2^(1/2))

```

\section*{Compute Derivatives of Digamma and Polygamma Functions}

Compute the derivatives of these expressions containing the digamma and polygamma functions.
```

syms x
diff(psi(1, x^3 + 1), x)
diff(psi(sin(x)), x)
ans =
3*x^2*psi(2, x^3 + 1)
ans =
cos(x)*psi(1, sin(x))

```

\section*{Expand Digamma and Polygamma Functions}

Expand the expressions containing the digamma functions.
syms \(x\)
expand (psi(2*x + 3))
expand(psi(x + 2)*psi(x))
ans \(=\)
psi \((x+1 / 2) / 2+\log (2)+\operatorname{psi}(x) / 2+\ldots\).
\(1 /\left(2^{*} x+1\right)+1 /\left(2^{*} x+2\right)+1 /(2 * x)\)
ans =
psi(x)/x + psi(x)^2 + psi(x)/(x + 1)

\section*{Limit of Digamma and Polygamma Functions}

Compute the limits for expressions containing the digamma and polygamma functions.
```

syms x
limit(x*psi(x), x, 0)
limit(psi(3, x), x, inf)
ans =
-1
ans =
0

```

\section*{Compute Digamma for Matrix Input}

Compute the digamma function for elements of matrix M and vector V .
```

M = sym([0 inf; 1/3 1/2]);
V = sym([1, inf]);
psi(M)
psi(V)
ans =
[ [ eulergamma - (3*log(3))/2 - (pi*3^(1/2))/6, - eulergamma - 2*log(2)]
ans =
[ -eulergamma, Inf]

```

\section*{Compute Polygamma for Matrix Input}

Compute the polygamma function for elements of matrix M and vector V . The psi function acts elementwise on nonscalar inputs.
```

M = sym([0 inf; 1/3 1/2]);
polyGammaM = [1 3; 2 2];
V = sym([1, inf]);
polyGammaV = [6 6];
psi(polyGammaM,M)
psi(polyGammaV,V)
ans =
[ [-26*zeta(3)-(4*3^(1/2)*pi^3)/9, -14*zeta(3)]
ans =
[ -720*zeta(7), 0]

```

Because all elements of polyGammaV have the same value, you can replace polyGammaV by a scalar of that value. psi expands the scalar into a nonscalar of the same size as V and computes the result.
```

V = sym([1, inf]);
psi(6,V)
ans =
[ -720*zeta(7), 0]

```

\section*{Input Arguments}

\section*{x - Input}
symbolic number | symbolic variable | symbolic expression | symbolic array
Input, specified as a symbolic number, variable, expression, or array, or expression.

\section*{k - Input}
nonnegative integer | nonnegative integer or vector, matrix or multidimensional array of nonnegative integers.

Input, specified as a nonnegative integer or vector, matrix or multidimensional array of nonnegative integers. If x is nonscalar and k is scalar, then k is expanded into a nonscalar of the same dimensions as \(x\) with each element being equal to \(k\). If both \(x\) and \(k\) are nonscalars, they must have the same dimensions.

\section*{Definitions}

\section*{Digamma Function}

The digamma function is the first derivative of the logarithm of the gamma function:
\[
\psi(x)=\frac{d}{d x} \ln \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
\]

\section*{Polygamma Function}

The polygamma function of the order \(k\) is the \((k+1)\) th derivative of the logarithm of the gamma function:
\[
\psi^{(k)}(x)=\frac{d^{k+1}}{d x^{k+1}} \ln \Gamma(x)=\frac{d^{k}}{d x^{k}} \psi(x)
\]

\section*{Tips}
- Calling psi for a number that is not a symbolic object invokes the MATLAB psi function. This function accepts real nonnegative arguments \(x\). If you want to compute the polygamma function for a complex number, use sym to convert that number to a symbolic object, and then call psi for that symbolic object.
- psi(0, x) is equivalent to psi(x).

\section*{See Also}
beta|factorial|gamma|nchoosek

\section*{Introduced in R2011b}

\section*{qr}

QR factorization

\section*{Syntax}
```

R = qr(A)
[Q,R] = qr(A)
[Q,R,P] = qr(A)
[C,R] = qr(A,B)
[C,R,P] = qr(A,B)
[Q,R,p] = qr(A,'vector')
[C,R,p] = qr(A,B,'vector')
___ qr(

```
\(\qquad\)
``` , 'econ')
___ = qr(
```

\qquad

``` ,'real')
```


Description

$R=\operatorname{qr}(A)$ returns the R part of the $Q R$ decomposition on page 4-1352 $A=Q * R$. Here, A is an m-by- n matrix, R is an m-by- n upper triangular matrix, and Q is an m-by- m unitary matrix.
$[Q, R]=\operatorname{qr}(A)$ returns an upper triangular matrix R and a unitary matrix Q, such that A = Q^{*} R.
$[Q, R, P]=\operatorname{qr}(A)$ returns an upper triangular matrix R, a unitary matrix Q, and a permutation matrix P, such that $A * P=Q * R$. If all elements of A can be approximated by the floating-point numbers, then this syntax chooses the column permutation P so that abs(diag(R)) is decreasing. Otherwise, it returns $P=\operatorname{eye}(n)$.
$[C, R]=\operatorname{qr}(A, B)$ returns an upper triangular matrix R and a matrix C, such that $C=$ $Q^{\prime} * B$ and $A=Q * R$. Here, A and B must have the same number of rows.
C and R represent the solution of the matrix equation $A * X=B$ as $X=R \backslash C$.
$[C, R, P]=\operatorname{qr}(A, B)$ returns an upper triangular matrix R, a matrix C, such that $C=$ $Q^{\prime} * B$, and a permutation matrix P, such that $A * P=Q * R$. If all elements of A can be approximated by the floating-point numbers, then this syntax chooses the permutation matrix P so that abs (diag(R)) is decreasing. Otherwise, it returns $P=$ eye (n). Here, A and B must have the same number of rows.
C, R, and P represent the solution of the matrix equation $A * X=B$ as $X=P *(R \backslash C)$.
$[Q, R, p]=\operatorname{qr}(A, ' v e c t o r ')$ returns the permutation information as a vector p, such that $A(:, p)=Q * R$.
$[C, R, p]=\operatorname{qr}(A, B, ' v e c t o r ')$ returns the permutation information as a vector p.
C, R, and p represent the solution of the matrix equation $A * X=B$ as $X(p,:)=R \backslash C$.
$\ldots \quad$ _ $\operatorname{qr}(\ldots$, , 'econ' $)$ returns the "economy size" decomposition. If A is an m-by-n matrix with $m>n$, then qr computes only the first n columns of Q and the first n rows of R. For $m<=n$, the syntaxes with 'econ ' are equivalent to the corresponding syntaxes without 'econ'.

When you use 'econ', qr always returns the permutation information as a vector p.
You can use 0 instead of 'econ'. For example, $[Q, R]=\operatorname{qr}(A, 0)$ is equivalent to $[Q, R]$ $=\operatorname{qr}\left(A,{ }^{\prime}\right.$ econ' $)$.
$=\operatorname{qr}(\ldots$, 'real' $)$ assumes that input arguments and intermediate results are real, and therefore, suppresses calls to abs and conj. When you use this flag, qr assumes that all symbolic variables represent real numbers. When using this flag, ensure that all numeric arguments are real numbers.

Use 'real' to avoid complex conjugates in the result.

Examples

R part of QR Factorization

Compute the R part of the QR decomposition of the 4-by-4 Wilkinson's eigenvalue test matrix.

Create the 4-by-4 Wilkinson's eigenvalue test matrix:

```
A = sym(wilkinson(4))
A =
[ 3/2, 1, 0, 0]
[ 1, 1/2, 1, 0]
[ 0, 1, 1/2, 1]
[ 0, 0, 1, 3/2]
```

Use the syntax with one output argument to return the R part of the QR decomposition without returning the Q part:

$R=\operatorname{qr}(A)$

QR Factorization of Pascal Matrix

Compute the QR decomposition of the 3-by-3 Pascal matrix.
Create the 3-by-3 Pascal matrix:

```
A = sym(pascal(3))
A =
[ 1, 1, 1]
[ 1, 2, 3]
[ 1, 3, 6]
```

Find the Q and R matrices representing the QR decomposition of A :

```
[Q,R] = qr(A)
Q =
[ 3^(1/2)/3, -2^(1/2)/2, 6^(1/2)/6]
[ 3^(1/2)/3, 0, -6^(1/2)/3]
[ 3^(1/2)/3, 2^(1/2)/2, 6^(1/2)/6]
R =
[ 3^(1/2), 2*3^(1/2), (10*3^(1/2))/3]
[ [ 0, 2^(1/2),
```

Verify that $A=$ Q*R using isAlways:

```
isAlways(A == Q*R)
ans =
    3x3 logical array
        1 1 1 1
        1 1 1
        1 1 1
```


Permutation Information

Using permutations helps increase numerical stability of the QR factorization for floatingpoint matrices. The qr function returns permutation information either as a matrix or as a vector.

Set the number of significant decimal digits, used for variable-precision arithmetic, to 10 . Approximate the 3-by-3 symbolic Hilbert matrix by floating-point numbers:

```
previoussetting = digits(10);
A = vpa(hilb(3))
A =
[\mp@code{1.0,}
```

First, compute the QR decomposition of A without permutations:

```
[Q,R] = qr(A)
Q =
[ 0.8571428571, -0.5016049166, 0.1170411472]
[ 0.4285714286, 0.5684855721, -0.7022468832]
[ 0.2857142857, 0.6520863915, 0.7022468832]
R =
[ 1.166666667, 0.6428571429, 0.45]
[ 0, 0.1017143303, 0.1053370325]
[ 0, 0, 0.003901371573]
```

Compute the difference between A and $Q * R$. The computed Q and R matrices do not strictly satisfy the equality $A * P=Q * R$ because of the round-off errors.

A - Q*R

```
ans =
[ -1.387778781e-16, -3.989863995e-16, -2.064320936e-16]
[ -3.469446952e-18, -8.847089727e-17, -1.084202172e-16]
[ -2.602085214e-18, -6.591949209e-17, -6.678685383e-17]
```

To increase numerical stability of the QR decomposition, use permutations by specifying the syntax with three output arguments. For matrices that do not contain symbolic variables, expressions, or functions, this syntax triggers pivoting, so that abs (diag(R)) in the returned matrix R is decreasing.

```
[Q,R,P] = qr(A)
Q =
[ 0.8571428571, -0.4969293466, -0.1355261854]
[ 0.4285714286, 0.5421047417, 0.7228063223]
[ 0.2857142857, 0.6776309272, -0.6776309272]
R =
[ 1.166666667, 0.45, 0.6428571429]
[ 0, 0.1054092553, 0.1016446391]
[ 0, 0, 0.003764616262]
P =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{tabular}
```

Check the equality $A * P=Q * R$ again. QR factorization with permutations results in smaller round-off errors.

```
A*P - Q*R
ans =
[ -3.469446952e-18, -4.33680869e-18, -6.938893904e-18]
    0, -8.67361738e-19, -1.734723476e-18]
    0, -4.33680869e-19, -1.734723476e-18]
```

Now, return the permutation information as a vector by using the 'vector' argument:

```
[Q,R,p] = qr(A,'vector')
Q =
[ 0.8571428571, -0.4969293466, -0.1355261854]
[ 0.4285714286, 0.5421047417, 0.7228063223]
[ 0.2857142857, 0.6776309272, -0.6776309272]
R =
[ 1.166666667, 0.45, 0.6428571429]
```

```
[ 0, 0.1054092553, 0.1016446391]
[ 0, 0, 0.003764616262]
p =
    1 3 2
Verify that A(:, p) = Q*R:
A(:,p) - Q*R
ans =
[ -3.469446952e-18, -4.33680869e-18, -6.938893904e-18]
[ 0, -8.67361738e-19, -1.734723476e-18]
[ 0, -4.33680869e-19, -1.734723476e-18]
```

Exact symbolic computations let you avoid roundoff errors:

```
A = sym(hilb(3));
[Q,R] = qr(A);
A - Q*R
ans =
[ 0, 0, 0]
[ 0, 0, 0]
[ 0, 0, 0]
```

Restore the number of significant decimal digits to its default setting:

```
digits(previoussetting)
```


Use QR Decomposition to Solve Matrix Equation

You can use qr to solve systems of equations in a matrix form.
Suppose you need to solve the system of equations $A^{*} X=b$, where A and b are the following matrix and vector:

```
A = sym(invhilb(5))
b = sym([1:5]')
\begin{tabular}{|c|c|c|c|c|}
\hline 25 & -300, & 1050, & -1400, & 630 \\
\hline -300, & 4800, & -18900, & 26880, & -12600] \\
\hline 1050, & -18900, & 79380, & -117600, & 56700] \\
\hline -1400, & 26880, & -117600, & 179200, & -88200] \\
\hline 630, & -12600 & 56700 & -88200, & 4410 \\
\hline
\end{tabular}
```

$\mathrm{b}=$

1
2
3
4
5
Use $q r$ to find matrices C and R, such that $C=Q^{\prime *} B$ and $A=Q * R$:
$[C, R]=\operatorname{qr}(A, b) ;$
Compute the solution X :
$X=R \backslash C$
$X=$
5
71/20
197/70
657/280
1271/630
Verify that X is the solution of the system $\mathrm{A} * \mathrm{X}=\mathrm{b}$ using isAlways:

```
isAlways(A*X == b)
```

ans $=$
5×1 logical array
1
1
1
1
1

Use QR Decomposition with Permutation Information to Solve Matrix Equation

When solving systems of equations that contain floating-point numbers, the QR decomposition with the permutation matrix or vector.

Suppose you need to solve the system of equations $A * X=b$, where A and b are the following matrix and vector:

```
previoussetting = digits(10);
A = vpa([2 -3 -1; 1 1 -1; 0 1 -1]);
b = vpa([2; 0; -1]);
```

Use $q r$ to find matrices C and R, such that $C=Q^{\prime} * B$ and $A=Q * R$:
$[C, R, P]=\operatorname{qr}(A, b)$
C $=$
-2.110579412
-0.2132007164
0.7071067812
R =
[3.31662479, 0.3015113446, -1.507556723]
[0, 1.705605731, -1.492405014]
[0, 0, 0.7071067812]
$P=$

0	0	1
1	0	0
0	1	0

Compute the solution X :

```
\(X=P^{*}(R \backslash C)\)
X =
    1.0
    \(-0.25\)
    0.75
```

Alternatively, return the permutation information as a vector:

```
[C,R,p] = qr(A,b,'vector')
C =
        -2.110579412
        -0.2132007164
        0.7071067812
R =
[ 3.31662479, 0.3015113446, -1.507556723]
    0, 1.705605731, -1.492405014]
    0, 0, 0.7071067812]
p =
    2 3 1
```

In this case, compute the solution X as follows:

```
X(p,:) = R\C
X =
    1.0
    -0.25
    0.75
```

Restore the number of significant decimal digits to its default setting:

```
digits(previoussetting)
```


"Economy Size" Decomposition

Use 'econ' to compute the "economy size" QR decomposition.
Create a matrix that consists of the first two columns of the 4-by-4 Pascal matrix:

```
A = sym(pascal(4));
A = A(:,1:2)
A =
[ 1, 1]
[ 1, 2]
[ 1, 3]
[ 1, 4]
```

Compute the QR decomposition for this matrix:

```
[Q,R] = qr(A)
Q =
[ 1/2, -(3*5^(1/2))/10, (3^(1/2)*10^(1/2))/10, 0]
[ 1/2, -5^(1/2)/10, -(2*3^(1/2)*10^(1/2))/15, 6^(1/2)/6]
[ 1/2, 5^(1/2)/10, -(3^(1/2)*10^(1/2))/30, -6^(1/2)/3]
[ 1/2, (3*5^(1/2))/10, (3^(1/2)*10^(1/2))/15, 6^(1/2)/6]
R =
[ 2, 5]
[ 0, 5^(1/2)]
[ 0, 0]
[ 0, 0]
```

Now, compute the "economy size" QR decomposition for this matrix. Because the number of rows exceeds the number of columns, qr computes only the first 2 columns of Q and the first 2 rows of R.

```
[Q,R] = qr(A,'econ')
Q =
[ 1/2, -(3*5^(1/2))/10]
[ 1/2, -5^(1/2)/10]
[ 1/2, 5^(1/2)/10]
[ 1/2, (3*5^(1/2))/10]
R =
[ 2, 5]
[ 0, 5^(1/2)]
```


Avoid Complex Conjugates

Use the 'real' flag to avoid complex conjugates in the result.
Create a matrix, one of the elements of which is a variable:

```
syms x
A = [1 2; 3 x]
A =
[ 1, 2]
[ 3, x]
```

Compute the QR factorization of this matrix. By default, qr assumes that x represents a complex number, and therefore, the result contains expressions with the abs function.

```
[Q,R] = qr(A)
Q =
[ 10^(1/2)/10, -((3*x)/10 - 9/5)/(abs(x/10 - 3/5)^2...
    + abs((3*x)/10 - 9/5)^2)^(1/2)]
[(3*10^(1/2))/10, (x/10 - 3/5)/(abs(x/10 - 3/5)^2...
    + abs((3*x)/10 - 9/5)^2)^(1/2)]
R =
[ 10^(1/2), (10^(1/2)*(3*x + 2))/10]
[ 0, (abs(x/10 - 3/5)^2 + abs((3*x)/10 - 9/5)^2)^(1/2)]
```

When you use 'real', qr assumes that all symbolic variables represent real numbers, and can return shorter results:

$$
[Q, R]=\operatorname{qr}(A, ' r e a l ')
$$

```
Q =
[ 10^(1/2)/10, -((3*x)/10 - 9/5)/(x^2/10 - (6*x)/5\ldots
    * + 18/5)^(1/2)]
    (x/10 - 3/5)/(x^2/10 - (6*x)/5...
        + 18/5)^(1/2)]
R =
[ 10^(1/2), (10^(1/2)*(3*x + 2))/10]
[ 0, (x^2/10 - (6*x)/5 + 18/5)^(1/2)]
```


Input Arguments

A - Input matrix

m-by-n symbolic matrix
Input matrix, specified as an m-by-n symbolic matrix.

B - Input
 symbolic vector | symbolic matrix

Input, specified as a symbolic vector or matrix. The number of rows in B must be the same as the number of rows in A.

Output Arguments

R - R part of the QR decomposition

m-by- n upper triangular symbolic matrix
R part of the QR decomposition, returned as an m-by-n upper triangular symbolic matrix.

Q - Q part of the QR decomposition

m-by- m unitary symbolic matrix
Q part of the QR decomposition, returned as an m-by- m unitary symbolic matrix.

P - Permutation information

matrix of double-precision values
Permutation information, returned as a matrix of double-precision values, such that A*P $=\mathrm{Q}$ R .

p - Permutation information

vector of double-precision values
Permutation information, returned as a vector of double-precision values, such that $A(:, p)=Q * R$.

$C-$ Matrix representing solution of matrix equation $A * X=B$ symbolic matrix

Matrix representing solution of matrix equation $A * X=B$, returned as a symbolic matrix, such that $C=Q \cdot * B$.

Definitions

QR Factorization of Matrix

The QR factorization expresses an m-by-n matrix A as $A=Q * R$. Here, Q is an $m-b y-m$ unitary matrix, and R is an m-by- n upper triangular matrix. If the components of A are real numbers, then Q is an orthogonal matrix.

Tips

- The upper triangular matrix A satisfies the following condition: $R=\operatorname{chol}\left(A^{\prime}{ }^{*} A\right)$.
- The arguments 'econ ' and 0 only affect the shape of the returned matrices.
- Calling qr for numeric matrices that are not symbolic objects (not created by sym, syms, or vpa) invokes the MATLAB qr function.
- If you use 'matrix' instead of 'vector', then qr returns permutation matrices, as it does by default. If you use 'matrix' and 'econ', then qr throws an error.

See Also

chol|eig|lu|svd

Introduced in R2014a

quorem

Quotient and remainder

Syntax

```
[Q,R] = quorem(A,B,var)
[Q,R] = quorem(A,B)
```


Description

$[Q, R]=$ quorem (A, B, var) divides A by B and returns the quotient Q and remainder R of the division, such that $A=Q * B+R$. This syntax regards A and B as polynomials in the variable var.

If A and B are matrices, quorem performs elements-wise division, using var are a variable. It returns the quotient Q and remainder R of the division, such that $A=Q . * B+$ R.
$[Q, R]=$ quorem($A, B)$ uses the variable determined by symvar($A, 1)$. If symvar(A, 1) returns an empty symbolic object sym([]), then quorem uses the variable determined by symvar $(B, 1)$.

If both symvar $(A, 1)$ and symvar $(B, 1)$ are empty, then A and B must both be integers or matrices with integer elements. In this case, quorem (A, B) returns symbolic integers Q and R, such that $A=Q * B+R$. If A and B are matrices, then Q and R are symbolic matrices with integer elements, such that $A=Q . * B+R$, and each element of R is smaller in absolute value than the corresponding element of B.

Examples

Divide Multivariate Polynomials

Compute the quotient and remainder of the division of these multivariate polynomials with respect to the variable y :

```
syms x y
p1 = x^3* y^4 - 2*x*y + 5*x + 1;
p2 = x*y;
[q, r] = quorem(p1, p2, y)
q =
x^2* (}\mp@subsup{y}{}{\wedge}3-
r=
5*x + 1
```


Divide Univariate Polynomials

Compute the quotient and remainder of the division of these univariate polynomials:

```
syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)
q =
x^2 + 2
r =
- 5*x^2 + 4*x - 10
```


Divide Integers

Compute the quotient and remainder of the division of these integers:

```
[q, r] = quorem(sym(10)^5, sym(985))
```

$q=$
101
$r=$
515

Input Arguments

A - Dividend (numerator)

[^3]Dividend (numerator), specified as a symbolic integer, polynomial, or a vector or matrix of symbolic integers or polynomials.

B - Divisor (denominator)
 symbolic integer | polynomial | symbolic vector | symbolic matrix

Divisor (denominator), specified as a symbolic integer, polynomial, or a vector or matrix of symbolic integers or polynomials.

var - Polynomial variable
 symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments

Q - Quotient of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix
Quotient of the division, returned as a symbolic integer, expression, or a vector or matrix of symbolic integers or expressions.

R - Remainder of the division
 symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Remainder of the division, returned as a symbolic integer, expression, or a vector or matrix of symbolic integers or expressions.

See Also

deconv | mod

Introduced before R2006a

rank

Find rank of symbolic matrix

Syntax

$$
\operatorname{rank}(A)
$$

Description

rank (A) returns the rank of symbolic matrix A .

Examples

Find Rank of Matrix

```
syms a b c d
A = [a b; c d];
rank(A)
ans =
    2
```


Rank of Symbolic Matrices Is Exact

Symbolic calculations return the exact rank of a matrix while numeric calculations can suffer from round-off errors. This exact calculation is useful for ill-conditioned matrices, such as the Hilbert matrix. The rank of a Hilbert matrix of order n is n.

Find the rank of the Hilbert matrix of order 15 numerically. Then convert the numeric matrix to a symbolic matrix using sym and find the rank symbolically.

```
H = hilb(15);
rank(H)
rank(sym(H))
```

```
ans =
    12
ans =
    1 5
```

The symbolic calculation returns the correct rank of 15 . The numeric calculation returns an incorrect rank of 12 due to round-off errors.

Rank Function Does Not Simplify Symbolic Calculations

Consider this matrix

$$
A=\left[\begin{array}{cc}
1-\sin ^{2}(x) & \cos ^{2}(x) \\
1 & 1
\end{array}\right]
$$

After simplification of $1-\sin (x)^{\wedge} 2$ to $\cos (x)^{\wedge} 2$, the matrix has a rank of 1. However, rank returns an incorrect rank of 2 because it does not take into account identities satisfied by special functions occurring in the matrix elements. Demonstrate the incorrect result.
syms x
$A=[1-\sin (x) \cos (x) ; \cos (x) 1+\sin (x)] ;$
rank(A)
ans =
2
rank returns an incorrect result because the outputs of intermediate steps are not simplified. While there is no fail-safe workaround, you can simplify symbolic expressions by using numeric substitution and evaluating the substitution using vpa.

Find the correct rank by substituting x with a number and evaluating the result using vpa.

```
rank(vpa(subs(A,x,1)))
ans =
    1
```

However, even after numeric substitution, rank can return incorrect results due to roundoff errors.

Input Arguments

```
A - Input
number | vector | matrix | symbolic number | symbolic vector | symbolic matrix
```

Input, specified as a number, vector, or matrix or a symbolic number, vector, or matrix.

See Also
eig|null|rref
Introduced before R2006a

rdivide./

Symbolic array right division

Syntax

A./B
rdivide(A,B)

Description

A. /B divides A by B.
rdivide (A, B) is equivalent to $A . / B$.

Examples

Divide Scalar by Matrix

Create a 2-by-3 matrix.
B = sym('b', [2 3])
$B=$
[b1_1, b1_2, b1_3]
[b2_1, b2_2, b2_3]
Divide the symbolic expression sin(a) by each element of the matrix B.

```
syms a
sin(a)./B
ans =
[ sin(a)/b1 1, sin(a)/b1 2, sin(a)/b1 3]
[ sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]
```


Divide Matrix by Matrix

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```
H = sym(hilb(3))
d = diag(sym([llll))
H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
d =
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
```

Divide d by H by using the elementwise right division operator . \backslash. This operator divides each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.
d./H

```
ans =
```

[1, 0, 0]
[0, 6, 0]
[0, 0, 15]

Divide Expression by Symbolic Function

Divide a symbolic expression by a symbolic function. The result is a symbolic function.

```
syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6)./f
f1(x) =
(x^2 + 5*x + 6)/x^2
```


Input Arguments

```
A - Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression
```

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

B - Input

symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

See Also

ctranspose|ldivide | minus |mldivide | mpower |mrdivide |mtimes | plus | power|times|transpose

Introduced before R2006a

read

Read MuPAD program file into symbolic engine

Syntax

```
read(symengine,filename)
```


Description

read(symengine, filename) reads the MuPAD program file filename into the symbolic engine. Reading a program file means finding and executing it.

Examples

Read MuPAD Program File into Symbolic Engine

Suppose you wrote the MuPAD procedure myProc and saved it in the file myProcedure.mu.

Before you can call this procedure at the MATLAB Command Window, you must read the file myProcedure.mu into the symbolic engine. To read a program file into the symbolic engine, use read:
read(symengine, 'myProcedure.mu')
If the file is not on the MATLAB path, specify the full path to this file. For example, if myProcedure. mu is in the MuPAD folder on disk C, enter:
read(symengine, 'C:/MuPAD/myProcedure.mu')
Now you can access the procedure myProc using evalin or feval. For example, compute the factorial of 10 :
feval(symengine, 'myProc', 10)
ans =
3628800

Input Arguments

filename - name of a MuPAD program file

character vector
Name of a MuPAD program file, specified as a character vector. This file must have the extension .mu or .gz.

Tips

- If you do not specify the file extension, read searches for the file filename.mu.
- If filename is a GNU® zip file with the extension .gz, read uncompresses it upon reading.
- filename can include full or relative path information. If filename does not have a path component, read uses the MATLAB function which to search for the file on the MATLAB path.
- read ignores any MuPAD aliases defined in the program file. If your program file contains aliases or uses the aliases predefined by MATLAB, see "Alternatives" on page 4-1364.

Alternatives

You also can use feval to call the MuPAD read function. The read function available from the MATLAB Command Window is equivalent to calling the MuPAD read function with the Plain option. It ignores any MuPAD aliases defined in the program file:

```
feval(symengine, 'read',' "myProcedure.mu" ', 'Plain')
```

If your program file contains aliases or uses the aliases predefined by MATLAB, do not use Plain:

```
feval(symengine, 'read',' "myProcedure.mu" ')
```


See Also

evalin|feval|symengine

Topics

"Use Your Own MuPAD Procedures" on page 3-63

Introduced in R2011b

real

Real part of complex number

Syntax

```
real(z)
```


Description

real (z) returns the real part of z. If z is a matrix, real acts elementwise on z.

Examples

Compute Real Part of Numeric Inputs

Find the real parts of these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[real(2 + 3/2*i), real(sin(5*i)), real(2*exp(1 + i))]
```

ans $=$
$2.0000 \quad 0 \quad 2.9374$

Compute Real Part of Symbolic Inputs

Compute the real parts of the numbers converted to symbolic objects:

```
[real(sym(2) + 3/2*i), real(4/(sym(1) + 3*i)), real(sin(sym(5)*i))]
ans =
[ 2, 2/5, 0]
```

Compute the real part of this symbolic expression:

```
real(2*exp(1 + sym(i)))
```

ans =
$2 * \cos (1) * \exp (1)$

Compute Real Part of Symbolic Expressions

In general, real cannot extract the entire real parts from symbolic expressions containing variables. However, real can rewrite and sometimes simplify the input expression:

```
syms a x y
real(a + 2)
real(x + y*i)
ans =
real(a) + 2
ans =
real(x) - imag(y)
```

If you assign numeric values to these variables or specify that these variables are real, real can extract the real part of the expression:

```
syms a
a = 5 + 3*i;
real(a + 2)
ans =
    7
syms x y real
real(x + y*i)
ans =
x
```

Clear the assumption that x and y are real:
syms x y clear

Compute Real Part for Matrix Input

Find the real parts of the elements of matrix A:

```
syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
real(A)
ans =
[ -1, real(sinh(x))]
[ cos(7)*exp(10), -1]
```


Input Arguments

z - Input
 number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Tips

- Calling real for a number that is not a symbolic object invokes the MATLAB real function.

Alternatives

You can compute the real part of z via the conjugate: $\operatorname{real}(z)=(z+\operatorname{conj}(z)) / 2$.

See Also

conj|imag|in|sign|signIm

Introduced before R2006a

rectangularPulse

Rectangular pulse function

Syntax

```
rectangularPulse(a,b,x)
```

rectangularPulse(x)

Description

rectangularPulse(a, b, x) returns the "Rectangular Pulse Function" on page 4-1373. rectangularPulse(x) is a shortcut for rectangularPulse($-1 / 2,1 / 2, x$).

Examples

Plot Rectangular Pulse Function

Plot the rectangular pulse function using fplot. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(rectangularPulse(x), [-1 1])

Compute Rectangular Pulse Function

Compute the rectangular pulse function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[rectangularPulse(-1, 1, -2)
    rectangularPulse(-1, 1, -1)
    rectangularPulse(-1, 1, 0)
    rectangularPulse(-1, 1, 1)
    rectangularPulse(-1, 1, 2)]
```


ans =

0
0.5000
1.0000
0.5000
0

Compute the rectangular pulse function for the same numbers in symbolic form.

```
[rectangularPulse(sym(-1), 1, -2)
    rectangularPulse(-1, sym(1), -1)
    rectangularPulse(-1, 1, sym(0))
    rectangularPulse(sym(-1), 1, 1)
    rectangularPulse(sym(-1), 1, 2)]
ans =
    0
    1/2
        1
    1/2
        0
```


Edge Values of Rectangular Pulse

Show that if $\mathrm{a}<\mathrm{b}$, the rectangular pulse function for $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ equals $1 / 2$.

```
syms a b x
assume(a < b)
rectangularPulse(a, b, a)
rectangularPulse(a, b, b)
ans =
1/2
ans =
1/2
```

For further computations, remove the assumption:
syms a b clear
For $\mathrm{a}=\mathrm{b}$, the rectangular pulse function returns 0 :

```
syms a x
rectangularPulse(a, a, x)
ans =
0
```


Fixed Rectangular Pulse of Width 1

Compute a rectangular pulse of width by using rectangularPulse (x). This call is equal to rectangularPulse(-1/2, $1 / 2, x)$.
syms x
rectangularPulse(x)
ans $=$
rectangularPulse(-1/2, $1 / 2, x$)
[rectangularPulse(sym(-1))
rectangularPulse(sym(-1/2))
rectangularPulse(sym(0))
rectangularPulse(sym(1/2))
rectangularPulse(sym(1))]
ans $=$
0
1/2
1
1/2
0

Relation Between Heaviside and Rectangular Pulse

When the rising or falling edge of rectangularPulse is Inf, then the result is in terms of heaviside.

```
syms x
rectangularPulse(-inf, 0, x)
rectangularPulse(0, inf, x)
rectangularPulse(-inf, inf, x)
ans =
heaviside(-x)
```

```
ans =
heaviside(x)
ans =
1
```


Input Arguments

a - Input

-1/2 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the rising edge of the rectangular pulse function.

b - Input

-1/2 (default) | number | symbolic scalar
Input, specified as a number or a symbolic scalar. This argument specifies the falling edge of the rectangular pulse function.

x - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Rectangular Pulse Function

- If $a<x<b$, then the rectangular pulse function equals 1 .
- If $x=a$ or $x=b$ and $a<>b$, then the rectangular pulse function equals $1 / 2$.
- Otherwise, it equals 0 .

The rectangular pulse function is also called the rectangle function, boxcar function, Pi function, or gate function.

Tips

- If a and b are variables or expressions with variables, rectangularPulse assumes that $a<b$. If a and b are numerical values, such that $a>b$, rectangularPulse throws an error.
- If $a=b$, rectangularPulse returns 0 .

See Also
dirac|heaviside|triangularPulse
Introduced in R2012b

reduceDAEIndex

Convert system of first-order differential algebraic equations to equivalent system of differential index 1

Syntax

[newEqs,newVars] = reduceDAEIndex(eqs,vars)
[newEqs,newVars,R] = reduceDAEIndex(eqs,vars)
[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars)

Description

[newEqs,newVars] = reduceDAEIndex(eqs,vars) converts a high-index system of first-order differential algebraic equations eqs to an equivalent system newEqs of differential index 1.
reduceDAEIndex keeps the original equations and variables and introduces new variables and equations. After conversion, reduceDAEIndex checks the differential index of the new system by calling isLowIndexDAE. If the index of newEqs is 2 or higher, then reduceDAEIndex issues a warning.
[newEqs,newVars,R] = reduceDAEIndex(eqs,vars) returns matrix R that expresses the new variables in newVars as derivatives of the original variables vars.
[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars) returns the differential index, oldIndex, of the original system of DAEs, eqs.

Examples

Reduce Differential Index of DAE System

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the index is higher than 1 , then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, the symbolic functions $x(t), y(t)$, and $z(t)$ represent the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t) z(t) f(t)
eqs = [diff(x) == x + z, diff(y) == f(t), x == y];
vars = [x(t), y(t), z(t)];
```

Use isLowIndexDAE to check the differential index of the system. For this system, isLowIndexDAE returns 0 (false). This means that the differential index of the system is 2 or higher.

```
isLowIndexDAE(eqs, vars)
```

```
ans =
    logical
        0
```

Use reduceDAEIndex to rewrite the system so that the differential index is 1 . The new system has one additional state variable, Dyt (t).

```
[newEqs, newVars] = reduceDAEIndex(eqs, vars)
newEqs =
    diff(x(t), t) - z(t) - x(t)
                                Dyt(t) - f(t)
                            x(t) - y(t)
            diff(x(t), t) - Dyt(t)
newVars =
        x(t)
        y(t)
        z(t)
    Dyt(t)
```

Check if the differential order of the new system is lower than 2.

```
isLowIndexDAE(newEqs, newVars)
```

```
ans =
    logical
        1
```


Reduce the Index and Return More Details

Reduce the differential index of a system that contains two second-order differential algebraic equation. Because the equations are second-order equations, first use reduceDifferentialOrder to rewrite the system to a system of first-order DAEs.

Create the following system of two second-order DAEs. Here, $x(t), y(t)$, and $F(t)$ are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms t x(t) y(t) F(t) r g
eqs = [diff(x(t), t, t) == -F(t)*x(t),...
    diff(y(t), t, t) == -F(t)*y(t) - g,...
    x(t)^2 + y(t)^2 == r^2 ];
vars = [x(t), y(t), F(t)];
```

Rewrite this system so that all equations become first-order differential equations. The reduceDifferentialOrder function replaces the second-order DAE by two first-order expressions by introducing the new variables $\operatorname{Dxt}(\mathrm{t})$ and $\operatorname{Dyt}(\mathrm{t})$. It also replaces the first-order equations by symbolic expressions.

```
[eqs, vars] = reduceDifferentialOrder(eqs, vars)
eqs =
    diff(Dxt(t), t) + F(t)*x(t)
diff(Dyt(t), t) + g + F(t)*y(t)
            x(t)^2 + y(t)^2 - r^2
            Dxt(t) - diff(x(t), t)
            Dyt(t) - diff(y(t), t)
vars =
    x(t)
    y(t)
    F(t)
Dxt(t)
Dyt(t)
```

Use reduceDAEIndex to rewrite the system so that the differential index is 1 .

```
[eqs, vars, R, originalIndex] = reduceDAEIndex(eqs, vars)
eqs =
```

```
Dxtt(t) + F(t)*x(t)
```

```
                                    g + Dytt(t) + F(t)*y(t)
                                    x(t)^2 + y(t)^2 - r^2
                                    Dxt(t) - Dxt1(t)
                                    Dyt(t) - Dyt1(t)
                            2*Dxt1(t)*x(t) + 2*Dyt1(t)*y(t)
2*Dxt1t(t)*x(t) + 2*Dxt1(t)^2 + 2*Dyt1(t)^2 + 2*y(t)*diff(Dyt1(t), t)
                                    Dxtt(t) - Dxt1t(t)
                                    Dytt(t) - diff(Dyt1(t), t)
                                    Dytl(t) - diff(y(t), t)
vars =
            x(t)
            y(t)
            F(t)
        Dxt(t)
        Dyt(t)
        Dytt(t)
        Dxtt(t)
        Dxt1(t)
        Dyt1(t)
    Dxt1t(t)
R =
[ Dytt(t), diff(Dyt(t), t)]
[ Dxtt(t), diff(Dxt(t), t)]
[ Dxtl(t), diff(x(t), t)]
[ Dyt1(t), diff(y(t), t)]
[ Dxt1t(t), diff(x(t), t, t)]
originalIndex =
    3
```

Use reduceRedundancies to shorten the system.

```
[eqs, vars] = reduceRedundancies(eqs, vars)
```

eqs =

$$
\begin{array}{r}
\operatorname{Dxtt}(t)+F(t) * x(t) \\
g+\operatorname{Dytt}(t)+F(t) * y(t) \\
x(t)^{\wedge} 2+y(t) \wedge 2-r^{\wedge} 2 \\
2 * \operatorname{Dxt}(t) * x(t)+2 * \operatorname{Dyt}(t) * y(t) \\
2 * \operatorname{Dxtt}(t) * x(t)+2 * \operatorname{Dytt}(t) * y(t)+2 * \operatorname{Dxt}(t) \wedge 2+2 * \operatorname{Dyt}(t) \wedge 2 \\
\operatorname{Dytt}(t)-\operatorname{diff}(\operatorname{Dyt}(t), t) \\
\operatorname{Dyt}(t)-\operatorname{diff}(y(t), t)
\end{array}
$$

```
vars =
    x(t)
    y(t)
    F(t)
    Dxt(t)
    Dyt(t)
Dytt(t)
Dxtt(t)
```


Input Arguments

eqs - System of first-order DAEs

vector of symbolic equations | vector of symbolic expressions
System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $x(t)$.
Example: [x(t),y(t)]

Output Arguments

newEqs - System of first-order DAEs of differential index 1

column vector of symbolic expressions
System of first-order DAEs of differential index 1, returned as a column vector of symbolic expressions.

newVars - Extended set of variables

column vector of symbolic function calls
Extended set of variables, returned as a column vector of symbolic function calls. This vector includes the original state variables vars followed by the generated variables that replace the second- and higher-order derivatives in eqs.

R - Relations between new and original variables
 symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two columns. The first column contains the new variables. The second column contains their definitions as derivatives of the original variables vars.

oldIndex - Differential index of original DAE system

integer

Differential index of original DAE system, returned as an integer or NaN.

Algorithms

The implementation of reduceDAEIndex uses the Pantelides algorithm. This algorithm reduces higher-index systems to lower-index systems by selectively adding differentiated forms of the original equations. The Pantelides algorithm can underestimate the differential index of a new system, and therefore, can fail to reduce the differential index to 1 . In this case, reduceDAEIndex issues a warning and, for the syntax with four output arguments, returns the value of oldIndex as NaN. The reduceDAEToODE function uses more reliable, but slower Gaussian elimination. Note that reduceDAETOODE requires the DAE system to be semilinear.

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE | massMatrixForm|odeFunction | reduceDAEToODE | reduceDifferentialOrder|reduceRedundancies

Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

reduceDAEToODE

Convert system of first-order semilinear differential algebraic equations to equivalent system of differential index 0

Syntax

```
newEqs = reduceDAEToODE(eqs,vars)
[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars)
[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars)
```


Description

newEqs = reduceDAEToODE(eqs,vars) converts a high-index system of first-order semilinear algebraic equations eqs to an equivalent system of ordinary differential equations, newEqs. The differential index of the new system is 0 , that is, the Jacobian of newEqs with respect to the derivatives of the variables in vars is invertible.
[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars) returns a vector of constraint equations.
[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs, vars) returns the differential index oldIndex of the original system of semilinear DAEs, eqs.

Examples

Convert DAE System to Implicit ODE System

Convert a system of differential algebraic equations (DAEs) to a system of implicit ordinary differential equations (ODEs).

Create the following system of two differential algebraic equations. Here, the symbolic functions $x(t), y(t)$, and $z(t)$ represent the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t) z(t)
eqs = [diff(x,t)+x*diff(y,t) == y,...
    x*diff(x, t)+x^2*diff(y) == sin(x),...
    x^2 + y^2 == t*z];
vars = [x(t), y(t), z(t)];
```

Use reduceDAEToODE to rewrite the system so that the differential index is 0 .

```
newEqs = reduceDAEToODE(eqs, vars)
newEqs =
    x(t)*diff(y(t), t) - y(t) + diff(x(t), t)
    diff(x(t), t)*(cos(x(t)) - y(t)) - x(t)*diff(y(t), t)
    z(t) - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t) + t*diff(z(t), t)
```


Reduce System and Return More Details

Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the index is higher than 1 , first try to reduce the index by using reduceDAEIndex and then by using reduceDAEToODE.

Create the system of differential algebraic equations. Here, the functions $x 1(t), x 2(t)$, and $x 3(t)$ represent the state variables of the system. The system also contains the functions $q 1(\mathrm{t}), \mathrm{q} 2(\mathrm{t})$, and $\mathrm{q} 3(\mathrm{t})$. These functions do not represent state variables. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x1(t) x2(t) x3(t) q1(t) q2(t) q3(t)
eqs = [diff(x2) == q1 - x1,
    diff(x3) == q2 - 2*x2 - t*(q1-x1),
    q3 - t*x2 - x3];
vars = [x1(t), x2(t), x3(t)];
```

Use isLowIndexDAE to check the differential index of the system. For this system, isLowIndexDAE returns 0 (false). This means that the differential index of the system is 2 or higher.

```
isLowIndexDAE(eqs, vars)
```

```
ans =
    logical
    0
```

Use reduceDAEIndex as your first attempt to rewrite the system so that the differential index is 1 . For this system, reduceDAEIndex issues a warning because it cannot reduce the differential index of the system to 0 or 1 .

```
[newEqs, newVars] = reduceDAEIndex(eqs, vars)
Warning: Index of reduced DAEs is larger than 1.
newEqs =
    x1(t) - q1(t) + diff(x2(t), t)
    Dx3t(t) - q2(t) + 2*x2(t) + t*(q1(t) - x1(t))
    q3(t) - x3(t) - t*x2(t)
    diff(q3(t), t) - x2(t) - t*diff(x2(t), t) - Dx3t(t)
newVars =
    x1(t)
    x2(t)
    x3(t)
Dx3t(t)
```

If reduceDAEIndex cannot reduce the semilinear system so that the index is 0 or 1 , try using reduceDAEToODE. This function can be much slower, therefore it is not recommended as a first choice. Use the syntax with two output arguments to also return the constraint equations.

```
[newEqs, constraintEqs] = reduceDAEToODE(eqs, vars)
newEqs =
    x1(t) - q1(t) + diff(x2(t), t)
    2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)
diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)
constraintEqs =
    xl(t) - ql(t) + diff(q2(t), t) - diff(q3(t), t, t)
                                x3(t) - q3(t) + t*x2(t)
    x2(t) - q2(t) + diff(q3(t), t)
```

Use the syntax with three output arguments to return the new equations, constraint equations, and the differential index of the original system, eqs.
[newEqs, constraintEqs, oldIndex] = reduceDAEToODE(eqs, vars)
newEqs =

```
    x1(t) - q1(t) + diff(x2(t), t)
    2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)
```

```
diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)
constraintEqs =
xl(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)
                                x3(t) - q3(t) + t*x2(t)
    x2(t) - q2(t) + diff(q3(t), t)
oldIndex =
    3
```


Input Arguments

eqs - System of first-order semilinear DAEs

vector of symbolic equations | vector of symbolic expressions
System of first-order semilinear DAEs, specified as a vector of symbolic equations or expressions.

vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $x(t)$.
Example: $[x(t), y(t)]$ or $[x(t) ; y(t)]$

Output Arguments

newEqs - System of implicit ordinary differential equations

column vector of symbolic expressions
System of implicit ordinary differential equations, returned as a column vector of symbolic expressions. The differential index of this system is 0 .

constraintEqs - Constraint equations encountered during system reduction

column vector of symbolic expressions
Constraint equations encountered during system reduction, returned as a column vector of symbolic expressions. These expressions depend on the variables vars, but not on their derivatives. The constraints are conserved quantities of the differential equations in newEqs, meaning that the time derivative of each constraint vanishes modulo the equations in newEqs.

You can use these equations to determine consistent initial conditions for the DAE system.

oldIndex - Differential index of original DAE system eqs

 integerDifferential index of original DAE system eqs, returned as an integer.

Algorithms

The implementation of reduceDAEToODE is based on Gaussian elimination. This algorithm is more reliable than the Pantelides algorithm used by reduceDAEIndex, but it can be much slower.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE | massMatrixForm|odeFunction | reduceDAEIndex | reduceDifferentialOrder|reduceRedundancies

Topics

"Solve Semilinear DAE System" on page 2-210

Introduced in R2014b

reduceDifferentialOrder

Reduce system of higher-order differential equations to equivalent system of first-order differential equations

Syntax

```
[newEqs,newVars] = reduceDifferentialOrder(eqs,vars)
[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars)
```


Description

[newEqs, newVars] = reduceDifferentialOrder(eqs,vars) rewrites a system of higher-order differential equations eqs as a system of first-order differential equations newEqs by substituting derivatives in eqs with new variables. Here, newVars consists of the original variables vars augmented with these new variables.
[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars) returns the matrix R that expresses the new variables in newVars as derivatives of the original variables vars.

Examples

Reduce Differential Order of DAE System

Reduce a system containing higher-order DAEs to a system containing only first-order DAEs.

Create the system of differential equations, which includes a second-order expression. Here, $x(t)$ and $y(t)$ are the state variables of the system, and $c 1$ and $c 2$ are parameters. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t) c1 c2
eqs = [diff(x(t), t, t) + sin(x(t)) + y(t) == c1*\operatorname{cos(t),...}
```

```
diff(y(t), t) == c2*x(t)];
```

vars $=[x(t), y(t)]$;
[newEqs, newVars] = reduceDifferentialOrder(eqs, vars)

Rewrite this system so that all equations become first-order differential equations. The reduceDifferential0rder function replaces the higher-order DAE by first-order expressions by introducing the new variable Dxt (t). It also represents all equations as symbolic expressions.

```
[newEqs, newVars] = reduceDifferentialOrder(eqs, vars)
newEqs =
    sin(x(t)) + y(t) + diff(Dxt(t), t) - c1*cos(t)
    diff(y(t), t) - c2*x(t)
    Dxt(t) - diff(x(t), t)
newVars =
    x(t)
    y(t)
Dxt(t)
```


Show Relations Between Generated and Original Variables

Reduce a system containing a second- and a third-order expression to a system containing only first-order DAEs. In addition, return a matrix that expresses the variables generated by reduceDifferential0rder via the original variables of this system.

Create a system of differential equations, which includes a second- and a third-order expression. Here, $x(t)$ and $y(t)$ are the state variables of the system. Specify the equations and variables as two symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic function calls.

```
syms x(t) y(t) f(t)
eqs = [diff(x(t),t,t) == diff(f(t),t,t,t), diff(y(t),t,t,t) == diff(f(t),t,t)];
vars = [x(t), y(t)];
```

Call reduceDifferentialOrder with three output arguments. This syntax returns matrix R with two columns: the first column contains the new variables, and the second column expresses the new variables as derivatives of the original variables, $x(t)$ and $y(t)$.
[newEqs, newVars, R] = reduceDifferentialOrder(eqs, vars)

```
newEqs =
    diff(Dxt(t), t) - diff(f(t), t, t, t)
        diff(Dytt(t), t) - diff(f(t), t, t)
                                    Dxt(t) - diff(x(t), t)
                                    Dyt(t) - diff(y(t), t)
                                    Dytt(t) - diff(Dyt(t), t)
newVars =
        x(t)
        y(t)
        Dxt(t)
        Dyt(t)
    Dytt(t)
R =
[ Dxt(t), diff(x(t), t)]
[ Dyt(t), diff(y(t), t)]
[ Dytt(t), diff(y(t), t, t)]
```


Input Arguments

eqs - System containing higher-order differential equations

vector of symbolic equations | vector of symbolic expressions
System containing higher-order differential equations, specified as a vector of symbolic equations or expressions.

vars - Variables of original differential equations

vector of symbolic functions | vector of symbolic function calls
Variables of original differential equations, specified as a vector of symbolic functions, or function calls, such as $x(t)$.
Example: [x(t),y(t)]

Output Arguments

newEqs - System of first-order differential equations

column vector of symbolic expressions

System of first-order differential equations, returned as a column vector of symbolic expressions.

newVars - Extended set of variables

column vector of symbolic function calls
Extended set of variables, returned as a column vector of symbolic function calls. This vector includes the original state variables vars followed by the generated variables that replace the higher-order derivatives in eqs.

R - Relations between new and original variables

symbolic matrix
Relations between new and original variables, returned as a symbolic matrix with two columns. The first column contains the new variables newVars. The second column contains their definition as derivatives of the original variables vars.

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE | massMatrixForm|odeFunction | reduceDAEIndex | reduceDAEToODE | reduceRedundancies

Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

reduceRedundancies

Simplify system of first-order differential algebraic equations by eliminating redundant equations and variables

Syntax

[newEqs,newVars] = reduceRedundancies(eqs,vars)
[newEqs, newVars,R] = reduceRedundancies(eqs,vars)

Description

[newEqs,newVars] = reduceRedundancies(eqs,vars) eliminates simple equations from the system of first-order differential algebraic equations eqs. It returns a column vector newEqs of symbolic expressions and a column vector newVars of those variables that remain in the new DAE system newEqs. The expressions in newEqs represent equations with a zero right side.
[newEqs,newVars,R] = reduceRedundancies(eqs,vars) returns a structure array R containing information on the eliminated equations and variables.

Examples

Shorten DAE System by Removing Redundant Equations

Use reduceRedundancies to simplify a system of five differential algebraic equations in four variables to a system of two equations in two variables.

Create the following system of five differential algebraic equations in four state variables $x 1(t), x 2(t), x 3(t)$, and $x 4(t)$. The system also contains symbolic parameters a1, a2, $a 3, a 4, b, c$, and the function $f(t)$ that is not a state variable.

```
syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),...
    a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),...
```

```
    x1(t) == 2*x2(t),...
    x4(t) == f(t), ...
    f(t) == sin(t)];
vars = [x1(t), x2(t), x3(t), x4(t)];
```

Use reduceRedundancies to eliminate redundant equations and corresponding state variables.

```
[newEqs, newVars] = reduceRedundancies(eqs, vars)
newEqs =
    a1*diff(xl(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)
    (a3*diff(x1(t), t))/2 + a4*diff(x3(t), t) - c*f(t)
newVars =
    x1(t)
    x3(t)
```


Obtain Information About Eliminated Equations

Call reduceRedundancies with three output arguments to simplify a system and return information about eliminated equations.

Create the following system of five differential algebraic equations in four state variables $x 1(t), x 2(t), x 3(t)$, and $x 4(t)$. The system also contains symbolic parameters a1, a2, $a 3, a 4, b, c$, and the function $f(t)$ that is not a state variable.

```
syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),...
    a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),\ldots.
    x1(t) == 2*x2(t),...
    x4(t) == f(t), ...
    f(t) == sin(t)];
vars = [x1(t), x2(t), x3(t), x4(t)];
```

Call reduceRedundancies with three output variables.

```
[newEqs, newVars, R] = reduceRedundancies(eqs, vars)
```

newEqs =
a1*diff(xl(t), t) + (a2*diff(x1(t), t))/2 - b*f(t)
(a3*diff(x1(t), t))/2 + a4*diff(x3(t), t) - c*f(t)
newVars =

```
x1(t)
x3(t)
R =
    struct with fields:
    solvedEquations: [2\times1 sym]
    constantVariables: [1×2 sym]
    replacedVariables: [1×2 sym]
    otherEquations: [1\times1 sym]
```

Here, R is a structure array with four fields. The solvedEquations field contains equations that reduceRedundancies used to replace those state variables from vars that do not appear in newEqs.
R.solvedEquations
ans $=$
x1(t) - 2*x2(t)
$x 4(t)$ - f(t)
The constantVariables field contains a matrix with the following two columns. The first column contains those state variables from vars that reduceRedundancies replaced by constant values. The second column contains the corresponding constant values.
R.constantVariables
ans =
[$x 4(t), f(t)]$
The replacedVariables field contains a matrix with the following two columns. The first column contains those state variables from vars that reduceRedundancies replaced by expressions in terms of other variables. The second column contains the corresponding values of the eliminated variables.
R.replacedVariables

```
ans =
[ x2(t), x1(t)/2]
```

The otherEquations field contains those equations from eqs that do not contain any of the state variables vars.

R.otherEquations

```
ans =
f(t) - sin(t)
```


Input Arguments

eqs - System of first-order DAEs

vector of symbolic equations | vector of symbolic expressions
System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars - State variables

vector of symbolic functions | vector of symbolic function calls
State variables, specified as a vector of symbolic functions or function calls, such as $x(t)$.
Example: [x(t),y(t)]

Output Arguments

newEqs - System of first-order DAEs

column vector of symbolic expressions
System of first-order DAEs, returned as a column vector of symbolic expressions

newVars - Reduced set of variables

column vector of symbolic function calls
Reduced set of variables, returned as a column vector of symbolic function calls.

R - Information about eliminated variables
 structure array

Information about eliminated variables, returned as a structure array. To access this information, use:

- R.solvedEquations to return a symbolic column vector of all equations that reduceRedundancies used to replace those state variables that do not appear in newEqs.
- R.constantVariables to return a matrix with the following two columns. The first column contains those original state variables of the vector vars that were eliminated
and replaced by constant values. The second column contains the corresponding constant values.
- R.replacedVariables to return a matrix with the following two columns. The first column contains those original state variables of the vector vars that were eliminated and replaced in terms of other variables. The second column contains the corresponding values of the eliminated variables.
- R.otherEquations to return a column vector containing all original equations eqs that do not contain any of the input variables vars.

See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix| isLowIndexDAE | massMatrixForm|odeFunction | reduceDAEIndex| reduceDAEToODE \| reduceDifferential0rder

Topics

"Solve Differential Algebraic Equations (DAEs)" on page 2-198

Introduced in R2014b

rem

Remainder after division

Syntax

rem(a,b)

Description

rem(a, b) finds the remainder after division. If $b<>0$, then rem($a, b)=a-f i x(a /$ b) $* \mathrm{~b}$. If $\mathrm{b}=0$ or $\mathrm{b}=\operatorname{Inf}$ or $\mathrm{b}=-$ Inf, then rem returns NaN .

The rem function does not support complex numbers: all values must be real numbers.
To find the remainder after division of polynomials, use quorem.

Examples

Divide Integers by Integers

Find the remainder after division in case both the dividend and divisor are integers.
Find the modulus after division for these numbers.

```
[rem(sym(27), 4), rem(sym(27), -4), rem(sym(-27), 4), rem(sym(-27), -4)]
ans =
[ 3, 3, -3, -3]
```


Divide Rationals by Integers

Find the remainder after division in case the dividend is a rational number, and the divisor is an integer.

Find the remainder after division for these numbers.

```
[rem(sym(22/3), 5), rem(sym(1/2), -7), rem(sym(27/6), -11)]
ans =
[ 7/3, 1/2, 9/2]
```


Divide Elements of Matrices

For vectors and matrices, rem finds the remainder after division element-wise. Nonscalar arguments must be the same size.

Find the remainder after division for the elements of these two matrices.

```
A = sym([27, 28; 29, 30]);
B = sym([2, 3; 4, 5]);
rem(A,B)
ans =
[ 1, 1]
[ 1, 0]
```

Find the remainder after division for the elements of matrix A and the value 9. Here, rem expands 9 into the 2-by-2 matrix with all elements equal to 9 .

```
rem(A,9)
```

ans =
[0, 1]
[2, 3]

Input Arguments

a - Dividend (numerator)
 number | symbolic number | vector | matrix

Dividend (numerator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.

b - Divisor (denominator)
 number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of numbers or symbolic numbers.

Tips

- Calling rem for numbers that are not symbolic objects invokes the MATLAB rem function.
- All nonscalar arguments must be the same size. If one input arguments is nonscalar, then mod expands the scalar into a vector or matrix of the same size as the nonscalar argument, with all elements equal to the corresponding scalar.

See Also

mod | quorem

Introduced before R2006a

removeUnit

Remove unit

Syntax

removeUnit(unit)

Description

removeUnit(unit) removes the symbolic unit unit. You can remove only user-defined units created with newUnit. You cannot remove predefined units. If unit is a vector, removeUnit removes all units in unit.

Examples

Remove Unit

Remove units you define by using removeUnit. Create the unit warp3, use the unit in calculations, and then remove the unit.

Define the unit warp3 as 3 times the speed of light.
u = symunit;
warp3 = newUnit('warp3', 3^{*} u.c_0)
warp3 =
[warp3]
Convert 1e10 meter per second to u . warp3.
speed $=$ rewrite(1e10*u.m/u.s,u.warp3)
speed =
(5000000000/449688687)*[warp3]

After calculations, remove the unit u.warp3 by using removeUnit. removeUnit(u.warp3)

Conversion to u.warp3 now throws an error.

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

Input Arguments

unit - Unit name

symbolic unit | vector of symbolic units

Unit name, specified as a symbolic unit or a vector of symbolic units.

See Also

checkUnits|isUnit|newUnit|newUnitSystem| symunit

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017b

reset

Close MuPAD engine

Syntax

```
reset(symengine)
```


Description

reset (symengine) closes the MuPAD engine associated with the MATLAB workspace, and resets all its assumptions. Immediately before or after executing reset (symengine) you should clear all symbolic objects in the MATLAB workspace.

See Also

symengine

Introduced in R2008b

reshape

Reshape symbolic array

Syntax

```
reshape(A,n1,n2)
reshape(A,n1,...,nM)
reshape(A,...,[],...)
reshape(A,sz)
```


Description

reshape ($A, n 1, n 2$) returns the n1-by-n2 matrix, which has the same elements as A. The elements are taken column-wise from A to fill in the elements of the n1-by-n2 matrix.
reshape ($\mathrm{A}, \mathrm{n} 1, \ldots, \mathrm{nM}$) returns the n1-by-. . .-by-nM array, which has the same elements as A. The elements are taken column-wise from A to fill in the elements of the n1-by-. . .-by-nM array.
reshape (A, . . , [] , . . .) lets you represent a size value with the placeholder [] while calculating the magnitude of that size value automatically. For example, if A has size 2-by-6, then reshape (A, 4, []) returns a 4-by-3 array.
reshape ($A, s z$) reshapes A into an array with size specified by $s z$, where $s z$ is a vector.

Examples

Reshape Symbolic Row Vector into Column Vector

Reshape V, which is a 1-by-4 row vector, into the 4 -by-1 column vector Y . Here, V and Y must have the same number of elements.

Create the vector V.

```
syms f(x) y
V = [3 f(x) -4 y]
V =
[ 3, f(x), -4, y]
Reshape V into Y.
```

```
Y = reshape(V,4,1)
```

Y = reshape(V,4,1)
Y =
Y =
3
3
f(x)
f(x)
-4
-4
y

```
    y
```

Alternatively, use $\mathrm{Y}=\mathrm{V} . \mathrm{I}^{\prime}$ where . ' is the nonconjugate transpose.

Reshape Symbolic Matrix

Reshape the 2-by-6 symbolic matrix M into a 4-by-3 matrix.

```
M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])
```

$N=$ reshape(M,4,3)

```
M =
[ 1, 9, 4, 3, 0, 1]
[ 3, 9, 5, 1, 9, 2]
N =
[ 1, 4, 0]
[ 3, 5, 9]
[ 9, 3, 1]
[ 9, 1, 2]
```

M and N must have the same number of elements. reshape reads M column-wise to fill in the elements of N column-wise.

Alternatively, use a size vector to specify the dimensions of the reshaped matrix.

```
sz = [4 3];
N = reshape(M,sz)
N =
[ 1, 4, 0]
```

[3, 5, 9]
$[9,3,1]$
[9, 1, 2]

Automatically Set Dimension of Reshaped Matrix

When you replace a dimension with the placeholder [], reshape calculates the required magnitude of that dimension to reshape the matrix.

Create the matrix M.

```
M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])
M =
[ 1, 9, 4, 3, 0, 1]
[ 3, 9, 5, 1, 9, 2]
```

Reshape M into a matrix with three columns.

```
reshape(M,[],3)
```

ans =
[1, 4, 0]
[3, 5, 9]
$[9,3,1]$
[9, 1, 2]
reshape calculates that a reshaped matrix of three columns needs four rows.

Reshape Matrix Row-wise

Reshape a matrix row-wise by transposing the result.
Create matrix M.
syms x
M $=\operatorname{sym}([190 \sin (x) 2$ 2; $N a N \times 514$ 7])
$M=$
$\left[\begin{array}{rrr}1, & 9, & \sin (x), \\ {[} & 2, & 2] \\ \mathrm{NaN}, ~ x, ~ 5, & 1, & 4,\end{array}\right]$
Reshape M row-wise by transposing the result.

```
reshape(M,4,3).'
ans =
[ 1, NaN, 9, x]
[ 0, 5, sin(x), 1]
[ 2, 4, 2, 7]
```

Note that . ' returns the non-conjugate transpose while ' returns the conjugate transpose.

Reshape 3-D Array into 2-D Matrix

Reshape the 3-by-3-by-2 array M into a 9-by-2 matrix.
M has 18 elements. Because a 9-by-2 matrix also has 18 elements, M can be reshaped into it. Construct M.
syms x
M = [sin(x) x 4; 3 2 9; $8 \times x]$;
$M(:,:, 2)=M^{\prime}$

```
M(:,:,1) =
[ sin(x), x, 4]
[ 3, 2, 9]
[ 8, x, x]
M(:,:,2) =
[ sin(conj(x)), 3, 8]
[ conj(x), 2, conj(x)]
    4, 9, conj(x)]
```

Reshape M into a 9-by-2 matrix.

```
N = reshape(M,9,2)
N =
\begin{tabular}{|c|c|}
\hline sin(x), & conj(x))] \\
\hline 3 , & conj(x)] \\
\hline 8, & \(4]\) \\
\hline \(x\), & \(3]\) \\
\hline 2, & 2] \\
\hline \(x\), & \(9]\) \\
\hline 4, & 8] \\
\hline 9, & conj(x)] \\
\hline \(x\), & \(\operatorname{conj}(\mathrm{x})\) ] \\
\hline
\end{tabular}
```


Use reshape to Break Up Arrays

Use reshape instead of loops to break up arrays for further computation. Use reshape to break up the vector V to find the product of every three elements.

Create vector V.

```
syms x
V = [exp(x) 1 3 9 x 2 7 7 1 8 x^2 3 4 sin(x) x]
V =
[ exp(x), 1, 3, 9, x, 2, 7, 7, 1, 8, x^2, 3, 4, sin(x), x]
```

Specify 3 for the number of rows. Use the placeholder [] for the number of columns. This lets reshape automatically calculate the number of columns required for three rows.

```
M = prod( reshape(V,3,[]) )
M =
[ 3*exp(x), 18*x, 49, 24*x^2, 4*x*sin(x)]
```

reshape calculates that five columns are required for a matrix of three rows. prod then multiples the elements of each column to return the result.

Input Arguments

A - Input array
 symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

n1, n2 - Dimensions of reshaped matrix

comma-separated scalars
Dimensions of reshaped matrix, specified as comma-separated scalars. For example, reshape ($\mathrm{A}, 3,2$) returns a 3-by-2 matrix. The number of elements in the output array specified by $\mathrm{n} 1, \mathrm{n} 2$ must be equal to numel (A).

n1, ..., nM - Dimensions of reshaped array

comma-separated scalars

Dimensions of reshaped array, specified as comma-separated scalars. For example, reshape ($A, 3,2,2$) returns a 3-by-2-by-2 matrix. The number of elements in the output array specified by $\mathrm{n} 1, \ldots, \mathrm{nM}$ must be equal to numel (A).

sz - Size of reshaped array

numeric vector

Size of reshaped array, specified as a numeric vector. For example, reshape(A, [3 2]) returns a 3-by-2 matrix. The number of elements in the output array specified by sz must be equal to numel (A).

See Also

colon|transpose

Introduced before R2006a

resultant

Resultant of two polynomials

Syntax

```
resultant(p,q)
resultant(p,q,var)
```


Description

resultant (p, q) returns the resultant of the polynomials p and q with respect to the variable found by symvar.
resultant (p, q, var) returns the resultant with respect to the variable var.

Examples

Resultant of Two Polynomials

Find the resultant of two polynomials.

```
syms x y
p = x^2+y;
q = x-2*y;
resultant(p,q)
ans =
4* y^2 + y
```

Find the resultant with respect to a specific variable by using the third argument.
resultant ($\mathrm{p}, \mathrm{q}, \mathrm{y}$)

```
ans =
2*x^2 + x
```


Solve Polynomial Equations in Two Variables

If two polynomials have a common root, then the resultant must be 0 at that root. Solve polynomial equations in two variables by calculating the resultant with respect to one variable, and solving the resultant for the other variable.

First, calculate the resultant of two polynomials with respect to x to return a polynomial in y .

```
syms x y
p = y^3 - 2*x^2 + 3*x*y;
q = x^3 + 2* (^^2 - 5*x^2*y;
res = resultant (p,q,x)
res =
y^9 - 35*y^8 + 44*y^6 + 126*y^5 - 32*y^4
```

Solve the resultant for y values of the roots. Avoid numerical roundoff errors by solving equations symbolically using the solve function. solve represents the solutions symbolically by using root.

```
yRoots = solve(res)
yRoots =
```

0
0
0
0
$\operatorname{root}\left(z^{\wedge} 5-35^{*} z^{\wedge} 4+44^{*} z^{\wedge} 2+126 * z-32, z, 1\right)$
$\operatorname{root}\left(z^{\wedge} 5-35^{*} z^{\wedge} 4+44^{*} z^{\wedge} 2+126 * z-32, z, 2\right)$
$\operatorname{root}\left(z^{\wedge} 5-35^{*} z^{\wedge} 4+44^{*} z^{\wedge} 2+126 * z-32, z, 3\right)$
$\operatorname{root}\left(z^{\wedge} 5-35^{*} z^{\wedge} 4+44^{*} z^{\wedge} 2+126 * z-32, z, 4\right)$
$\operatorname{root}\left(z^{\wedge} 5-35^{*} z^{\wedge} 4+44^{*} z^{\wedge} 2+126 * z-32, z, 5\right)$

Calculate numeric values by using vpa.
vpa(yRoots)
ans $=$

```
0
0.23545637976581197505601615070637
1.7760440932430169904041045113342 34.96107442233265321982129918627
- 0.98628744767074109264070992415511 - \(1.1027291033304653904984097788422 i\)
- \(0.98628744767074109264070992415511+1.1027291033304653904984097788422 i\)
```

Assume that you want to investigate the fifth root. For the fifth root, calculate the x value by substituting the y value into p and q. Then simultaneously solve the polynomials for x. Avoid numerical roundoff errors by solving equations symbolically using solve.

```
eqns = subs([p q], y, yRoots(5));
xRoot5 = solve(eqns,x);
```

Calculate the numeric value of the fifth root by using vpa.

```
root5 = vpa([xRoot5 yRoots(5)])
root5 =
[ 0.37078716473998365045397220797284, 0.23545637976581197505601615070637]
```

Verify that the root is correct by substituting root5 into p and q. The result is 0 within roundoff error.

```
subs([p q],[x y],root5)
ans =
[ -6.313690360861895794753956010471e-41, -9.1835496157991211560057541970488e-41]
```


Input Arguments

p - Polynomial

symbolic expression | symbolic function
Polynomial, specified as a symbolic expression or function.

q - Polynomial

symbolic expression | symbolic function
Polynomial, specified as a symbolic expression or function.

var - Variable

symbolic variable

Variable, specified as a symbolic variable.

See Also
eliminate |gcd|solve
Introduced in R2018a

removeUnitSystem

Remove unit system

Syntax

```
removeUnitSystem(unitSystem)
```


Description

removeUnitSystem(unitSystem) removes the unit system unitSystem. You can remove only user-defined unit systems created with newUnitSystem. You cannot remove predefined unit systems listed in "Unit Systems List" on page 2-28.

Examples

Remove Unit System

Define a unit system, use the unit system to rewrite units, and then remove the unit system by using removeUnitSystem.

Define the unit system mySystem with SI base units and the derived unit kilowatt hour.

```
u = symunit;
bunits = baseUnits('SI');
dunits = [u.kWh];
mySystem = newUnitSystem('mySystem',bunits,dunits)
mySystem =
    "mySystem"
```

Convert 50,000 Joules to derived units of mySystem by using rewrite with the third argument 'Derived '. As expected, the result is in kilowatt hour.

```
rewrite(50000*u.J,mySystem,'Derived')
```


ans $=$

$(1 / 72) *[\mathrm{kWh}]$
Remove the unit system mySystem by using removeUnitSystem.
removeUnitSystem(mySystem)
Converting units to mySystem now throws an error.

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

Input Arguments

unitSystem - Name of unit system

string | character vector
Name of the unit system, specified as a string or character vector.

See Also

baseUnits|derivedUnits|newUnitSystem|removeUnit|rewrite|symunit| unitSystems

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017b

rewrite

Rewrite expression in terms of another function

Syntax

```
rewrite(expr,target)
rewrite(unit,unitSystem)
rewrite(unit,unitSystem,'Derived')
    = rewrite(
```

\qquad

``` ,'Timperature', Temperature)
```


Description

rewrite (expr, target) rewrites the symbolic expression expr in terms of the target function target. The rewritten expression is mathematically equivalent to the original expression. If expr is a vector or matrix, rewrite acts element-wise on expr.
rewrite(unit, unitSystem) converts the symbolic unit unit to the unit system unitSystem. By default, the SI, CGS, and US unit systems are available. You can also define custom unit systems.
rewrite(unit,unitSystem, 'Derived') converts the symbolic unit unit to derived units of unitSystem.
= rewrite(\qquad ,'Timperature',Temperature) assumes that temperatures represent absolute temperatures or temperature differences when specified as 'absolute' or 'difference' respectively. The Temperature argument only affects conversion between units of temperature. By default, temperatures are assumed to be differences.

Examples

Rewrite Between Trigonometric and Exponential Functions

Rewrite any trigonometric function in terms of the exponential function by specifying the target 'exp'.

```
syms x
sin2exp = rewrite(sin(x), 'exp')
tan2exp = rewrite(tan(x), 'exp')
sin2exp =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
tan2exp =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)
```

Rewrite the exponential function in terms of any trigonometric function by specifying the trigonometric function as the target. For a full list of targets, see target.

```
syms x
exp2sin = rewrite(exp(x), 'sin')
exp2tan = rewrite(-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1), 'tan')
exp2sin =
1 - 2*sin((x*1i)/2)^2 - sin(x*1i)*1i
exp2tan =
-(((tan(x) - li)*li)/(tan(x) + li) + li)/...
    ((tan(x) - 1i)/(tan(x) + 1i) - 1)
```

Simplify exp2tan into the expected form by using simplify.

```
exp2tan = simplify(exp2tan)
```

exp2tan $=$
$\tan (x)$

Rewrite Between Trigonometric Functions

Rewrite any trigonometric function in terms of any other trigonometric function by specifying the target. For a full list of targets, see target.

Rewrite $\tan (x)$ in terms of the sine function by specifying the target 'sin'.

```
syms x
tan2sin = rewrite(tan(x), 'sin')
```

$\tan 2 \sin =$
$-\sin (x) /\left(2 * \sin (x / 2)^{\wedge} 2-1\right)$

Rewrite Between Symbolic Units

Rewrite a symbolic unit to another unit by using rewrite. You can also rewrite to SI units.

Rewrite 5 cm in terms of inches.

```
u = symunit;
length = 5*u.cm;
length = rewrite(length,u.in)
length =
(250/127)*[in]
```

Rewrite length in terms of SI units. The result is in meters.

```
length = rewrite(length,'SI')
length =
(1/20)*[m]
```

By default, temperatures are assumed to represent temperature differences. To rewrite between absolute temperatures, specify the Temperature input as 'absolute'.

Rewrite 23 degrees Celsius to degrees Kelvin, treating it first as a temperature difference and then as an absolute temperature.

```
u = symunit;
T = 23*u.Celsius;
relK = rewrite(T,u.K,'Temperature','difference')
relK =
23*[K]
absK = rewrite(T,u.K,'Temperature','absolute')
absK =
(5923/20)*[K]
```

For defining unit systems and converting between unit systems, see "Unit Conversions and Unit Systems" on page 2-31.

Rewrite Between Hyperbolic Functions and Trigonometric Functions

Rewrite any hyperbolic function in terms of any trigonometric function by specifying the trigonometric function as the target. For a full list of targets, see target.

Rewrite $\tanh (x)$ in terms of the sine function by specifying the target 'sin'.

```
syms x
tanh2sin = rewrite(tanh(x), 'sin')
tanh2sin =
(sin(x*li)*1i)/(2*sin((x*li)/2)^2 - 1)
```

Similarly, rewrite trigonometric functions in terms of hyperbolic functions by specifying the hyperbolic function as the target.

Rewrite Between Inverse Trigonometric Functions and Logarithm Function

Rewrite any inverse trigonometric function in terms of the logarithm function by specifying the target ' log '. For a full list of targets, see target.

Rewrite $\operatorname{acos}(x)$ and $\operatorname{acot}(x)$ in terms of the \log function.

```
syms x
acos2log = rewrite(acos(x), 'log')
acot2log = rewrite(acot(x), 'log')
acos2log =
- log(x + (1 - x^2)^(1/2)*1i)*1i
acot2log =
(log(1 - li/x)*1i)/2 - (log(1i/x + 1)*1i)/2
```

Similarly, rewrite the logarithm function in terms of an inverse trigonometric function by specifying the inverse trigonometric function as the target.

Rewrite Elements of Matrix

Rewrite each element of a matrix by calling rewrite on the matrix.
Rewrite all elements of a matrix in terms of the \exp function.

```
syms x
matrix = [sin(x) cos(x); sinh(x) cosh(x)];
rewrite(matrix, 'exp')
ans =
[ (exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2, exp(-x*1i)/2 + exp(x*1i)/2]
[ exp(x)/2 - exp(-x)/2, exp(-x)/2 + exp(x)/2]
```


Rewrite Between Sine and Cosine Functions

Rewrite the cosine function in terms of the sine function. Here, rewrite replaces the cosine function using the identity $\cos \left(2^{*} x\right)=1-2 * \sin (x)^{\wedge} 2$ which is valid for any x.
syms x

```
rewrite(cos(x),'sin')
```

ans =
$1-2 * \sin (x / 2)^{\wedge} 2$
rewrite does not replace $\sin (x)$ with either $-\sqrt{1-\cos ^{2}(x)}$ or $\sqrt{1-\cos ^{2}(x)}$ because these expressions are not valid for all x. However, using the square of these expressions to replace $\sin (x)^{\wedge} 2$ is valid for all x. Thus, rewrite replaces $\sin (x)^{\wedge} 2$.

```
syms x
rewrite(sin(x),'cos')
rewrite(sin(x)^2,'\operatorname{cos')}
ans =
sin(x)
```

```
ans =
1-\operatorname{cos}(x\mp@subsup{)}{}{\wedge}2
```


Input Arguments

expr - Input to rewrite

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input to rewrite, specified as a symbolic number, variable, expression, function, vector, matrix, or multidimensional array.

target - Target function

character vector
Target function, specified as a character vector. This table summarizes the rewriting rules for all allowed targets.

Target	Rewrites These Functions	In Terms of These Functions
'exp'	All trigonometric and hyperbolic functions including inverse functions	exp, log
'log'	All inverse trigonometric and hyperbolic functions	log
'sincos'	tan, cot, exp, sinh, cosh, tanh, coth	sin, cos
'sin', 'cos ', 'tan' , or 'cot'	sin, cos, exp, tan, cot, sinh, cosh, tanh, coth except the target	Target trigonometric function
'sinhcosh'	tan, cot, exp, sin, cos, tanh, coth	sinh, cosh
'sinh ', 'cosh' , 'tanh' ', 'coth '	tan, cot, exp, sin, cos, sinh, cosh, tanh, coth except the target	Target hyperbolic function

Target	Rewrites These Functions	In Terms of These Functions
'asin', 'acos ', 'atan' ', 'acot'	log, and all inverse trigonometric and inverse hyperbolic functions	Target inverse trigonometric function
'asinh ', 'acosh', 'atanh ', 'acoth'	log, and all inverse trigonometric and inverse hyperbolic functions	Target inverse hyperbolic function
'sqrt'	abs (x + li*y)	sqrt (x^2 + y^2)
'heaviside'	sign, triangularPulse, rectangularPulse	heaviside
'piecewise'	abs, heaviside, sign, triangularPulse, rectangularPulse	piecewise
Symbolic unit	Units	Target unit

unit - Unit of measurement

symbolic unit | array of symbolic units
Unit of measurement, specified as a symbolic unit, or an array of symbolic units.

unitSystem - Unit system

string | character vector

Unit system, specified as a string or character vector. By default, the SI, CGS, and US unit systems are available. You can also define custom unit systems. See "Unit Conversions and Unit Systems" on page 2-31.

Tips

- rewrite replaces symbolic function calls in expr with the target function only if the replacement is mathematically valid. Otherwise, it keeps the original function calls.

See Also

collect|combine | expand | factor|horner|numden | simplify |
simplifyFraction|symunit

Topics

"Choose Function to Rearrange Expression" on page 2-95

Introduced in R2012a

rhs

Right side (RHS) of equation

Syntax

rhs(eqn)

Description

rhs (eqn) returns the right side of the symbolic equation eqn. The value of eqn also can be a symbolic condition, such as $x>0$. If eqn is an array, then rhs returns an array of the right sides of the equations in eqn.

Examples

Find Right Side of Equation

Find the right side of the equation $2 * y==x^{\wedge} 2$ by using rhs.
First, declare the equation.

```
syms x y
eqn = 2*y == x^2
eqn =
2*y == x^2
```

Find the right side of eqn by using rhs.

```
rhsEqn = rhs(eqn)
```

rhsEqn =
$x^{\wedge} 2$

Find Right Side of Condition

Find the right side of the condition $x<y+1$ by using rhs.
First, declare the condition.

```
syms x y
cond = x < y + 1
cond =
x<y + 1
```

Find the right side of cond by using rhs.

```
rhsCond = rhs(cond)
```

rhsCond =
$y+1$

Note Conditions that use the > operator are internally rewritten using the < operator. Therefore, rhs returns the original left side. For example, rhs ($x>a$) returns x.

Find Right Side of Equations in Array

For an array that contains equations and conditions, rhs returns an array of the right sides of those equations or conditions. The output array is the same size as the input array.

Find the right side of the equations and conditions in the vector V .

```
syms x y
V = [y^2 == x^2, x ~= 0, x* y >= 1]
V =
[ y^2 == x^2, x ~= 0, 1 <= x* y]
rhsV = rhs(V)
rhsV =
[ x^2, 0, x*y]
```

Because any condition using the >= operator is internally rewritten using the <= operator, the sides of the last condition in V are exchanged.

Input Arguments

eqn - Equation or condition

symbolic equation | symbolic condition | vector of symbolic equations or conditions | matrix of symbolic equations or conditions | multidimensional array of symbolic equations or conditions

Equation or condition, specified as a symbolic equation or condition, or a vector, matrix, or multidimensional array of symbolic equations or conditions.

See Also
assume | children|lhs| subs

Introduced in R2017a

root

Represent roots of polynomial

Syntax

```
root (p,x)
root (p,x,k)
```


Description

$\operatorname{root}(p, x)$ returns a column vector of numbered roots of symbolic polynomial p with respect to x. Symbolically solving a high-degree polynomial for its roots can be complex or mathematically impossible. In this case, the Symbolic Math Toolbox uses the root function to represent the roots of the polynomial.
$\operatorname{root}(p, x, k)$ represents the k th root of symbolic polynomial p with respect to x.

Examples

Represent Roots of High-Degree Polynomial

Represent the roots of the polynomial $x^{3}+1$ using root. The root function returns a column vector. The elements of this vector represent the three roots of the polynomial.

```
syms x
p = x^3 + 1;
root(p,x)
ans =
    root(x^3 + 1, x, 1)
    root(x^3 + 1, x, 2)
    root(x^3 + 1, x, 3)
```

$\operatorname{root}\left(x^{\wedge} 3+1, x, 1\right)$ represents the first root of p, while $\operatorname{root}\left(x^{\wedge} 3+1, x, 2\right)$ represents the second root, and so on. Use this syntax to represent roots of high-degree polynomials.

Find Roots of High-Degree Polynomial

When solving a high-degree polynomial, solve represents the roots by using root. Alternatively, you can either return an explicit solution by using the MaxDegree option or return a numerical result by using vpa.

```
Find the roots of x^3 + 3*x - 16.
syms x
p = x^3 + 3*x - 16;
R = solve(p,x)
R =
    root(z^3 + 3*z - 16, z, 1)
    root(z^3 + 3*z - 16, z, 2)
    root(z^3 + 3*z - 16, z, 3)
```

Find the roots explicitly by setting the MaxDegree option to the degree of the polynomial. Polynomials with a degree greater than 4 do not have explicit solutions.

```
Rexplicit = solve(p,x,'MaxDegree',3)
Rexplicit =
    (65^(1/2) + 8)^(1/3) - 1/(65^(1/2) + 8)^(1/3)
    1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 -...
    (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2
    1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 +...
    (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2
```

Calculate the roots numerically by using vpa to convert R to high-precision floating point.

```
Rnumeric = vpa(R)
```

RRnumeric =
2.1267693318103912337456401562601
- 1.0633846659051956168728200781301 - $2.5283118563671914055545884653776 i$
- $1.0633846659051956168728200781301+2.5283118563671914055545884653776 i$

If the call to root contains parameters, substitute the parameters with numbers by using subs before calling vpa.

Use root in Symbolic Computations

You can use the root function as input to Symbolic Math Toolbox functions such as simplify, subs, and diff.

Simplify an expression containing root using the simplify function.

```
syms x
```

$r=\operatorname{root}\left(x^{\wedge} 6+x, x, 1\right)$;
simplify $\left(\sin (r)^{\wedge} 2+\cos (r)^{\wedge} 2\right)$
ans =
1

Substitute for parameters in root with numbers using subs.

```
syms b
subs(root(x^2 + b*x, x, 1), b, 5)
ans =
root(x^2 + 5*x, x, 1)
```

Substituting for parameters using subs is necessary before converting root to numeric form using vpa.

Differentiate an expression containing root with respect to a parameter using diff.

```
diff(root(x^2 + b*x, x, 1), b)
ans =
root(b^2*x^2 + b^2*x, x, 1)
```


Find Inverse Laplace Transform of Ratio of Polynomials

Find the inverse Laplace transform of a ratio of two polynomials using ilaplace. The inverse Laplace transform is returned in terms of root.

```
syms s
G = (s^3 + 1)/(s^6 + s^5 + s^2);
H = ilaplace(G)
H =
t - symsum(exp(root(s3^4 + s3^3 + 1, s3, k)*t)/...
(4*root(s3^4 + s3^3 + 1, s3, k) + 3), k, 1, 4)
```

When you get the root function in output, you can use the root function as input in subsequent symbolic calculations. However, if a numerical result is required, convert the root function to a high-precision numeric result using vpa.

Convert the inverse Laplace transform to numeric form using vpa.

```
H_vpa = simplify(vpa(H))
H_vpa =
t +...
0.30881178580997278695808136329347*exp(-1.0189127943851558447865795886366*t)*...
    cos(0.60256541999859902604398442197193*t) - ...
0.30881178580997278695808136329347*exp(0.5189127943851558447865795886366*t)*...
    cos(0.666609844932018579153758800733*t) - ...
0.6919689479355443779463355813596*exp(-1.0189127943851558447865795886366*t)*...
    sin(0.60256541999859902604398442197193*t) -...
0.16223098826244593894459034019473*exp(0.5189127943851558447865795886366*t)*\ldots...
    sin(0.666609844932018579153758800733*t)
```


Input Arguments

p - Symbolic polynomial

symbolic expression
Symbolic polynomial, specified as a symbolic expression.

x - Variable

symbolic variable
Variable, specified as a symbolic variable.

k - Number of polynomial root

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array

Number of polynomial root, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, or multidimensional array. When k is a nonscalar, root acts element-wise on k .

Example: $\operatorname{root}(f, x, 3)$ represents the third root of f.

See Also

solve|vpa

Introduced in R2015b

rref

Reduced row echelon form of matrix (Gauss-Jordan elimination)

Syntax

```
rref(A)
```


Description

$\operatorname{rref}(A)$ computes the reduced row echelon form of the symbolic matrix A. If the elements of a matrix contain free symbolic variables, rref regards the matrix as nonzero.

To solve a system of linear equations, use linsolve.

Examples

Compute Reduced Row Echelon Form of Numeric Matrix

Compute the reduced row echelon form of the magic square matrix.

```
rref(sym(magic(4)))
ans =
[ 1, 0, 0, 1]
[ 0, 1, 0, 3]
[ 0, 0, 1, -3]
[ 0, 0, 0, 0]
```


Compute Reduced Row Echelon Form of Symbolic Matrix

Compute the reduced row echelon form of the following symbolic matrix.

```
syms a b c
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)
```

```
ans =
[ 1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]
[ 0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]
[ 0, 0,
0]
```


See Also

eig|jordan|linsolve|rank

Introduced before R2006a

rsums

Interactive evaluation of Riemann sums

Syntax

```
rsums(f)
rsums(f,a,b)
rsums(f,[a,b])
```


Description

rsums (f) interactively approximates the integral of $f(x)$ by Middle Riemann sums for x from 0 to 1. rsums (f) displays a graph of $f(x)$ using 10 terms (rectangles). You can adjust the number of terms taken in the Middle Riemann sum by using the slider below the graph. The number of terms available ranges from 2 to 128 . f can be a character vector or a symbolic expression. The height of each rectangle is determined by the value of the function in the middle of each interval.
rsums (f,a,b) and rsums (f, $[\mathrm{a}, \mathrm{b}]$) approximates the integral for x from a to b .

Introduced before R2006a

sec

Symbolic secant function

Syntax

$\sec (X)$

Description

$\sec (X)$ returns the secant function on page 4-1436 of X.

Examples

Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sec returns floating-point or exact symbolic results.
Compute the secant function for these numbers. Because these numbers are not symbolic objects, sec returns floating-point results.

```
A = sec([-2, -pi, pi/6, 5*pi/7, 11])
A =
    -2.4030 -1.0000 1.1547 -1.6039 225.9531
```

Compute the secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sec returns unresolved symbolic calls.

```
symA = sec(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[ 1/cos(2), -1, (2*3^(1/2))/3, -1/cos((2*pi)/7), 1/cos(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

```
ans =
[ -2.4029979617223809897546004014201,...
-1.0,...
1.1547005383792515290182975610039,...
-1.6038754716096765049444092780298,...
225.95305931402493269037542703557]
```


Plot Secant Function

Plot the secant function on the interval from -4π to 4π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(sec(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing sec.

Find the first and second derivatives of the secant function:

```
syms x
diff(sec(x), x)
diff(sec(x), x, x)
ans =
sin(x)/cos(x)^2
```

```
ans =
1/\operatorname{cos}(x)+(2*sin(x\mp@subsup{)}{}{\wedge}2)/\operatorname{cos}(x\mp@subsup{)}{}{\wedge}3
```

Find the indefinite integral of the secant function:

```
int(sec(x), x)
ans =
log(1/cos(x)) + log(sin(x) + 1)
```

Find the Taylor series expansion of $\sec (x)$:
taylor(sec (x), x)
ans $=$
$\left(5^{*} x^{\wedge} 4\right) / 24+x^{\wedge} 2 / 2+1$
Rewrite the secant function in terms of the exponential function:
rewrite(sec(x), 'exp')
ans =
$1 /\left(\exp \left(-x^{*} 1 i\right) / 2+\exp \left(x^{*} 1 i\right) / 2\right)$

Evaluate Units with sec Function

sec numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the secant of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
secf = sec(f)
secf =
[ 1/cos((pi*x)/180), 1/cos(2)]
```


You can calculate secf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Secant Function

The secant of an angle, α, defined with reference to a right angled triangle is

$$
\sec (\alpha)=\frac{1}{\cos (\alpha)}=\frac{\text { hypotenuse }}{\text { adjacent side }}=\frac{h}{b} .
$$

The secant of a complex angle, α, is

$$
\sec (\alpha)=\frac{2}{e^{i \alpha}+e^{-i \alpha}} .
$$

See Also

acos |acot|acsc|asec|asin|atan|cos|cot|csc|sin|tan

Introduced before R2006a

sech

Symbolic hyperbolic secant function

Syntax

$\operatorname{sech}(X)$

Description

$\operatorname{sech}(X)$ returns the hyperbolic secant function of X.

Examples

Hyperbolic Secant Function for Numeric and Symbolic Arguments

Depending on its arguments, sech returns floating-point or exact symbolic results.
Compute the hyperbolic secant function for these numbers. Because these numbers are not symbolic objects, sech returns floating-point results.

```
A = sech([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1])
A =
    0.2658 -1.0000 1.1547 1.0000 2.0000 -1.6039 0.6481
```

Compute the hyperbolic secant function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sech returns unresolved symbolic calls.

```
symA = sech(sym([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1]))
symA =
[ 1/cosh(2), -1, (2*3^(1/2))/3, 1, 2, -1/cosh((pi*2i)/7), 1/cosh(1)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ 0.26580222883407969212086273981989,...
-1.0,...
1.1547005383792515290182975610039,...
1.0,...
2.0,...
-1.6038754716096765049444092780298,...
0.64805427366388539957497735322615]
```


Plot Hyperbolic Secant Function

Plot the hyperbolic secant function on the interval from -10 to 10. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(sech(x), [-10, 10])
grid on

Handle Expressions Containing Hyperbolic Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing sech.

Find the first and second derivatives of the hyperbolic secant function:

```
syms x
diff(sech(x), x)
diff(sech(x), x, x)
ans =
- sinh(x)/ cosh(x)^2
```

```
ans =
(2*}\operatorname{sinh}(x\mp@subsup{)}{}{\wedge}2)/\operatorname{cosh}(x\mp@subsup{)}{}{\wedge}3-1/\operatorname{cosh}(x
```

Find the indefinite integral of the hyperbolic secant function:

```
int(sech(x), x)
ans =
2*atan(exp(x))
```

Find the Taylor series expansion of $\operatorname{sech}(x)$:

```
taylor(sech(x), x)
```

ans $=$
$\left(5^{*} x^{\wedge} 4\right) / 24-x^{\wedge} 2 / 2+1$

Rewrite the hyperbolic secant function in terms of the exponential function:

```
rewrite(sech(x), 'exp')
ans =
1/(exp(-x)/2 + exp(x)/2)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth \| csch | sinh | tanh

Introduced before R2006a

separateUnits

Separate units from expression

Syntax

[Data,Units] = separateUnits(expr)
Data = separateUnits(expr)

Description

[Data,Units] = separateUnits(expr) returns the units of the symbolic expression expr in Units and the rest of expr in Data.

Data $=$ separateUnits (expr) removes symbolic units from expr and then returns the rest.

Examples

Separate Units and Expression

Separate the units from the expression $10 * t * u . m / u . s$, where $u=$ symunit, by providing two output arguments for separateUnits.

```
u = symunit;
syms t
speed = 10*t*u.m/u.s;
[Data,Units] = separateUnits(speed)
Data =
10*t
Units =
1*([m]/[s])
```

Return only the expression with the units removed by providing one output argument.

```
Data = separateUnits(speed)
```

Data =
10*t

Separate Incompatible Units

When the expression has incompatible units, separateUnits errors. Units are incompatible when they do not have the same dimensions, such as length or time.

Separate the units from $2 * u . m+3 * u . s$. where $u=$ symunit. The separateUnits function throws an error. Instead, to list the units in the input, use findUnits.

```
u = symunit;
[Data,Units] = separateUnits(2*u.m + 3*u.s)
```

Error using separateUnits (line 51)
Input has incompatible units.

Separate Inconsistent Units

When the input has inconsistent units that can be converted to the same unit, then separateUnits performs the conversion and returns the separated result. Units are inconsistent when they cannot be converted to each other with a conversion factor of 1

Separate the units from $2 *$ u.m $+30 *$ u.cm. Even though the units differ, separateUnits converts them to the same unit and returns the separated result.
u = symunit;
[Data,Units] = separateUnits(2*u.m + 30*u.cm)
Data =
230
Units =
[cm]

Input Arguments

expr - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, returned as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Output Arguments

Data - Expression after removing units

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic equation | symbolic multidimensional array | symbolic function | symbolic expression

Expression after removing units, returned as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, equation, multidimensional array, function, or expression.

Units - Units from input

symbolic units
Units from input, specified as symbolic units.

See Also

checkUnits | findUnits |isUnit|newUnit|str2symunit| symunit|
symunit2str|unitConversionFactor

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017a

series

Puiseux series

Syntax

```
series(f,var)
series(f,var,a)
series(___,Name,Value)
```


Description

series(f, var) approximates f with the Puiseux series expansion of f up to the fifth order at the point var $=0$. If you do not specify var, then series uses the default variable determined by symvar (f,1).
series(f, var, a) approximates f with the Puiseux series expansion of f at the point $\operatorname{var}=\mathrm{a}$.
series(__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments. You can specify Name, Value after the input arguments in any of the previous syntaxes.

Examples

Find Puiseux Series Expansion

Find the Puiseux series expansions of univariate and multivariate expressions.
Find the Puiseux series expansion of this expression at the point $x=0$.

```
syms x
series(1/sin(x), x)
ans =
x/6 + 1/x + (7*x^3)/360
```

Find the Puiseux series expansion of this multivariate expression. If you do not specify the expansion variable, series uses the default variable determined by symvar(f,1).

```
syms s t
f = sin(s)/sin(t);
symvar(f, 1)
series(f)
ans =
t
ans =
sin(s)/t + (7*t^3*sin(s))/360 + (t*sin(s))/6
```

To use another expansion variable, specify it explicitly.

```
syms s t
f = sin(s)/sin(t);
series(f, s)
ans =
s^5/(120*sin(t)) - s^3/(6*sin(t)) + s/sin(t)
```


Specify Expansion Point

Find the Puiseux series expansion of $\mathrm{psi}(\mathrm{x})$ around $\mathrm{x}=$ Inf. The default expansion point is 0 . To specify a different expansion point, use the ExpansionPoint name-value pair.

```
series(psi(x), x, 'ExpansionPoint', Inf)
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)
```

Alternatively, specify the expansion point as the third argument of series.

```
syms x
series(psi(x), x, Inf)
ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)
```


Specify Truncation Order

Find the Puiseux series expansion of $\exp (x) / x$ using different truncation orders.
Find the series expansion up to the default truncation order 6.
syms x
$\mathrm{f}=\exp (\mathrm{x}) / \mathrm{x}$;
$s 6=\operatorname{series}(f, x)$
s6 =
$x / 2+1 / x+x^{\wedge} 2 / 6+x^{\wedge} 3 / 24+x^{\wedge} 4 / 120+1$
Use Order to control the truncation order. For example, approximate the same expression up to the orders 7 and 8.

```
s7 = series(f, x, 'Order', 7)
s8 = series(f, x, 'Order', 8)
s7 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + 1
s8 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + x^6/5040 + 1
```

Plot the original expression f and its approximations $s 6, s 7$, and s8. Note how the accuracy of the approximation depends on the truncation order. Prior to R2016a, use ezplot instead of fplot.

```
fplot([s6 s7 s8 f])
```

legend('approximation up to $0\left(x^{\wedge} 6\right)$ ','approximation up to $0\left(x^{\wedge} 7\right)$ ',...
'approximation up to $0\left(x^{\wedge} 8\right)^{\prime}, ' \exp (x) / x^{\prime}, '$ Location', 'Best')
title('Puiseux Series Expansion')

Specify Direction of Expansion

Find the Puiseux series approximations using the Direction argument. This argument lets you change the convergence area, which is the area where series tries to find converging Puiseux series expansion approximating the original expression.

Find the Puiseux series approximation of this expression. By default, series finds the approximation that is valid in a small open circle in the complex plane around the expansion point.

```
syms x
series(sin(sqrt(-x)), x)
```

```
ans =
(-x)^(1/2) - (-x ^^(3/2)/6 + (-x)^(5/2)/120
```

Find the Puiseux series approximation of the same expression that is valid in a small interval to the left of the expansion point. Then, find an approximation that is valid in a small interval to the right of the expansion point.

```
syms x
series(sin(sqrt(-x)), x)
series(sin(sqrt(-x)), x, 'Direction', 'left')
series(sin(sqrt(-x)), x, 'Direction', 'right')
ans =
(-x)^(1/2) - (-x ^^(3/2)/6 + (-x)^(5/2)/120
ans =
- x^(1/2)*1i - (x^(3/2)*1i)/6 - (x^(5/2)*1i)/120
ans =
x^(1/2)*1i + (x^(3/2)*1i)/6 + (x^(5/2)*1i)/120
```

Try computing the Puiseux series approximation of this expression. By default, series tries to find an approximation that is valid in the complex plane around the expansion point. For this expression, such approximation does not exist.

```
series(real(sin(x)), x)
Error using sym/series>scalarSeries (line 90)
Cannot compute a series expansion of the input.
```

However, the approximation exists along the real axis, to both sides of $x=0$.

```
series(real(sin(x)), x, 'Direction', 'realAxis')
ans =
x^5/120 - x^3/6 + x
```


Input Arguments

f - Input to approximate

symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input to approximate, specified as a symbolic expression or function. It also can be a vector, matrix, or multidimensional array of symbolic expressions or functions.

var - Expansion variable

symbolic variable
Expansion variable, specified as a symbolic variable. If you do not specify var, then series uses the default variable determined by $\operatorname{symvar}(f, 1)$.

a - Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You also can specify the expansion point as a Name, Value pair argument. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.
Example: series(psi(x), x,'ExpansionPoint',Inf,'Order', 9)

ExpansionPoint - Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable.

You can also specify the expansion point using the input argument a. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

Order - Truncation order of Puiseux series expansion

6 (default) | positive integer | symbolic positive integer

Truncation order of Puiseux series expansion, specified as a positive integer or a symbolic positive integer.
series computes the Puiseux series approximation with the order n-1. The truncation order n is the exponent in the O-term: $O\left(v a r^{\mathrm{n}}\right)$.

Direction - Direction for area of convergence of Puiseux series expansion

 'complexPlane' (default)|'left'|'right'|'realAxis'Direction for area of convergence of Puiseux series expansion, specified as:

' left'	Find a Puiseux series approximation that is valid in a small interval to the left of the expansion point.
'right '	Find a Puiseux series approximation that is valid in a small interval to the right of the expansion point.
'realAxis'	Find a Puiseux series approximation that is valid in a small interval on the both sides of the expansion point.
'complexPlane '	Find a Puiseux series approximation that is valid in a small open circle in the complex plane around the expansion point. This is the default value.

Tips

- If you use both the third argument a and the ExpansionPoint name-value pair to specify the expansion point, the value specified via ExpansionPoint prevails.

See Also

pade|taylor

Introduced in R2015b

setVar

Assign variable in MuPAD notebook

Note

Note MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts instead.

MATLAB live scripts support most MuPAD functionality, though there are some differences. For more information, see "Convert MuPAD Notebooks to MATLAB Live Scripts".

Syntax

```
setVar(nb,MATLABvar)
setVar(nb,'MuPADvar',MATLABexpr)
```


Description

setVar(nb,MATLABvar) copies the symbolic variable MATLABvar and its value in the MATLAB workspace to the variable MATLABvar in the MuPAD notebook nb.
setVar(nb, 'MuPADvar' ,MATLABexpr) assigns the symbolic expression MATLABexpr in the MATLAB workspace to the variable MuPADvar in the MuPAD notebook nb.

Examples

Copy Variable and Its Value from MATLAB to MuPAD

Copy a variable y with a value $\exp (-x)$ assigned to it from the MATLAB workspace to a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable x and assign the expression $\exp (-x)$ to y :
syms x
$y=\exp (-x)$;
Create a new MuPAD notebook and specify a handle mpnb to that notebook:
mpnb = mupad;
Copy the variable y and its value $\exp (-x)$ to the MuPAD notebook mpnb:
setVar(mpnb,'y',y)
After executing this statement, the MuPAD engine associated with the mpnb notebook contains the variable y, with its value $\exp (-x)$.

Assign MATLAB Symbolic Expression to Variable in MuPAD

Working in the MATLAB Command Window, assign an expression $t^{\wedge} 2+1$ to a variable g in a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable t :
syms t
Create a new MuPAD notebook and specify a handle mpnb to that notebook:
mpnb = mupad;
Assign the value $t^{\wedge} 2+1$ to the variable g in the MuPAD notebook mpnb:
setVar(mpnb,'g',t^2 + 1)
After executing this statement, the MuPAD engine associated with the mpnb notebook contains the variable g , with its value $\mathrm{t}^{\wedge} 2+1$.

- "Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53

Input Arguments

nb - Pointer to MuPAD notebook
 handle to notebook | vector of handles to notebooks

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle or a vector of handles. You create the notebook handle when opening a notebook with the mupad or openmn function.

MuPADvar - Variable in MuPAD notebook

 variableVariable in a MuPAD notebook, specified as a variable.

MATLABvar - Variable in MATLAB workspace

symbolic variable
Variable in the MATLAB workspace, specified as a symbolic variable.

MATLABexpr - Expression in MATLAB workspace

symbolic expression
Expression in the MATLAB workspace, specified as a symbolic expression.

See Also

getVar | mupad | openmu

Topics

"Copy Variables and Expressions Between MATLAB and MuPAD" on page 3-53

Introduced in R2008b

sign

Sign of real or complex value

Syntax

sign(z)

Description

$\operatorname{sign}(z)$ returns the sign of real or complex value z. The sign of a complex number z is defined as $z / a b s(z)$. If z is a vector or a matrix, $\operatorname{sign}(z)$ returns the sign of each element of z.

Examples

Signs of Real Numbers

Find the signs of these symbolic real numbers:

```
[sign(sym(1/2)), sign(sym(0)), sign(sym(pi) - 4)]
```

ans =
[1, 0, -1]

Signs of Matrix Elements

Find the signs of the real and complex elements of matrix A:

```
A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);
sign(A)
ans =
[ 5^(1/2)*(1/5 + 2i/5), -1]
[ 2^(1/2)*(- 1/2 + 1i/2), 5^(1/2)*18^(1/2)*(1/30 - 1i/10)]
```


Sign of Symbolic Expression

Find the sign of this expression assuming that the value x is negative:

```
syms x
assume(x < 0)
sign(5*x^3)
```

ans =

- 1

For further computations, clear the assumption:
syms x clear

Input Arguments

z - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

Definitions

Sign Function

The sign function of any number z is defined via the absolute value of z :

$$
\operatorname{sign}(z)=\frac{z}{|z|}
$$

Thus, the sign function of a real number z can be defined as follows:

$$
\operatorname{sign}(z)=\left\{\begin{array}{r}
-1 \text { if } x<0 \\
0 \text { if } x=0 \\
1 \text { if } x>0
\end{array}\right.
$$

Tips

- Calling sign for a number that is not a symbolic object invokes the MATLAB sign function.

See Also
abs |angle|imag|real|signIm
Introduced in R2013a

signIm

Sign of the imaginary part of complex number

Syntax

signIm(z)

Description

signIm(z) returns the sign of the imaginary part of a complex number z. For all
 real numbers, $\operatorname{signIm}(z)=-\operatorname{sign}(z)$.

$$
\operatorname{signIm}(z)=\left\{\begin{array}{cc}
1 & \text { if } \operatorname{Im}(z)>0 \text { or } \operatorname{Im}(z)=0 \text { and } z<0 \\
0 & \text { if } z=0 \\
-1 & \text { otherwise }
\end{array}\right.
$$

Examples

Symbolic Results Including signIm

Results of symbolic computations, especially symbolic integration, can include the signIm function.

Integrate this expression. For complex values a and x, this integral includes signIm.

```
syms a x
f = 1/(a^2 + x^2);
F = int(f, x, -Inf, Inf)
F =
(pi*signIm(1i/a))/a
```


Signs of Imaginary Parts of Numbers

Find the signs of imaginary parts of complex numbers with nonzero imaginary parts and of real numbers.

Use signIm to find the signs of imaginary parts of these numbers. For complex numbers with nonzero imaginary parts, signIm returns the sign of the imaginary part of the number.

```
[signIm(-18 + 3*i), signIm(-18 - 3*i),...
signIm(10 + 3*i), signIm(10 - 3*i),...
signIm(Inf*i), signIm(-Inf*i)]
ans =
    1 
```

For real positive numbers, signIm returns - 1 .

```
[signIm(2/3), signIm(1), signIm(100), signIm(Inf)]
ans =
    -1
```

For real negative numbers, signIm returns 1.

```
[signIm(-2/3), signIm(-1), signIm(-100), signIm(-Inf)]
ans =
    1 1 1 1 1 1
signIm(0) is 0.
[signIm(0), signIm(0 + 0*i), signIm(0 - 0*i)]
ans =
    0 0 0
```


Signs of Imaginary Parts of Symbolic Expressions

Find the signs of imaginary parts of symbolic expressions that represent complex numbers.

Call signIm for these symbolic expressions without additional assumptions. Because signIm cannot determine if the imaginary part of a symbolic expression is positive, negative, or zero, it returns unresolved symbolic calls.

```
syms X y z
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]
ans =
[ signIm(z), signIm(x + y*1i), signIm(x - 3i)]
```

Assume that x, y, and z are positive values. Find the signs of imaginary parts of the same symbolic expressions.

```
syms x y z positive
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]
ans =
[ -1, 1, -1]
```

For further computations, clear the assumptions.

```
syms x y z clear
```

Find the first derivative of the signIm function. signIm is a constant function, except for the jump discontinuities along the real axis. The diff function ignores these discontinuities.

```
syms z
diff(signIm(z), z)
ans =
0
```


Signs of Imaginary Parts of Matrix Elements

singIm accepts vectors and matrices as its input argument. This lets you find the signs of imaginary parts of several numbers in one function call.

Find the signs of imaginary parts of the real and complex elements of matrix A.
$A=\operatorname{sym}([(1 / 2+i),-25 ; i *(i+1), p i / 6-1 * p i / 2]) ;$ signIm(A)

Input Arguments

z - Input representing complex number
number | symbolic number | symbolic variable | symbolic expression | vector | matrix
Input representing complex number, specified as a number, symbolic number, symbolic variable, expression, vector, or matrix.

Tips

- signIm(NaN) returns NaN.

See Also

conj|imag|real|sign

Introduced in R2014b

simplify

Algebraic simplification

Syntax

```
simplify(S)
simplify(S,Name,Value)
```


Description

simplify(S) performs algebraic simplification of S . If S is a symbolic vector or matrix, this function simplifies each element of S.
simplify(S,Name,Value) performs algebraic simplification of S using additional options specified by one or more Name, Value pair arguments.

Examples

Simplify Expressions

Simplify these symbolic expressions:

```
syms x a b c
simplify(sin(x)^2 + cos(x)^2)
simplify(exp(c*log(sqrt(a+b))))
ans =
1
ans =
(a+b)^(c/2)
```


Simplify Matrix Elements

Call simplify for this symbolic matrix. When the input argument is a vector or matrix, simplify tries to find a simpler form of each element of the vector or matrix.

```
syms x
M = [(x^2 + 5*x + 6)/(x + 2), sin(x)*sin(2*x) + cos(x)*\operatorname{cos(2*x);}
    (exp(-x*i)*i)/2 - (exp(x*i)*i)/2, sqrt(16)];
simplify(M)
ans =
[ x + 3, cos(x)]
[ sin(x), 4]
```


Get Simpler Results For Logarithms and Powers

Try to simplify this expression. By default, simplify does not combine powers and logarithms because combining them is not valid for generic complex values.

```
syms x
s = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2);
simplify(s)
ans =
-(log(x + 1) - log((x + 1)^2))*(x^2)^(1/2)
```

To apply the simplification rules that let the simplify function combine powers and logarithms, set IgnoreAnalyticConstraints to true:

```
simplify(s, 'IgnoreAnalyticConstraints', true)
```

ans $=$
$x^{*} \log (x+1)$

Get Simpler Results Using More Simplification Steps

Simplify this expression:

```
syms x
f = ((exp(-x*i)*i)/2 - (exp(x*i)*i)/2)/(exp(-x*i)/2 + ...
    exp(x*i)/2);
simplify(f)
```

```
ans =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)
```

By default, simplify uses one internal simplification step. You can get different, often shorter, simplification results by increasing the number of simplification steps:

```
simplify(f,'Steps',10)
simplify(f,'Steps',30)
simplify(f,'Steps',50)
ans =
2i/(exp(x*2i) + 1) - 1i
ans =
((cos(x) - sin(x)*1i)*1i)/cos(x) - 1i
ans =
tan(x)
```

If you are unable to return the desired result, try alternate simplification functions. See "Choose Function to Rearrange Expression" on page 2-95.

Separate Real and Imaginary Parts

Attempt to separate real and imaginary parts of an expression by setting the value of Criterion to preferReal.

```
syms x
f = (exp(x + exp(-x*i)/2 - exp(x*i)/2)*i)/2 -...
    (exp(- x - exp(-x*i)/2 + exp(x*i)/2)*i)/2;
simplify(f, 'Criterion','preferReal', 'Steps', 100)
ans =
sin(sin(x))*\operatorname{cosh(x) + cos(sin(x))*sinh(x)*1i}
```

If Criterion is not set to preferReal, then simplify returns a shorter result but the real and imaginary parts are not separated.

```
simplify(f,'Steps',100)
ans =
sin(sin(x) + x*li)
```

When you set Criterion to preferReal, the simplifier disfavors expression forms where complex values appear inside subexpressions. In nested subexpressions, the
deeper the complex value appears inside an expression, the least preference this form of an expression gets.

Avoid Imaginary Terms in Exponents

Attempt to avoid imaginary terms in exponents by setting Criterion to preferReal.
Show this behavior by simplifying a complex symbolic expression with and without setting Criterion to preferReal. When Criterion is set to preferReal, then simplify places the imaginary term outside the exponent.

```
expr = sym(i)^(i+1);
withoutPreferReal = simplify(expr,'Steps',100)
withoutPreferReal =
(-1)^(1/2 + 1i/2)
withPreferReal = simplify(expr,'Criterion','preferReal','Steps',100)
withPreferReal =
exp(-pi/2)*1i
```


Simplify Units

Simplify expressions containing symbolic units of the same dimension by using simplify.
u = symunit;

```
expr = 300*u.cm + 40*u.inch + 2*u.m;
```

expr = simplify(expr)
expr =
$(3008 / 5) *[\mathrm{~cm}]$
simplify automatically chooses the unit to rewrite into. To choose a specific unit, use rewrite.

Input Arguments

S - Input expression

symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'Seconds', 60 limits the simplification process to 60 seconds.

Criterion - Simplification criterion

'default' (default)|'preferReal'
Simplification criterion, specified as the comma-separated pair consisting of 'Criterion' and one of these character vectors.

'default'	Use the default (internal) simplification criteria.
'preferReal '	Favor the forms of S containing real values over the forms containing complex values. If any form of S contains complex values, the simplifier disfavors the forms where complex values appear inside subexpressions. In case of nested subexpressions, the deeper the complex value appears inside an expression, the least preference this form of an expression gets.

IgnoreAnalyticConstraints - Simplification rules

false (default)| true
Simplification rules, specified as the comma-separated pair consisting of
'IgnoreAnalyticConstraints' and one of these values.

false	Use strict simplification rules. simplify always returns results equivalent to the initial expression.
true	Apply purely algebraic simplifications to an expression. simplify can return simpler results for expressions for which it would return more complicated results otherwise. Setting IgnoreAnalyticConst raints to true can lead to results that are not equivalent to the initial expression.

Seconds - Time limit for the simplification process

Inf (default)| positive number

Time limit for the simplification process, specified as the comma-separated pair consisting of 'Seconds' and a positive value that denotes the maximal time in seconds.

Steps - Number of simplification steps

1 (default) | positive number
Number of simplification steps, specified as the comma-separated pair consisting of 'Steps ' and a positive value that denotes the maximal number of internal simplification steps. Note that increasing the number of simplification steps can slow down your computations.
simplify(S, 'Steps', n) is equivalent to simplify (S, n), where n is the number of simplification steps.

Tips

- Simplification of mathematical expression is not a clearly defined subject. There is no universal idea as to which form of an expression is simplest. The form of a mathematical expression that is simplest for one problem might be complicated or even unsuitable for another problem.

Algorithms

When you use IgnoreAnalyticConstraints, then simplify follows these rules:

- $\log (a)+\log (b)=\log (a \cdot b)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :

$$
(a \cdot b)^{c}=a^{c} \cdot b^{c} .
$$

- $\log \left(a^{b}\right)=b \cdot \log (a)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :

$$
\left(a^{b}\right)^{c}=a^{b \cdot c}
$$

- If f and g are standard mathematical functions and $f(g(x))=x$ for all small positive numbers, $f(g(x))=x$ is assumed to be valid for all complex values of x. In particular:
- $\log \left(e^{x}\right)=x$
- $\operatorname{asin}(\sin (x))=x, \operatorname{acos}(\cos (x))=x, \operatorname{atan}(\tan (x))=x$
- $\operatorname{asinh}(\sinh (x))=x, \operatorname{acosh}(\cosh (x))=x, \operatorname{atanh}(\tanh (x))=x$
- $\mathrm{W}_{k}\left(x \cdot e^{x}\right)=x$ for all values of k

See Also

collect | combine | expand | factor | horner | numden | rewrite | simplifyFraction

Topics

"Simplify Symbolic Expressions" on page 2-87
"Choose Function to Rearrange Expression" on page 2-95

Introduced before R2006a

simplifyFraction

Simplify symbolic rational expressions

Syntax

```
simplifyFraction(expr)
simplifyFraction(expr,'Expand',Expand)
```


Description

simplifyFraction(expr) simplifies the rational expression expr such that numerator and denominator have no divisors in common. To simplify to a fraction, simplifyFraction can return an expanded expression.
simplifyFraction(expr, 'Expand ', Expand) expands the numerator and denominator of the resulting fraction when specified as true.

Examples

Simplify Symbolic Rational Expressions

syms x y
fraction $=\left(x^{\wedge} 2-1\right) /(x+1)$;
simplifyFraction(fraction)
ans $=$
x-1
fraction $=\left(y^{*}\left(x^{\wedge} 2-1\right)\right) /((x+1) *(x-1))$;
simplifyFraction(fraction)
ans $=$
y

Expand Simplified Rational Expression

Expand the numerator and denominator of the resulting fraction by setting 'Expand ' to true.

```
syms x y
```

fraction $=\left((y+1)^{\wedge} 2 *\left(x^{\wedge} 2-1\right)\right) /\left((x+1)^{*}(x-1)\right)$;
simplifyFraction(fraction, 'Expand',true)
ans =
$y^{\wedge} 2+2 * y+1$

Simplify Rational Subexpressions of Expressions

Simplify rational expressions by using simplifyFraction.

```
syms x
```

$\operatorname{expr}=\left(\left(x^{\wedge} 2+2^{*} x+1\right) /(x+1)\right)^{\wedge}(1 / 2)$;
simplifyFraction(expr)
ans =
$(x+1)^{\wedge}(1 / 2)$
simplifyFraction simplifies rational expressions that contain irrational subexpressions instead of variables.

```
expr = (1-sin(x)^2)/(1-sin(x));
simplifyFraction(expr)
ans =
sin(x) + 1
```

simplifyFraction does not apply algebraic identities to simplify the rational expression. Show that simplifyFraction does not apply standard trigonometric identities.

```
expr = (1-cos(x)^2)/sin(x);
simplifyFraction(expr)
```


Input Arguments

expr - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Tips

- expr can contain irrational subexpressions, such as $\sin (x)$ and $x^{\wedge}(-1 / 3)$. simplifyFraction simplifies such expressions as if they are variables.
- simplifyFraction does not apply algebraic identities.

Alternatives

You can also simplify rational expressions using the general simplification function simplify. However, simplifyFraction is more efficient for simplifying rational expressions than simplify.

See Also

collect | combine \| expand | factor | horner | numden | rewrite \| simplify

Topics

"Simplify Symbolic Expressions" on page 2-87
"Choose Function to Rearrange Expression" on page 2-95

Introduced in R2011b

simscapeEquation

Convert symbolic expressions to Simscape language equations

Syntax

```
simscapeEquation(f)
simscapeEquation(LHS,RHS)
```


Description

simscapeEquation(f) converts the symbolic expression f to a Simscape language equation. This function call converts any derivative with respect to the variable t to the Simscape notation X. der. Here X is the time-dependent variable. In the resulting Simscape equation, the variable time replaces all instances of the variable t except for derivatives with respect to t.
simscapeEquation converts expressions with the second and higher-order derivatives to a system of first-order equations, introducing new variables, such as $\times 1, \times 2$, and so on.
simscapeEquation(LHS,RHS) returns a Simscape equation LHS == RHS.

Examples

Convert Expressions to Simscape Equations

Convert the following expressions to Simscape language equations.

```
syms t x(t) y(t)
phi = diff(x) + 5*y + sin(t);
simscapeEquation(phi)
simscapeEquation(diff(y),phi)
ans =
    'phi == sin(time)+y*5.0+x.der;'
```

```
ans =
    'y.der == sin(time)+y*5.0+x.der;'
```


Convert ODE to Simscape Equation

Convert this expression containing the second derivative.

```
syms x(t)
eqn1 = diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn1)
ans =
    'x.der == x1;
    eqn1 == sin(time)-x1+x1.der;'
```

Convert this expression containing the fourth and second derivatives.

```
eqn2 = diff(x,4) + diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn2)
ans =
    'x.der == x1;
    x1.der == x2;
    x2.der == x3;
    eqn2 == sin(time)-x1+x2+x3.der;'
```


Tips

The equation section of a Simscape component file supports a limited number of functions. For details and the list of supported functions, see Simscape equations. If a symbolic equation contains the functions that are not available in the equation section of a Simscape component file, simscapeEquation cannot correctly convert these equations to Simscape equations. Such expressions do not trigger an error message. The following types of expressions are prone to invalid conversion:

- Expressions with infinities
- Expressions returned by evalin and feval.

See Also

ccode| fortran|matlabFunction|matlabFunctionBlock| symWriteSSC

Topics

"Generate Simscape Equations from Symbolic Expressions" on page 2-265

Introduced in R2010a

sin

Symbolic sine function

Syntax

$\sin (X)$

Description

$\sin (X)$ returns the sine function on page 4-1480 of X.

Examples

Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, sin returns floating-point or exact symbolic results.
Compute the sine function for these numbers. Because these numbers are not symbolic objects, sin returns floating-point results.

```
A = sin([-2, -pi, pi/6, 5*pi/7, 11])
```

$A=$
$\begin{array}{lllll}-0.9093 & -0.0000 & 0.5000 & 0.7818 & -1.0000\end{array}$

Compute the sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sin returns unresolved symbolic calls.

```
symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[ -sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
[ -0.90929742682568169539601986591174,...
0,...
0.5,...
0.78183148246802980870844452667406,...
-0.99999020655070345705156489902552]
```


Plot Sine Function

Plot the sine function on the interval from -4π to 4π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(sin(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing sin.

Find the first and second derivatives of the sine function:

```
syms x
diff(sin(x), x)
diff(sin(x), x, x)
ans =
cos(x)
```

```
ans =
-sin(x)
```

Find the indefinite integral of the sine function:

```
int(sin(x), x)
ans =
-cos(x)
```

Find the Taylor series expansion of $\sin (x)$:

```
taylor(sin(x), x)
```

ans $=$
$x^{\wedge} 5 / 120-x^{\wedge} 3 / 6+x$

Rewrite the sine function in terms of the exponential function:

```
rewrite(sin(x), 'exp')
ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
```


Evaluate Units with sin Function

sin numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the sine of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
sinf = sin(f)
sinf =
[ sin((pi*x)/180), sin(2)]
```


You can calculate sinf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Sine Function

The sine of an angle, α, defined with reference to a right angled triangle is

$$
\sin (\alpha)=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{a}{h} .
$$

The sine of a complex angle, α, is

$$
\sin (\alpha)=\frac{e^{i \alpha}-e^{-i \alpha}}{2 i}
$$

See Also

acos \mid acot \mid acsc \mid asec \mid asin \mid atan $|\cos | \cot |\csc | \sec \mid$ tan

Introduced before R2006a

sinh

Symbolic hyperbolic sine function

Syntax

$\sinh (X)$

Description

$\sinh (X)$ returns the hyperbolic sine function of X.

Examples

Hyperbolic Sine Function for Numeric and Symbolic Arguments

Depending on its arguments, sinh returns floating-point or exact symbolic results.
Compute the hyperbolic sine function for these numbers. Because these numbers are not symbolic objects, sinh returns floating-point results.

```
A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A =
\begin{tabular}{rrr}
\(-3.6269+0.0000 i\) & \(0.0000-0.0000 i\) & \(0.0000+0.5000 i \ldots\) \\
\(0.0000+0.7818 i\) & \(0.0000-1.0000 i\) &
\end{tabular}
```

Compute the hyperbolic sine function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sinh returns unresolved symbolic calls.

```
symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA =
[ -sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -3.6268604078470187676682139828013,...
0,...
0.5i,...
0.78183148246802980870844452667406i,...
-1.0i]
```


Plot Hyperbolic Sine Function

Plot the hyperbolic sine function on the interval from $-\pi$ to π. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(sinh(x), [-pi, pi])
grid on

Handle Expressions Containing Hyperbolic Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing sinh.

Find the first and second derivatives of the hyperbolic sine function:

```
syms x
diff(sinh(x), x)
diff(sinh(x), x, x)
ans =
cosh(x)
```

```
ans =
sinh(x)
```

Find the indefinite integral of the hyperbolic sine function:

```
int(sinh(x), x)
ans =
cosh(x)
```

Find the Taylor series expansion of $\sinh (x)$:

```
taylor(sinh(x), x)
```

ans $=$
$x^{\wedge} 5 / 120+x^{\wedge} 3 / 6+x$

Rewrite the hyperbolic sine function in terms of the exponential function:

```
rewrite(sinh(x), 'exp')
ans =
exp(x)/2 - exp(-x)/2
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | tanh

Introduced before R2006a

sinhint

Hyperbolic sine integral function

Syntax

```
sinhint(X)
```


Description

sinhint (X) returns the hyperbolic sine integral function on page 4-1489 of X.

Examples

Hyperbolic Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, sinhint returns floating-point or exact symbolic results.
Compute the hyperbolic sine integral function for these numbers. Because these numbers are not symbolic objects, sinhint returns floating-point results.

```
A = sinhint([-pi, -1, 0, pi/2, 2*pi])
A =
    -5.4696 -1.0573 0
```

Compute the hyperbolic sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sinhint returns unresolved symbolic calls.

```
symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))
symA =
[ -sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -5.4696403451153421506369580091277,...
-1.0572508753757285145718423548959,...
0,...
1.802743198288293882089794577617,...
53.736750620859153990408011863262]
```


Plot Hyperbolic Sine Integral Function

Plot the hyperbolic sine integral function on the interval from $-2 *$ pi to $2 *$ pi. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(sinhint(x), [-2*pi, 2*pi])
grid on
```


Handle Expressions Containing Hyperbolic Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing sinhint.

Find the first and second derivatives of the hyperbolic sine integral function:
syms x
diff(sinhint (x), x)
diff(sinhint (x), x, x)

```
ans =
sinh(x)/x
ans =
cosh(x)/x - sinh(x)/x^2
```

Find the indefinite integral of the hyperbolic sine integral function:

```
int(sinhint(x), x)
ans =
x*sinhint(x) - cosh(x)
```

Find the Taylor series expansion of sinhint (x):

```
taylor(sinhint(x), x)
ans =
x^5/600 + x^3/18 + x
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Hyperbolic Sine Integral Function

The hyperbolic sine integral function is defined as follows:

$$
\operatorname{Shi}(x)=\int_{0}^{x} \frac{\sinh (t)}{t} d t
$$

References

[1] Gautschi, W. and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

coshint | cosint|eulergamma|int|sin|sinint|ssinint

Introduced in R2014a

sinint

Sine integral function

Syntax

```
sinint(X)
```


Description

sinint (X) returns the sine integral function of X.

Examples

Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, sinint returns floating-point or exact symbolic results.
Compute the sine integral function for these numbers. Because these numbers are not symbolic objects, sinint returns floating-point results.

```
A = sinint([- pi, 0, pi/2, pi, 1])
A =
    -1.8519 0 1.3708 1.8519 0.9461
```

Compute the sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, sinint returns unresolved symbolic calls.

```
symA = sinint(sym([- pi, 0, pi/2, pi, 1]))
symA =
[ -sinint(pi), 0, sinint(pi/2), sinint(pi), sinint(1)]
```

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

```
ans =
[ -1.851937051982466170361053370158,...
0,...
1.3707621681544884800696782883816,...
1.851937051982466170361053370158,...
0.94608307036718301494135331382318]
```


Plot Sine Integral Function

Plot the sine integral function on the interval from -4^{*} pi to 4^{*} pi. Before R2016a, use ezplot instead of fplot.

```
syms x
fplot(sinint(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing sinint.

Find the first and second derivatives of the sine integral function:

```
syms x
diff(sinint(x), x)
diff(sinint(x), x, x)
ans =
sin(x)/x
```

```
ans =
cos(x)/x - sin(x)/\mp@subsup{x}{}{\wedge}2
```

Find the indefinite integral of the sine integral function:

```
int(sinint(x), x)
ans =
cos(x) + x*sinint(x)
```

Find the Taylor series expansion of sinint (x):

```
taylor(sinint(x), x)
```

ans $=$
$x^{\wedge} 5 / 600-x^{\wedge} 3 / 18+x$

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Sine Integral Function

The sine integral function is defined as follows:

$$
\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

References

[1] Gautschi, W. and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

coshint | cosint |eulergamma|int|sin|sinhint|ssinint

Introduced before R2006a

smithForm

Smith form of matrix

Syntax

S = smithForm(A)
[U,V,S] = smithForm(A)
= smithForm(A,var)

Description

$S=\operatorname{smithForm}(A)$ returns the Smith normal form on page 4-1501 of a square invertible matrix A. The elements of A must be integers or polynomials in a variable determined by symvar $(A, 1)$. The Smith form S is a diagonal matrix.
$[\mathrm{U}, \mathrm{V}, \mathrm{S}]=$ smithForm(A) returns the Smith normal form of A and unimodular transformation matrices U and V, such that $S=U * A * V$.
$=$ smithForm(A, var) assumes that the elements of A are univariate polynomials in the specified variable var. If A contains other variables, smithForm treats those variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.
If A does not contain var, then smithForm(A) and smithForm(A, var) return different results.

Examples

Smith Form for Matrix of Integers

Find the Smith form of an inverse Hilbert matrix.

```
A = sym(invhilb(5))
S = smithForm(A)
\begin{tabular}{|c|c|c|c|c|}
\hline 25, & -300, & 1050, & - 1400, & 630] \\
\hline -300, & 4800, & -18900, & 26880, & -12600] \\
\hline 1050, & -18900, & 79380, & -117600, & 56700] \\
\hline -1400, & 26880, & -117600, & 179200, & -88200] \\
\hline 630, & -12600, & 56700, & -88200, & 44100] \\
\hline
\end{tabular}
S =
[ 5, 0, 0, 0, 0]
[ 0, 60, 0, 0, 0]
[ 0, 0, 420, 0, 0]
[ 0, 0, 0, 840, 0]
[ 0, 0, 0, 0, 2520]
```


Smith Form for Matrix of Univariate Polynomials

Create a 2-by-2 matrix, the elements of which are polynomials in the variable x .

```
syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]
A =
[ x^2 + 3, (2*x - 1)^2]
[ (x + 2)^2, 3* (x^2 + 5]
```

Find the Smith form of this matrix.

```
S = smithForm(A)
S =
[ 1,
```


Smith Form for Matrix of Multivariate Polynomials

Create a 2-by-2 matrix containing two variables: x and y.
syms x y
$A=\left[2 / x+y, x^{\wedge} 2-y^{\wedge} 2 ; 3^{*} \sin (x)+y, x\right]$

```
A =
[ \(\left.y+2 / x, x^{\wedge} 2-y^{\wedge} 2\right]\)
[ y + 3*sin(x), x]
```

Find the Smith form of this matrix. If you do not specify the polynomial variable, smithForm uses symvar ($\mathrm{A}, 1$) and thus determines that the polynomial variable is x . Because $3 * \sin (x)+y$ is not a polynomial in x, smithForm throws an error.

```
S = smithForm(A)
```

Error using mupadengine/feval (line 163)
Cannot convert the matrix entries to integers or univariate polynomials.
Find the Smith form of A specifying that all elements of A are polynomials in the variable y.

```
S = smithForm(A,y)
S =
[ 1, 0]
[ 0, 3*y^2*sin(x) - 3*x^2*sin(x) + \(y^{\wedge} 3\) + \(\left.y^{*}\left(-x^{\wedge} 2+x\right)+2\right]\)
```


Smith Form and Transformation Matrices

Find the Smith form and transformation matrices for an inverse Hilbert matrix.

```
A = sym(invhilb(3));
[U,V,S] = smithForm(A)
U =
[ 1, 1, 1]
[ -4, -1, 0]
[ 10, 5, 3]
V =
[ 1, -2, 0]
[ 0, 1, 5]
[ 0, 1, 4]
S =
[ 3, 0, 0]
[ 0, 12, 0]
[ 0, 0, 60]
```

Verify that $\mathrm{S}=\mathrm{U} * \mathrm{~A}$ *V.

```
isAlways(S == U*A*V)
ans =
    3\times3 logical array
    1 1 1
    1 1 1
    1 1 1
```

Find the Smith form and transformation matrices for a matrix of polynomials.

```
syms x y
A = [2*(x - y), 3*(x^2 - y^2);
    4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,V,S] = smithForm(A,x)
U =
[ 0, 1]
[ 1, - x/(10*y^3) - 3/(5*y^2)]
V =
[ -x/(4* y^3), - (5* }\mp@subsup{x}{}{*}\mp@subsup{y}{}{\wedge}2)/2 - (5*x^2*y)/2 - (5*x^3)/2 - (5* *^3)/2] 
[ 1/(5*y^3), 2*x^2 + 2*x*y + 2*y^2]
S =
[ x - y, 0]
```

Verify that $\mathrm{S}=\mathrm{U}^{*} \mathrm{~A}^{*} \mathrm{~V}$.
isAlways(S == U*A*V)
ans $=$
2×2 logical array
$1 \quad 1$
11

If You Specify Variable for Integer Matrix

If a matrix does not contain a particular variable, and you call smithForm specifying that variable as the second argument, then the result differs from what you get without specifying that variable. For example, create a matrix that does not contain any variables.
$A=[9-3630 ;-36192-180 ; 30-180180]$
$A=$
$9 \quad-36$ 30

-36	192	-180
30	-180	180

Call smithForm specifying variable x as the second argument. In this case, smithForm assumes that the elements of A are univariate polynomials in x.

```
syms x
smithForm(A,x)
ans =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{tabular}
```

Call smithForm without specifying variables. In this case, smithForm treats A as a matrix of integers.

```
smithForm(A)
ans =
\begin{tabular}{lrr}
3 & 0 & 0 \\
0 & 12 & 0 \\
0 & 0 & 60
\end{tabular}
```


Input Arguments

A - Input matrix

square invertible symbolic matrix

Input matrix, specified as a square invertible symbolic matrix, the elements of which are integers or univariate polynomials. If the elements of A contain more than one variable, use the var argument to specify a polynomial variable, and treat all other variables as symbolic parameters. If A is multivariate, and you do not specify var, then smithForm uses symvar $(\mathrm{A}, 1)$ to determine a polynomial variable.

var - Polynomial variable

symbolic variable
Polynomial variable, specified as a symbolic variable.

Output Arguments

S - Smith normal form of input matrix
 symbolic diagonal matrix

Smith normal form of input matrix, returned as a symbolic diagonal matrix. The first diagonal element divides the second, the second divides the third, and so on.

U - Transformation matrix

unimodular symbolic matrix
Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of U are also integers, and $\operatorname{det}(U)=1 \operatorname{or} \operatorname{det}(U)=-1$. If elements of A are polynomials, then elements of U are univariate polynomials, and $\operatorname{det}(\mathrm{U})$ is a constant.

V - Transformation matrix
 unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are integers, then elements of V are also integers, and $\operatorname{det}(\mathrm{V})=1 \operatorname{or} \operatorname{det}(\mathrm{~V})=-1$. If elements of A are polynomials, then elements of V are univariate polynomials, and $\operatorname{det}(\mathrm{V})$ is a constant.

Definitions

Smith Normal Form

Smith normal form of a an n-by-n matrix A is an n-by- n diagonal matrix S, such that $S_{i, i}$
divides $S_{i+1, i+1}$ for all $i<n$.

See Also

hermiteForm|jordan

Introduced in R2015b

solve

Equations and systems solver

Note Character vector inputs have been removed. Instead, use syms to declare variables and replace inputs such as solve(' $2 * x==1$ ', ' x ') with solve $(2 * x==1, x)$.

Syntax

```
S = solve(eqn,var)
S = solve(eqn,var,Name,Value)
Y = solve(eqns,vars)
Y = solve(eqns,vars,Name,Value)
[y1,...,yN] = solve(eqns,vars)
[y1,...,yN] = solve(eqns,vars,Name,Value)
[y1,...,yN,parameters,conditions] = solve(eqns,vars,'
ReturnConditions',true)
```


Description

$S=s o l v e(e q n, v a r)$ solves the equation eqn for the variable var. If you do not specify var, the symvar function determines the variable to solve for. For example, solve (x $+1==2, x$) solves the equation $x+1=2$ for x.
$S=$ solve(eqn, var, Name, Value) uses additional options specified by one or more Name, Value pair arguments.
$\mathrm{Y}=$ solve(eqns, vars) solves the system of equations eqns for the variables vars and returns a structure that contains the solutions. If you do not specify vars, solve uses symvar to find the variables to solve for. In this case, the number of variables that symvar finds is equal to the number of equations eqns.
$Y=$ solve(eqns, vars, Name, Value) uses additional options specified by one or more Name, Value pair arguments.
$[y 1, \ldots, y N]=$ solve(eqns, vars) solves the system of equations eqns for the variables vars. The solutions are assigned to the variables $\mathrm{y} 1, \ldots, y \mathrm{y}$. If you do not specify the variables, solve uses symvar to find the variables to solve for. In this case, the number of variables that symvar finds is equal to the number of output arguments N .
[y1,...,yN] = solve(eqns,vars,Name,Value) uses additional options specified by one or more Name, Value pair arguments.
[y1,...,yN,parameters,conditions] = solve(eqns,vars,' ReturnConditions',true) returns the additional arguments parameters and conditions that specify the parameters in the solution and the conditions on the solution.

Examples

Solve an Equation

Use the == operator to specify the equation $\sin (x)==1$ and solve it.

```
syms x
eqn = sin(x) == 1;
solx = solve(eqn,x)
solx =
pi/2
```

Find the complete solution of the same equation by specifying the ReturnConditions option as true. Specify output variables for the solution, the parameters in the solution, and the conditions on the solution.

```
[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)
solx =
pi/2 + 2*pi*k
params =
k
conds =
in(k, 'integer')
```

The solution $\mathrm{pi} / 2+2 * \mathrm{pi}^{*} \mathrm{k}$ contains the parameter k which is valid under the condition in(k, 'integer'). This condition means the parameter k must be an integer.

If solve returns an empty object, then no solutions exist. If solve returns an empty object with a warning, solutions might exist but solve did not find any solutions.

```
eqns = [3*x+2, 3*x+1];
solve(eqns, x)
ans =
Empty sym: 0-by-1
```


Use Parameters and Conditions Returned by solve to Refine Solution

Return the complete solution of an equation with parameters and conditions of the solution by specifying ReturnConditions as true.

Solve the equation $\sin (x)=0$. Provide two additional output variables for output arguments parameters and conditions.

```
syms x
eqn = sin(x) == 0;
[solx, param, cond] = solve(eqn, x, 'ReturnConditions', true)
solx =
pi*k
param =
k
cond =
in(k, 'integer')
```

The solution $\mathrm{pi}^{*} \mathrm{k}$ contains the parameter k and is valid under the condition in(k, 'integer'). This condition means the parameter k must be an integer. k does not exist in the MATLAB workspace and must be accessed using param.

Find a valid value of k for $0<x<2 *$ pi by assuming the condition, cond, and using solve to solve these conditions for k. Substitute the value of k found into the solution for x.
assume (cond)
interval $=$ [solx > 0, solx < 2*pi];

```
solk = solve(interval, param)
valx = subs(solx, param, solk)
solk =
1
valx =
pi
```

A valid value of k for $0<x<2 *$ pi is 1 . This produces the value $x=p i$.
Alternatively, find a solution for x by choosing a value of k. Check if the value chosen satisfies the condition on k using isAlways.

Check if $\mathrm{k}=4$ satisfies the condition on k .

```
condk4 = subs(cond, param, 4);
```

isAlways(condk4)

```
ans =
    logical
```

 1
 isAlways returns logical 1 (true), meaning 4 is a valid value for k. Substitute k with 4 to obtain a solution for x. Use vpa to obtain a numeric approximation.

```
valx = subs(solx, param, 4)
vpa(valx)
valx =
4*pi
ans =
```

12.566370614359172953850573533118

Solve Multivariate Equations and Assign Outputs to Variables

Avoid ambiguities when solving equations with symbolic parameters by specifying the variable for which you want to solve an equation. If you do not specify the variable, solve chooses a variable using symvar. First, solve the quadratic equation without specifying a variable. solve chooses x to return the familiar solution. Then solve the quadratic equation for a to return the solution for a.

```
syms a b c x
eqn = a*x^2 + b*x + c == 0;
```

```
sol = solve(eqn)
sola = solve(eqn, a)
sol =
    -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
    -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
sola =
-(c + b*x)/x^2
```

When solving for more than one variable, the order in which you specify the variables defines the order in which the solver returns the solutions.

Solve this system of equations and assign the solutions to variables solv and solu by specifying the variables explicitly. The solver returns an array of solutions for each variable.

```
syms u v
eqns = [2*u^2 + v^2 == 0, u - v == 1];
vars = [v u];
[solv, solu] = solve(eqns, vars)
solv =
    - (2^(1/2)*1i)/3 - 2/3
    (2^(1/2)*1i)/3 - 2/3
solu =
    1/3 - (2^(1/2)*1i)/3
    (2^(1/2)*1i)/3 + 1/3
```

Entries with the same index form the solutions of a system.

```
solutions = [solv solu]
solutions =
[ - (2^(1/2)*1i)/3 - 2/3, 1/3 - (2^(1/2)*1i)/3]
[ (2^(1/2)*1i)/3 - 2/3, (2^(1/2)*1i)/3 + 1/3]
```

A solution of the system is $v=-\left(2^{\wedge}(1 / 2) * 1 i\right) / 3-2 / 3$, and $u=1 / 3-$ $\left(2^{\wedge}(1 / 2) * 1 i\right) / 3$.

Solve Multivariate Equations and Assign Outputs to Structure

When solving for multiple variables, it can be more convenient to store the outputs in a structure array than in separate variables. The solve function returns a structure when you specify a single output argument and multiple outputs exist.

Solve a system of equations to return the solutions in a structure array.

```
syms u v
eqns = [2*u + v == 0, u - v == 1];
S = solve(eqns, [u v])
S =
    struct with fields:
    u: [1\times1 sym]
    v: [1\times1 sym]
```

Access the solutions by addressing the elements of the structure.
S.u
S.v
ans $=$
1/3
ans $=$
$-2 / 3$
Using a structure array allows you to conveniently substitute solutions into expressions. The subs function substitutes the correct values irrespective of which variables you substitute.

Substitute solutions into expressions using the structure S .

```
expr1 = u^2;
subs(expr1, S)
expr2 = 3*v+u;
subs(expr2, S)
ans =
1/9
ans =
-5/3
```


Return Complete Solution of System of Equations Using Structure

Return the complete solution of a system of equations with parameters and conditions of the solution by specifying ReturnConditions as true.

```
syms x y
eqns = [sin(x)^2 == cos(y), 2*x == y];
S = solve(eqns, [x y], 'ReturnConditions', true);
S.x
S.y
S.conditions
S.parameters
ans =
    pi*k - asin(3^(1/2)/3)
    asin(3^(1/2)/3) + pi*k
ans =
    2*pi*k - 2*asin(3^(1/2)/3)
    2*asin(3^(1/2)/3) + 2*pi*k
ans =
    in(k, 'integer')
    in(k, 'integer')
ans =
k
```

A solution is formed by the elements of the same index in S.x, S.y, and S.conditions. Any element of S. parameters can appear in any solution. For example, a solution is $\mathrm{x}=$ pi*k - asin(3^(1/2)/3), and y = 2*pi*k - $2 * \operatorname{asin}\left(3^{\wedge}(1 / 2) / 3\right)$, with the parameter k under the condition in(k, 'integer'). This condition means k must be an integer for the solution to be valid. k does not exist in the MATLAB workspace and must be accessed with S.parameters.

For the first solution, find a valid value of k for $0<\mathrm{x}<\mathrm{pi}$ by assuming the condition S. conditions (1) and using solve to solve these conditions for k. Substitute the value of k found into the solution for x .

```
assume(S.conditions(1))
interval = [S.x(1)>0, S.x(1)<pi];
solk = solve(interval, S.parameters)
solx = subs(S.x(1), S.parameters, solk)
solk =
1
solx =
pi - asin(3^(1/2)/3)
```

A valid value of k for $0<\mathrm{x}<\mathrm{pi}$ is 1 . This produces the value $\mathrm{x}=\mathrm{pi}-$ asin(3^(1/2)/3).

```
Alternatively, find a solution for x by choosing a value of k. Check if the value chosen
satisfies the condition on k using isAlways.
Check if k = 4 satisfies the condition on k.
condk4 = subs(S.conditions(1), S.parameters, 4);
isAlways(condk4)
ans=
    logical
        1
```

isAlways returns logical 1 (true) meaning 4 is a valid value for k. Substitute k with 4 to obtain a solution for x . Use vpa to obtain a numeric approximation.

```
valx = subs(S.x(1), S.parameters, 4)
vpa(valx)
valx =
4*pi - asin(3^(1/2)/3)
ans =
11.950890905688785612783108943994
```


Numerically Solve Equations

When solve cannot symbolically solve an equation, it tries to find a numeric solution using vpasolve. The vpasolve function returns the first solution found.

Try solving the following equation. solve returns a numeric solution because it cannot find a symbolic solution.

```
syms x
eqn = sin(x) == x^2 - 1;
solve(eqn, x)
Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In solve (line 304)
ans =
-0.63673265080528201088799090383828
```

Plot the left and the right sides of the equation. Observe that the equation also has a positive solution.

```
fplot([lhs(eqn) rhs(eqn)], [-2 2])
```


Find this solution by directly calling the numeric solver vpasolve and specifying the interval.

```
vpasolve(eqn, x, [0 2])
```

ans $=$
1.4096240040025962492355939705895

Solve Inequalities

solve can solve inequalities to find a solution that satisfies the inequalities.

Solve the following inequalities. Set ReturnConditions to true to return any parameters in the solution and conditions on the solution.

$$
\begin{aligned}
& x>0 \\
& y>0 \\
& x^{2}+y^{2}+x y<1
\end{aligned}
$$

```
syms x y
cond1 = x^2 + y^2 + x*y < 1;
cond2 = x > 0;
cond3 = y > 0;
conds = [cond1 cond2 cond3];
sol = solve(conds, [x y], 'ReturnConditions', true);
sol.x
sol.y
sol.parameters
sol.conditions
ans =
(- 3*v^2 + u)^(1/2)/2 - v/2
ans =
v
ans =
[ u, v]
ans =
4*v^2 < u & u < 4 & 0 < v
```

The parameters u and v do not exist in the MATLAB workspace and must be accessed using sol. parameters.

Check if the values $u=7 / 2$ and $v=1 / 2$ satisfy the condition using subs and isAlways.

```
condWithValues = subs(sol.conditions, sol.parameters, [7/2,1/2]);
```

isAlways(condWithValues)
ans =
logical
1
isAlways returns logical 1 (true) indicating that these values satisfy the condition. Substitute these parameter values into sol. x and sol. y to find a solution for x and y.

```
xSol = subs(sol.x, sol.parameters, [7/2,1/2])
ySol = subs(sol.y, sol.parameters, [7/2,1/2])
xSol =
11^(1/2)/4 - 1/4
ySol =
1/2
```

Convert the solution into numeric form by using vpa.

```
vpa(xSol)
vpa(ySol)
ans =
0.57915619758884996227873318416767
ans =
0.5
```


Return Real Solutions

Solve this equation. It has five solutions.

```
syms x
eqn = x^5 == 3125;
solve(eqn, x)
ans =
*)
```

Return only real solutions by setting argument Real to true. The only real solution of this equation is 5 .

```
solve(eqn, x, 'Real', true)
ans =
5
```


Return One Solution

Solve this equation. Instead of returning an infinite set of periodic solutions, the solver picks these three solutions that it considers to be most practical.

```
syms x
eqn = sin (x) + cos(2*x) == 1;
solve(eqn, x)
ans =
    0
    pi/6
(5*pi)/6
```

Pick only one solution using PrincipalValue.

```
eqn = sin(x) + cos(2*x) == 1;
solve(eqn, x, 'PrincipalValue', true)
ans =
0
```


Shorten Result with Simplification Rules

Try to solve this equation. By default, solve does not apply simplifications that are not always mathematically correct. As a result, solve cannot solve this equation symbolically.

```
syms x
eqn = exp(log(x)*log(3*x)) == 4;
solve(eqn, x)
```

```
Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In solve (line 304)
ans =
- 14.009379055223370038369334703094 - 2.9255310052111119036668717988769i
```

Set IgnoreAnalyticConstraints to true to apply simplifications that might allow solve to find a result. For details, see "Algorithms" on page 4-1521.

```
S = solve(eqn, x, 'IgnoreAnalyticConstraints', true)
S =
    (3^(1/2)*exp(-(log(256) + log(3)^2)^(1/2)/2))/3
    (3^(1/2)*exp((log(256) + log(3)^2)^(1/2)/2))/3
```

solve applies simplifications that allow it to find a solution. The simplifications applied do not always hold. Thus, the solutions in this mode might not be correct or complete, and need verification.

Ignore Assumptions on Variables

The sym and syms functions let you set assumptions for symbolic variables.
Assume that the variable x can have only positive values.
syms x positive
When you solve an equation or a system of equations for a variable under assumptions, the solver only returns solutions consistent with the assumptions. Solve this equation for x.

```
eqn = x^2 + 5*x - 6 == 0;
solve(eqn, x)
ans =
1
```

Allow solutions that do not satisfy the assumptions by setting IgnoreProperties to true.

```
solve(eqn, x, 'IgnoreProperties', true)
```

ans $=$
- 6
1

For further computations, clear the assumption that you set on the variable x.

```
syms x clear
```


Numerically Approximating Symbolic Solutions That Contain root

When solving polynomials, solve might return solutions containing root. To numerically approximate these solutions, use vpa. Consider the following equation and solution.

```
syms x
eqn = x^4 + x^3 + 1 == 0;
s = solve(eqn, x)
S =
    root(z^4 + z^3 + 1, z, 1)
    root(z^4 + z^3 + 1, z, 2)
    root(z^4 + z^3 + 1, z, 3)
    root(z^4 + z^3 + 1, z, 4)
```

Because there are no parameters in this solution, use vpa to approximate it numerically.

```
vpa(s)
ans =
    - 1.0189127943851558447865795886366 - 0.60256541999859902604398442197193i
    - 1.0189127943851558447865795886366 + 0.60256541999859902604398442197193i
        0.5189127943851558447865795886366 - 0.666609844932018579153758800733i
        0.5189127943851558447865795886366 + 0.666609844932018579153758800733i
```


Solve Polynomial Equations of High Degree

When you solve a higher order polynomial equation, the solver might use root to return the results. Solve an equation of order 3.

```
syms x a
eqn = x^3 + x^2 + a == 0;
solve(eqn, x)
ans =
    root(z^3 + z^2 + a, z, 1)
    root(\mp@subsup{z}{}{\wedge}3 + z^2 + a, z, 2)
    root(z^3 + z^2 + a, z, 3)
```

Try to get an explicit solution for such equations by calling the solver with MaxDegree. The option specifies the maximum degree of polynomials for which the solver tries to return explicit solutions. The default value is 2 . Increasing this value, you can get explicit solutions for higher order polynomials.

Solve the same equations for explicit solutions by increasing the value of MaxDegree to 3.

```
S = solve(eqn, x, 'MaxDegree', 3);
pretty(S)
```


Input Arguments

eqn - Equation to solve

symbolic expression | symbolic equation
Equation to solve, specified as a symbolic expression or symbolic equation. The relation operator $==$ defines symbolic equations. If eqn is a symbolic expression (without the right side), the solver assumes that the right side is 0 , and solves the equation eqn $==0$.

var - Variable for which you solve equation symbolic variable

Variable for which you solve an equation, specified as a symbolic variable. By default, solve uses the variable determined by symvar.

eqns - System of equations

symbolic expressions | symbolic equations
System of equations, specified as symbolic expressions or symbolic equations. If any elements of eqns are symbolic expressions (without the right side), solve equates the element to 0 .

vars - Variables for which you solve an equation or system of equations symbolic variables

Variables for which you solve an equation or system of equations, specified as symbolic variables. By default, solve uses the variables determined by symvar.

The order in which you specify these variables defines the order in which the solver returns the solutions.

Name-Value Pair Arguments

Example: 'Real' , true specifies that the solver returns real solutions.
ReturnConditions - Flag for returning parameters conditions false (default) |true

Flag for returning parameters in solution and conditions under which the solution is true, specified as the comma-separated pair consisting of 'ReturnConditions' and one of these values.

false	Do not return parameterized solutions. Do not return the conditions under which the solution holds. The solve function replaces parameters with appropriate values.
true	Return the parameters in the solution and the conditions under which the solution holds. For a call with a single output variable, solve returns a structure with the fields parameters and conditions. For multiple output variables, solve assigns the parameters and conditions to the last two output variables. This behavior means that the number of output variables must be equal to the number of variables to solve for plus two.

Example: [v1, v2, params, conditions] $=$ solve(sin(x) $+\mathrm{y}==0, \mathrm{y}^{\wedge} 2==$ 3,'ReturnConditions',true) returns the parameters in params and conditions in conditions.

IgnoreAnalyticConstraints - Simplification rules applied to expressions and equations
 false (default) | true

Simplification rules applied to expressions and equations, specified as the commaseparated pair consisting of 'IgnoreAnalyticConstraints' and one of these values.

false	Use strict simplification rules.

true	Apply purely algebraic simplifications to expressions and equations. Setting IgnoreAnalyticConst raints to true can give you simple solutions for the equations for which the direct use of the solver returns complicated results. In some cases, it also enables solve to solve equations and systems that cannot be solved otherwise. Setting IgnoreAnalyticConst raints to true can lead to wrong or incomplete results.

IgnoreProperties - Flag for returning solutions inconsistent with properties of variables
 false (default) | true

Flag for returning solutions inconsistent with the properties of variables, specified as the comma-separated pair consisting of 'IgnoreProperties' and one of these values.

false	Do not exclude solutions inconsistent with the properties of variables.
true	Exclude solutions inconsistent with the properties of variables.

MaxDegree - Maximum degree of polynomial equations for which solver uses explicit formulas

2 (default) | positive integer smaller than 5

Maximum degree of polynomial equations for which solver uses explicit formulas, specified as a positive integer smaller than 5 . The solver does not use explicit formulas that involve radicals when solving polynomial equations of a degree larger than the specified value.

PrincipalValue - Flag for returning one solution false (default) | true

Flag for returning one solution, specified as the comma-separated pair consisting of 'PrincipalValue' and one of these values.

false	Return all solutions.
true	Return only one solution. If an equation or a system of equations does not have a solution, the solver returns an empty symbolic object.

Real - Flag for returning only real solutions false (default) | true

Flag for returning only real solutions, specified as the comma-separated pair consisting of 'Real' and one of these values.

false	Return all solutions.
true	Return only those solutions for which every subexpression of the original equation represents a real number. Also, assume that all symbolic parameters of an equation represent real numbers.

Output Arguments

S - Solutions of equation
 symbolic array

Solutions of an equation, returned as a symbolic array. The size of a symbolic array corresponds to the number of the solutions.

Y - Solutions of system of equations

structure
Solutions of a system of equations, returned as a structure. The number of fields in the structure correspond to the number of independent variables in a system. If ReturnConditions is set to true, the solve function returns two additional fields that contain the parameters in the solution, and the conditions under which the solution is true.

y1, ...,yN - Solutions of system of equations

symbolic variables
Solutions of a system of equations, returned as symbolic variables. The number of output variables or symbolic arrays must be equal to the number of independent variables in a system. If you explicitly specify independent variables vars, then the solver uses the same order to return the solutions. If you do not specify vars, the toolbox sorts independent variables alphabetically, and then assigns the solutions for these variables to the output variables.

parameters - Parameters in solution
 vector of generated parameters

Parameters in a solution, returned as a vector of generated parameters. This output argument is only returned if ReturnConditions is true. If a single output argument is provided, parameters is returned as a field of a structure. If multiple output arguments are provided, parameters is returned as the second-to-last output argument. The generated parameters do not appear in the MATLAB workspace. They must be accessed using parameters.

Example: [solx, params, conditions] = solve(sin(x) == 0, 'ReturnConditions', true) returns the parameter k in the argument params.

conditions - Conditions under which solutions are valid

vector of symbolic expressions
Conditions under which solutions are valid, returned as a vector of symbolic expressions. This output argument is only returned if ReturnConditions is true. If a single output argument is provided, conditions is returned as a field of a structure. If multiple output arguments are provided, conditions is returned as the last output argument.

Example: [solx, params, conditions] = solve(sin(x) == 0, 'ReturnConditions', true) returns the condition in(k, 'integer') in conditions. The solution in solx is valid only under this condition.

Tips

- If solve cannot find a solution and ReturnConditions is false, the solve function internally calls the numeric solver vpasolve that tries to find a numeric solution. If solve cannot find a solution and ReturnConditions is true, solve returns an empty solution with a warning. If no solutions exist, solve returns an empty solution without a warning. For polynomial equations and systems without symbolic parameters, the numeric solver returns all solutions. For nonpolynomial equations and systems without symbolic parameters, the numeric solver returns only one solution (if a solution exists).
- If the solution contains parameters and ReturnConditions is true, solve returns the parameters in the solution and the conditions under which the solutions are true. If ReturnConditions is false, the solve function either chooses values of the parameters and returns the corresponding results, or returns parameterized solutions without choosing particular values. In the latter case, solve also issues a warning indicating the values of parameters in the returned solutions.
- If a parameter does not appear in any condition, it means the parameter can take any complex value.
- The output of solve can contain parameters from the input equations in addition to parameters introduced by solve.
- Parameters introduced by solve do not appear in the MATLAB workspace. They must be accessed using the output argument that contains them. Alternatively, to use the parameters in the MATLAB workspace use syms to initialize the parameter. For example, if the parameter is k, use syms k.
- The variable names parameters and conditions are not allowed as inputs to solve.
- The syntax $S=$ solve(eqn, var,'ReturnConditions',true) returns S as a structure instead of a symbolic array.
- To solve differential equations, use the dsolve function.
- When solving a system of equations, always assign the result to output arguments. Output arguments let you access the values of the solutions of a system.
- MaxDegree only accepts positive integers smaller than 5 because, in general, there are no explicit expressions for the roots of polynomials of degrees higher than 4.
- The output variables $\mathrm{y} 1, \ldots, y N$ do not specify the variables for which solve solves equations or systems. If $\mathrm{y} 1, \ldots, \mathrm{yN}$ are the variables that appear in eqns, that does not guarantee that solve(eqns) will assign the solutions to $\mathrm{y} 1, \ldots, y N$ using the correct order. Thus, when you run [b,a] = solve(eqns), you might get the solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For example, the call $[b, a]=$ solve (eqns, $b, a)$ assigns the solutions for a to a and the solutions for b to b.

Algorithms

When you use IgnoreAnalyticConstraints, the solver applies these rules to the expressions on both sides of an equation.

- $\log (a)+\log (b)=\log (a \cdot b)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :

$$
(a \cdot b)^{c}=a^{c} \cdot b^{c} .
$$

- $\log \left(a^{b}\right)=b \cdot \log (a)$ for all values of a and b. In particular, the following equality is valid for all values of a, b, and c :
$\left(a^{b}\right)^{c}=a^{b \cdot c}$.
- If f and g are standard mathematical functions and $f(g(x))=x$ for all small positive numbers, $f(g(x))=x$ is assumed to be valid for all complex values x. In particular:
- $\log \left(e^{x}\right)=x$
- $\operatorname{asin}(\sin (x))=x, \operatorname{acos}(\cos (x))=x, \operatorname{atan}(\tan (x))=x$
- $\operatorname{asinh}(\sinh (x))=x, \operatorname{acosh}(\cosh (x))=x, \operatorname{atanh}(\tanh (x))=x$
- $\mathrm{W}_{k}\left(x \cdot e^{x}\right)=x$ for all values of k
- The solver can multiply both sides of an equation by any expression except 0 .
- The solutions of polynomial equations must be complete.

See Also

dsolve|isolate|linsolve|root|subs|symvar|vpasolve

Topics

"Solve Algebraic Equation" on page 2-146
"Solve System of Algebraic Equations" on page 2-157
"Solve System of Linear Equations" on page 2-173
"Select Numeric or Symbolic Solver" on page 2-155
"Troubleshoot Equation Solutions from solve Function" on page 2-168

Introduced before R2006a

sort

Sort elements of symbolic vectors or matrices

Syntax

```
Y = sort(X)
[Y,I] = sort(___)
    = sort(X,dim)
    = sort(___,
        ,'descend')
```


Description

$Y=\operatorname{sort}(X)$ sorts the elements of a symbolic vector or matrix in ascending order. If X is a vector, sort (X) sorts the elements of X in lexicographic order. If X is a matrix, sort (X) sorts each column of X.
$[Y, I]=\operatorname{sort}(\ldots \quad)$ shows the indices that each element of Y had in the original vector or matrix X.

If X is an m-by- n matrix and you sort elements of each column ($\operatorname{dim}=2$), then each column of I is a permutation vector of the corresponding column of X, such that

```
for j = 1:n
    Y(:,j) = X(I(:,j),j);
end
```

If X is a two-dimensional matrix, and you sort the elements of each column, the array I shows the row indices that the elements of Y had in the original matrix X. If you sort the elements of each row, I shows the original column indices.
$=\operatorname{sort}(X, d i m)$ sorts the elements of X along the dimension dim. Thus, if X is a two-dimensional matrix, then sort $(X, 1)$ sorts elements of each column of X, and $\operatorname{sort}(X, 2)$ sorts elements of each row.
$\ldots \quad$ _ sort (__ , 'descend ') sorts X in descending order. By default, sort uses ascending order.

Examples

Sort Vector Elements

By default, sort sorts the element of a vector or a matrix in ascending order.
Sort the elements of the following symbolic vector:

```
syms a b c d e
sort([7 e 1 c 5 d a b])
ans =
[ 1, 5, 7, a, b, c, d, e]
```


Find Indices That Elements of Sorted Matrix Had in Original Matrix

To find the indices that each element of a new vector or matrix Y had in the original vector or matrix X, call sort with two output arguments.

Sort the matrix X returning the matrix of indices that each element of the sorted matrix had in X :

```
X = sym(magic(3));
[Y, I] = sort(X)
Y =
[ 3, 1, 2]
[ 4, 5, 6]
[ 8, 9, 7]
I =
\begin{tabular}{lll}
2 & 1 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{tabular}
```


Sort Matrix Along Its Columns and Rows

When sorting elements of a matrix, sort can work along the columns or rows of that matrix.

Sort the elements of the following symbolic matrix:

```
X = sym(magic(3))
X =
[ 8, 1, 6]
[ 3, 5, 7]
[ 4, 9, 2]
```

By default, the sort command sorts elements of each column:

```
sort(X)
ans =
[ 3, 1, 2]
[ 4, 5, 6]
[ 8, 9, 7]
```

To sort the elements of each row, use set the value of the dim option to 2 :

```
sort(X,2)
ans =
[ 1, 6, 8]
[ 3, 5, 7]
[ 2, 4, 9]
```


Sort in Descending Order

sort can sort the elements of a vector or a matrix in descending order.
Sort the elements of this vector in descending order:

```
syms a b c d e
sort([7 e 1 c 5 d a b], 'descend')
ans =
[ e, d, c, b, a, 7, 5, 1]
```

Sort the elements of each column of this matrix X in descending order:

```
X = sym(magic(3))
sort(X,'descend')
X =
[ 8, 1, 6]
```

```
[ 3, 5, 7]
[ 4, 9, 2]
ans =
[ 8, 9, 7]
[ 4, 5, 6]
[ 3, 1, 2]
```

Now, sort the elements of each row of X in descending order:

```
sort(X, 2, 'descend')
ans =
[ 8, 6, 1]
[ 7, 5, 3]
[ 9, 4, 2]
```


Input Arguments

X - Input that needs to be sorted
 symbolic vector | symbolic matrix

Input that needs to be sorted, specified as a symbolic vector or matrix.

dim - Dimension to operate along
 positive integer

Dimension to operate along, specified as a positive integer. The default value is 1 . If dim exceeds the number of dimensions of X, then sort (X, dim) returns X, and $[Y, I]=$ sort(X, dim) returns $Y=X$ and $I=$ ones(size(X$)$).

Output Arguments

Y - Sorted output

symbolic vector \mid symbolic matrix
Sorted output, returned as a symbolic vector or matrix.

I - Indices that elements of Y had in X
 symbolic vector | symbolic matrix

Indices that elements of Y had in X, returned as a symbolic vector or matrix. [Y, I] = sort ($\mathrm{X}, \operatorname{dim}$) also returns matrix $\mathrm{I}=$ ones $(\operatorname{size}(X))$ if the value dim exceeds the number of dimensions of X.

Tips

- Calling sort for vectors or matrices of numbers that are not symbolic objects invokes the MATLAB sort function.
- For complex input X, sort compares elements by their magnitudes (complex moduli), computed with abs (X). If complex numbers have the same complex modulus, sort compares their phase angles, angle (X).
- If you use 'ascend ' instead of 'descend ', then sort returns elements in ascending order, as it does by default.
- sort uses the following rules:
- It sorts symbolic numbers and floating-point numbers numerically.
- It sorts symbolic variables alphabetically.
- In all other cases, including symbolic expressions and functions, sort uses internal sorting rules.

Introduced before R2006a

sqrtm

Matrix square root

Syntax

```
X = sqrtm(A)
[X,resnorm] = sqrtm(A)
```


Description

$X=\operatorname{sqrtm}(A)$ returns a matrix X, such that $X^{2}=A$ and the eigenvalues of X are the square roots of the eigenvalues of A.
$[X, r e s n o r m]=\operatorname{sqrtm}(A)$ returns a matrix X and the residual norm(A-X^2,'fro')/ norm(A,'fro').

Examples

Compute Square Root of Matrix

Compute the square root of this matrix. Because these numbers are not symbolic objects, you get floating-point results.

```
A = [2 -2 0; -1 3 0; -1/3 5/3 2];
X = sqrtm(A)
X =
    1.3333 
    -0.0572 0.5286 1.4142
```

Now, convert this matrix to a symbolic object, and compute its square root again:
$A=\operatorname{sym}([2-20 ;-130 ;-1 / 35 / 32]) ;$
$X=\operatorname{sqrtm}(A)$

```
X =
[rra,
```

Check the correctness of the result:
isAlways($\mathrm{X}^{\wedge} 2$ == A)
ans $=$
3×3 logical array
111
111
111

Return Residual of Matrix Square Root

Use the syntax with two output arguments to return the square root of a matrix and the residual:

A = vpa(sym([0 0; 0 5/3]), 100);
[X, resnorm] = sqrtm(A)
X =
[0, 0]
[0, 1.2909944487358056283930884665941]
resnorm =
2.9387358770557187699218413430556e-40

Input Arguments

A - Input
symbolic matrix
Input, specified as a symbolic matrix.

Output Arguments

X - Matrix square root

symbolic matrix

Matrix square root, returned as a symbolic matrix such that $X^{2}=A$.

resnorm - Residual

symbolic expression
Residual, returned as a symbolic expression. The residual is computed as norm(AX^2,'fro')/norm(A,'fro').

Tips

- Calling sqrtm for a matrix that is not a symbolic object invokes the MATLAB sqrtm function.

See Also
cond | eig | expm | funm | jordan | logm | norm
Introduced in R2013a

ssinint

Shifted sine integral function

Syntax

```
ssinint(X)
```


Description

ssinint (X) returns the shifted sine integral function on page 4-1535 ssinint $(X)=$ sinint(X) - pi/2.

Examples

Shifted Sine Integral Function for Numeric and Symbolic Arguments

Depending on its arguments, ssinint returns floating-point or exact symbolic results.
Compute the shifted sine integral function for these numbers. Because these numbers are not symbolic objects, ssinint returns floating-point results.

```
A = ssinint([- pi, 0, pi/2, pi, 1])
A =
\begin{tabular}{lllll}
-3.4227 & -1.5708 & -0.2000 & 0.2811 & -0.6247
\end{tabular}
```

Compute the shifted sine integral function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, ssinint returns unresolved symbolic calls.

```
symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))
symA =
[ - pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -3.4227333787773627895923750617977,...
-1.5707963267948966192313216916398,...
-0.20003415864040813916164340325818,...
0.28114072518756955112973167851824,...
-0.62471325642771360428996837781657]
```


Plot Shifted Sine Integral Function

Plot the shifted sine integral function on the interval from -4^{*} pi to 4^{*} pi. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(ssinint(x), [-4*pi, 4*pi])
grid on
```


Handle Expressions Containing Shifted Sine Integral Function

Many functions, such as diff, int, and taylor, can handle expressions containing ssinint.

Find the first and second derivatives of the shifted sine integral function:

```
syms x
diff(ssinint(x), x)
diff(ssinint(x), x, x)
ans =
sin(x)/x
```

```
ans =
cos(x)/x - sin(x)/\mp@subsup{x}{}{\wedge}2
```

Find the indefinite integral of the shifted sine integral function:

```
int(ssinint(x), x)
ans =
cos(x) + x*ssinint(x)
```

Find the Taylor series expansion of ssinint (x):
taylor(ssinint(x), x)
ans $=$
$x^{\wedge} 5 / 600-x^{\wedge} 3 / 18+x-p i / 2$

Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Sine Integral Function

The sine integral function is defined as follows:

$$
\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
$$

Shifted Sine Integral Function

The sine integral function is defined as $\operatorname{Ssi}(x)=\operatorname{Si}(x)-\Pi / 2$.

References

[1] Gautschi, W. and W. F. Cahill. "Exponential Integral and Related Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint|cosint|eulergamma|int|sin|sinhint|sinhint|sinint
Introduced in R2014a

str2symunit

Convert character vector or string to unit

Syntax

```
str2symunit(unitStr)
str2symunit(unitStr,toolbox)
```


Description

str2symunit(unitStr) converts the character vector or string unitStr to symbolic units.
str2symunit(unitStr, toolbox) converts the character vector unitStr assuming it represents units in the toolbox toolbox. The allowed values of toolbox are 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

Examples

Convert Character Vector to Unit

Convert the character vector ' $\mathrm{km} /$ hour' to symbolic units.

```
unit = str2symunit('km/hour')
unit =
1*([km]/[h])
```

Use this unit to define a speed of $50 \mathrm{~km} / \mathrm{hour}$.
speed $=50 *$ unit
speed =
50*([km]/[h])

Convert Units of Specified Toolbox

Convert units from other toolboxes to symbolic units by specifying the toolbox name as the second argument to str2symunit. The allowed names are 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

Convert ' $\mathrm{km} / \mathrm{h}-\mathrm{s}$ ' from Aerospace Toolbox to symbolic units.
unit = str2symunit('km/h-s','Aerospace')
unit =
1*([km]/([h]*[s]))
Convert 'molecules/s' from SimBiology® to symbolic units.

```
unit = str2symunit('molecule/s','SimBiology')
```

unit =
1*([molecule]/[s])
Convert 'gee/km' from Simscape to symbolic units.

```
unit = str2symunit('gee/km','Simscape')
unit =
1*([g_n]/[km])
```

Convert 'rad/second' from Simulink to symbolic units.

```
unit = str2symunit('rad/second','Simulink')
```

unit =
1*([rad]/[s])

Input Arguments

unitStr - Input units

character vector | string
Input, specified as a character vector or string.
Example: str2symunit('km/hour')

toolbox - Toolbox to which units belong
 'Aerospace' | 'SimBiology'|'Simscape'|'Simulink'

Toolbox to which input belongs, specified as 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.
Example: str2symunit('km/h-s', 'Aerospace')

See Also

checkUnits|findUnits|isUnit|newUnit|separateUnits|symunit| symunit2str|unitConversionFactor

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017a

str2sym

Evaluate string representing symbolic expression

Syntax

```
str2sym(symstr)
```


Description

str2sym(symstr) evaluates symstr where symstr is a string representing a symbolic expression. Enter symbolic expressions as strings only when reading expressions from text files or when specifying numbers exactly. Otherwise, do not use strings for symbolic input.

Examples

Evaluate String as Symbolic Expression

Evaluate the string 'sin(pi)'. str2sym returns the expected result.

```
str2sym('sin(pi)')
```

ans $=$
0
str2sym assumes the = operator represents an equation, not an assignment. Also, str2sym does not add the variables contained in the string to the workspace.

Show this behavior by evaluating ' $x^{\wedge} 2=4$ '. The str2sym function returns the equation $x^{\wedge} 2==4$ but x does not appear in the workspace.

```
eqn = str2sym('x^2 = 4')
eqn =
x^2 == 4
```

Find the variable in eqn by using symvar. The variable var now refers to x.

```
var = symvar(eqn)
var =
x
```

Assign values from eqn by solving eqn for var and assigning the result.

```
varVal = solve(eqn,var)
varVal =
    -2
    2
```


Substitute Workspace Values into String Input

str2sym does not substitute values from the workspace for variables in the input. Therefore, str2sym has reproducible output. Instead, substitute workspace values by using subs on the output of str2sym.

Set y to 2 . Then, evaluate ' $y^{\wedge} 2$ ' with and without subs to show how subs substitutes y with its value.

```
y = 2;
withoutSubs = str2sym('y^2')
withoutSubs =
y^2
withSubs = subs(str2sym('y^2'))
withSubs =
4
```


Evaluate Strings from File as Symbolic Expressions

When symbolic expressions are stored as strings in a file, evaluate the strings by reading the file and using str2sym.

Assume the file mySym.txt contains this text.

```
a = 2.431
y = a*exp(t)
diff(z(t),t) = b*y*z
```

Evaluate expressions in mySym.txt using str2sym.

```
filename = 'mySym.txt';
filetext = fileread(filename);
filetext = splitlines(filetext);
str2sym(filetext)
ans =
    a == 2.431
    y == a*exp(t)
diff(z(t), t) == b* y*z
```

The output of str2sym is independent of workspace values, which means the output is reproducible. Show this reproducibility by assigning a value to b and re-evaluating the stored expressions.

```
b = 5;
str2sym(filetext)
ans =
    a == 2.431
    y == a*exp(t)
diff(z(t), t) == b*y*z
```

To use workspace values or a value from input equations, use subs (solve the equation first using solve), as described in "Evaluate String as Symbolic Expression" on page 41539 and "Substitute Workspace Values into String Input" on page 4-1540.

Execute Functions in String Input

str2sym executes functions in input when the functions are on the path. Otherwise, str2sym returns the symbolic object as expected. This behavior means that the output is reproducible.

Show this behavior by reading a differential equation and initial condition from a file. Solve the equation for the condition. Because str2sym does not evaluate $y(t)$ in the equation, the output is reproducible.

```
filename = 'mySym.txt';
filetext = fileread(filename);
filetext = splitlines(filetext);
eqn = str2sym(filetext(1))
eqn =
diff(y(t), t) == -y(t)
cond = str2sym(filetext(2))
cond =
y(0) == 2
ySol = dsolve(eqn,cond)
ySol =
2*exp(-t)
```


Exactly Represent Large Numbers and High-Precision Numbers

Because the MATLAB parser automatically converts all numbers to double precision, maintain original precision by entering large numbers and high-precision numbers as strings. Instead of str2sym, enter integers using sym and floating-point numbers using vpa because sym and vpa are faster.

Show the error between entering a ratio of large integers directly versus the exact string representation.

```
num = sym(12230984290/38490293482)
num =
5724399718238385/18014398509481984
numExact = sym('12230984290/38490293482')
numExact =
6115492145/19245146741
error = num - numExact
error =
-7827162395/346689742765832461975814144
```

```
Show the error between entering a high-precision number directly versus the exact string representation.
```

```
num = vpa(8.023098429038490293482)
```

num = vpa(8.023098429038490293482)
num =
8.0230984290384910195825796108693
numExact = vpa('8.023098429038490293482')
numExact =
8.023098429038490293482
error = num - numExact
error =
0.000000000000000072610057961086928844451883343504

```

For details, see "Numeric to Symbolic Conversion" on page 2-126. For full workflows, see "Numerical Computations With High Precision" and "Prime Factorizations".

\section*{Input Arguments}

\section*{symstr - String representing symbolic expression}
character vector | string | cell array of character vectors
String representing a symbolic expression, specified as a character vector, string, or cell array of character vectors.

\section*{Tips}
- str2sym assumes the = operator represents an equation, not an assignment.
- str2sym does not create variables contained in the input.
- str2sym('inf') returns infinity (Inf).
- str2sym('i') returns the imaginary number \(1 i\).

\section*{See Also}
```

subs | sym| syms | vpa

```

\footnotetext{
Topics
"Numeric to Symbolic Conversion" on page 2-126

Introduced in R2017b
}

\section*{subexpr}

Rewrite symbolic expression in terms of common subexpressions

\section*{Syntax}
```

[r,sigma] = subexpr(expr)
[r,var] = subexpr(expr,'var')
[r,var] = subexpr(expr,var)

```

\section*{Description}
[r,sigma] = subexpr(expr) rewrites the symbolic expression expr in terms of a common subexpression, substituting this common subexpression with the symbolic variable sigma. The input expression expr cannot contain the variable sigma.
[r,var] = subexpr(expr,'var') substitutes the common subexpression by var. The input expression expr cannot contain the symbolic variable var.
[r,var] = subexpr(expr,var) is equivalent to [r,var] = subexpr(expr,'var'), except that the symbolic variable var must already exist in the MATLAB workspace.

This syntax overwrites the value of the variable var with the common subexpression found in expr. To avoid overwriting the value of var, use another variable name as the second output argument. For example, use [r,varl] = subexpr(expr,var).

\section*{Examples}

\section*{Rewrite Expression Using Abbreviations}

Solve the following equation. The solutions are very long expressions. To see them, remove the semicolon at the end of the solve command.
```

syms a b c d x
solutions = solve(a*x^3 + b* x^2 + c*x + d == 0, x, 'MaxDegree', 3);

```

These long expressions have common subexpressions. To shorten the expressions, abbreviate the common subexpression by using subexpr. If you do not specify the variable to use for abbreviations as the second input argument of subexpr, then subexpr uses the variable sigma.
```

[r, sigma] = subexpr(solutions)

```
\(r=\)
sigma^(1/3) - b/(3*a) - (- b^2/(9*a^2) + c/(3*a))/sigma^(1/3)
(- b^2/(9*a^2) + c/(3*a))/(2*sigma^(1/3))
    sigma^ \((1 / 3) / 2\) - ( \(3^{\wedge}(1 / 2)^{*}(\operatorname{sigma\wedge }(1 / 3)+\ldots\)
\(\left.\left.\left(-b^{\wedge} 2 /\left(9 * a^{\wedge} 2\right)+c /(3 * a)\right) / \operatorname{sigma}(1 / 3)\right) * 1 i\right) / 2-b /(3 * a)\)
\(\left(-b^{\wedge} 2 /\left(9^{*} a^{\wedge} 2\right)+c /\left(3^{*} a\right)\right) /\left(2^{*} \operatorname{sigma}(1 / 3)\right)-\ldots\)
    \(\operatorname{sigma}^{\wedge}(1 / 3) / 2+\left(3^{\wedge}(1 / 2)^{*}(\operatorname{sigma}(1 / 3)+\ldots\right.\)
\(\left.\left.\left(-b^{\wedge} 2 /\left(9 * a^{\wedge} 2\right)+c /\left(3^{*} a\right)\right) / \operatorname{sigma}(1 / 3)\right)^{*} 1 i\right) / 2-b /(3 * a)\)
sigma =
\(\left(\left(d /(2 * a)+b^{\wedge} 3 /\left(27 * a^{\wedge} 3\right)-\left(b^{*} c\right) /\left(6 * a^{\wedge} 2\right)\right)^{\wedge} 2+\left(-b^{\wedge} 2 /\left(9 * a^{\wedge} 2\right)\right.\right.\)

\section*{Customize Abbreviation Variables}

Solve a quadratic equation.
```

syms a b c x
solutions = solve(a*x^2 + b*x + c == 0, x)
solutions =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

```

Use syms to create the symbolic variable s, and then replace common subexpressions in the result with this variable.
```

syms s
[abbrSolutions,s] = subexpr(solutions,s)
abbrSolutions =
-(b + s)/(2*a)
-(b - s)/(2*a)
s =
(b^2 - 4*a*c)^(1/2)

```

Alternatively, use 's ' to specify the abbreviation variable.
[abbrSolutions,s] = subexpr(solutions,'s')
```

abbrSolutions =
-(b + s)/(2*a)
-(b - s)/(2*a)
(b^2 - 4*a*c)^(1/2)

```

Both syntaxes overwrite the value of the variable \(s\) with the common subexpression. Therefore, you cannot, for example, substitute s with some value.
```

subs(abbrSolutions,s,0)
ans =
-(b + s)/(2*a)
-(b - s)/(2*a)

```

To avoid overwriting the value of the variable s, use another variable name for the second output argument.
syms s
```

[abbrSolutions,t] = subexpr(solutions,'s')

```
abbrSolutions =
    \(-(b+s) /\left(2^{*} a\right)\)
    \(-(b-s) /(2 * a)\)
=
\(\left(b^{\wedge} 2-4 * a * c\right)^{\wedge}(1 / 2)\)
subs (abbrSolutions, s, 0)
ans =
    -b/(2*a)
    -b/ (2*a)

\section*{Input Arguments}

\section*{expr - Long expression containing common subexpressions \\ symbolic expression | symbolic function}

Long expression containing common subexpressions, specified as a symbolic expression or function.

\section*{var - Variable to use for substituting common subexpressions \\ character vector | symbolic variable}

Variable to use for substituting common subexpressions, specified as a character vector or symbolic variable.
subexpr throws an error if the input expression expr already contains var.

\section*{Output Arguments}
\(r\) - Expression with common subexpressions replaced by abbreviations symbolic expression | symbolic function

Expression with common subexpressions replaced by abbreviations, returned as a symbolic expression or function.

\section*{var - Variable used for abbreviations \\ symbolic variable}

Variable used for abbreviations, returned as a symbolic variable.

\author{
See Also \\ children | pretty | simplify|subs \\ \section*{Topics} \\ "Abbreviate Common Terms in Long Expressions" on page 2-93 \\ Introduced before R2006a
}

\section*{subs}

Symbolic substitution

\section*{Syntax}
```

subs(s,old, new)
subs(s,new)
subs(s)

```

\section*{Description}
subs ( \(s\), old, new) returns a copy of \(s\), replacing all occurrences of old with new, and then evaluates \(s\).
subs ( \(s\), new) returns a copy of \(s\), replacing all occurrences of the default variable in \(s\) with new, and then evaluates \(s\). The default variable is defined by symvar.
subs ( \(s\) ) returns a copy of \(s\), replacing symbolic variables in \(s\), with their values obtained from the calling function and the MATLAB Workspace, and then evaluates s. Variables with no assigned values remain as variables.

\section*{Examples}

\section*{Single Substitution}

Replace a with 4 in this expression.
```

syms a b
subs(a + b, a, 4)
ans =
b + 4

```

Replace a*b with 5 in this expression.
```

subs(a*b^2, a*b, 5)
ans =
5*b

```

\section*{Default Substitution Variable}

Substitute the default variable in this expression with a. If you do not specify the variable or expression to replace, subs uses symvar to find the default variable. For \(x+y\), the default variable is x .
```

syms x y a
symvar(x + y, 1)
ans =
x

```

Therefore, subs replaces x with a .
```

subs(x + y, a)
ans =
a + y

```

\section*{Update Expression with New Values}

Solve this ordinary differential equation.
```

syms a y(t)
y = dsolve(diff(y) == -a*y)
y =
C3*exp(-a*t)

```

Specify the values of the symbolic parameters a and C2.
\[
a=980 ;
\]
\[
C 2=3 ;
\]

Check that \(y\) is not updated with these values, although the values appear in the MATLAB Workspace.

\section*{y}
```

y =
C3*exp (-a*t)

```

To evaluate \(y\) with the new values of \(a\) and \(C 2\), use subs.
```

subs(y)

```
ans =
C3* \(\exp (-980 * t)\)

\section*{Multiple Substitutions}

Make multiple substitutions by specifying the old and new values as vectors.
```

syms a b
subs(cos(a) + sin(b), [a, b], [sym('alpha'), 2])
ans =
sin(2) + cos(alpha)

```

Alternatively, for multiple substitutions, use cell arrays.
```

subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})
ans =
sin(2) + cos(alpha)

```

\section*{Substitute Scalars with Arrays}

Replace variable a in this expression with the 3-by-3 magic square matrix. Note that the constant 1 expands to the 3 -by- 3 matrix with all its elements equal to 1 .
```

syms a t
subs(exp(a*t) + 1, a, -magic(3))
ans =
[exp(-8*t) + 1, exp(-t) + 1, exp(-6*t) + 1]
[exp(-3*t) + 1, exp(-5*t) + 1, exp(-7*t) + 1]
[exp(-4*t) + 1, exp(-9*t) + 1, exp(-2*t) + 1]

```

You can also replace an element of a vector, matrix, or array with a nonscalar value. For example, create these 2-by-2 matrices.
```

A = sym('A', [2,2])
B = sym('B', [2,2])
A =
[A1_1, A1_2]
[A2_1, A2_2]
B =
[B1 1, B1 2]
[B2_1, B2_2]

```

Replace the first element of the matrix A with the matrix B. While making this substitution, subs expands the 2-by-2 matrix A into this 4-by-4 matrix.
```

A44 = subs(A, A(1,1), B)
A44 =
[B1_1, B1_2, A1_2, A1_2]
[B2_1, B2_2, A1_2, A1_2]
[A2_1, A2_1, A2_2, A2_2]
[A2_1, A2_1, A2_2, A2_2]

```
subs does not let you replace a nonscalar with a scalar.

\section*{Substitute Multiple Scalars with Arrays}

Replace variables \(x\) and \(y\) with these 2-by-2 matrices. When you make multiple substitutions involving vectors or matrices, use cell arrays to specify the old and new values.
```

syms x y
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})
ans =
[0, -1]
[2, 0]

```

Note that these substitutions are element-wise.
```

[0 1; -1 0].*[1 -1; -2 1]

```
ans \(=\)
\(\begin{array}{rr}0 & -1 \\ 2 & 0\end{array}\)

\section*{Substitutions in Equations}

Eliminate variables from an equation by using the variable's value from another equation. In the second equation, isolate the variable on the left side using isolate, and then substitute the right side with the variable in the first equation.

First, declare the equations eqn1 and eqn2.
```

syms x y
eqn1 = sin(x)+y == x^2 + y^2;
eqn2 = y*x == cos(x);

```

Isolate y in eqn2 by using isolate.
```

eqn2 = isolate(eqn2,y)
eqn2 =
y == cos(x)/x

```

Eliminate \(y\) from eqn1 by substituting the right side of eqn2 with the left side of eqn2 in eqn1.
```

eqn1 = subs(eqn1,lhs(eqn2),rhs(eqn2))

```
eqn1 \(=\)
\(\sin (x)+\cos (x) / x==\cos (x)^{\wedge} 2 / x^{\wedge} 2+x^{\wedge} 2\)

\section*{Substitutions in Functions}

Replace x with a in this symbolic function.
```

syms x y a
syms f(x, y)
f(x, y) = x + y;
f = subs(f, x, a)
f(x, y) =
a + y

```
subs replaces the values in the symbolic function formula, but does not replace input arguments of the function.
formula(f)
argnames(f)
```

ans =
a + y
ans =
[x, y]

```

Replace the arguments of a symbolic function explicitly.
```

syms x y

```
\(f(x, y)=x+y ;\)
\(f(a, y)=\operatorname{subs}(f, x, a) ;\)
f
\(f(a, y)=\)
a + y

\section*{Substitute Variables with Corresponding Values from Structure}

Suppose you want to verify the solutions of this system of equations.
```

syms x y
eqs = [x^2 + y^2 == 1, x == y];
S = solve(eqs, [x y]);
S.x
S.y
ans =
-2^(1/2)/2
2^(1/2)/2
ans =
-2^(1/2)/2
2^(1/2)/2

```

Verify the solutions by substituting the solutions into the original system.
isAlways(subs(eqs, S))
```

ans =
2\times2 logical array
1
1

```

\section*{Input Arguments}

\section*{s - Input}
symbolic variable | symbolic expression | symbolic equation | symbolic function | symbolic array | symbolic matrix

Input, specified as a symbolic variable, expression, equation, function, array, or matrix.

\section*{old - Element to substitute}
symbolic variable | symbolic expression | symbolic array
Element to substitute, specified as a symbolic variable, expression, or array.

\section*{new - New element}
number | symbolic number | symbolic variable | symbolic expression | symbolic array | structure

New element to substitute with, specified as a number, symbolic number, variable, expression, array, or a structure.

\section*{Tips}
- subs( \(s\),old, new) does not modify \(s\). To modify \(s, u s e s=s u b s(s, o l d, n e w)\).
- If old and new are both vectors or cell arrays of the same size, subs replaces each element of old with the corresponding element of new.
- If old is a scalar, and new is a vector or matrix, then subs ( \(s, o l d\), new) replaces all instances of old in s with new, performing all operations element-wise. All constant terms in \(s\) are replaced with the constant multiplied by a vector or matrix of all 1 s .
- If \(s\) is a univariate polynomial and new is a numeric matrix, use polyvalm(sym2poly(s), new) to evaluate s as a matrix. All constant terms are replaced with the constant multiplied by an identity matrix.

\section*{See Also}
double|lhs|rhs|simplify|subexpr|vpa

\section*{Topics}
"Substitutions in Symbolic Expressions" on page 1-18
"Substitute Variables in Symbolic Expressions" on page 2-108
"Substitute Elements in Symbolic Matrices" on page 2-110
"Substitute Scalars with Matrices" on page 2-112
"Evaluate Symbolic Expressions Using subs" on page 2-114

\section*{Introduced before R2006a}

\section*{svd}

Singular value decomposition of symbolic matrix

\section*{Syntax}
```

sigma = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

```

\section*{Description}
sigma \(=\operatorname{svd}(X)\) returns a vector sigma containing the singular values of a symbolic matrix A.
\([\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X})\) returns numeric unitary matrices U and V with the columns containing the singular vectors, and a diagonal matrix \(S\) containing the singular values. The matrices satisfy the condition \(A=U^{*} S^{*} V^{\prime}\), where \(V^{\prime}\) is the Hermitian transpose (the complex conjugate of the transpose) of V. The singular vector computation uses variableprecision arithmetic. svd does not compute symbolic singular vectors. Therefore, the input matrix X must be convertible to floating-point numbers. For example, it can be a matrix of symbolic numbers.
\([U, S, V]=\operatorname{svd}(X, 0)\) returns the thin, or economy, SVD. If \(X\) is an \(m\)-by-n matrix with \(m\) \(>n\), then svd computes only the first \(n\) columns of \(U\). In this case, \(S\) is an \(n\)-by- \(n\) matrix. For \(m<=n\), this syntax is equivalent to \(\operatorname{svd}(X)\).
\([U, S, V]=\operatorname{svd}\left(X, ' e c o n^{\prime}\right)\) also returns the thin, or economy, SVD. If \(X\) is an m-by-n matrix with \(m>=n\), then this syntax is equivalent to \(\operatorname{svd}(X, 0)\). For \(m<n\), svd computes only the first \(m\) columns of \(V\). In this case, \(S\) is an \(m\)-by- \(m\) matrix.

\section*{Examples}

\section*{Symbolic Singular Values}

Compute the singular values of the symbolic 4-by-4 magic square:
```

A = sym(magic(4));
sigma = svd(A)
sigma =
34
8*5^(1/2)
2*5^(1/2)

```
    0

Now, compute singular values of the matrix whose elements are symbolic expressions:
```

syms t real
A = [0 1; -1 0];
E = expm(t*A)
sigma = svd(E)
E =
[cos(t), sin(t)]
[-sin(t), cos(t)]
sigma =
(\operatorname{cos}(t)^2 + sin(t)^2)^(1/2)
(\operatorname{cos}(t)^2 + sin(t)^2)^(1/2)

```

Simplify the result:
```

sigma = simplify(sigma)
sigma =
1
1

```

For further computations, remove the assumption:
```

syms t clear

```

\section*{Floating-Point Singular Values}

Convert the elements of the symbolic 4-by-4 magic square to floating-point numbers, and compute the singular values of the matrix:
```

A = sym(magic(4));
sigma = svd(vpa(A))
sigma =

```

\section*{Singular Values and Singular Vectors}

Compute the singular values and singular vectors of the 4-by-4 magic square:
```

old = digits(10);
A = sym(magic(4))
[U, S, V] = svd(A)
digits(old)
A =
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]
U =
[0.5, 0.6708203932, 0.5, -0.2236067977]
[0.5, -0.2236067977, -0.5, -0.6708203932]
[0.5, 0.2236067977, -0.5, 0.6708203932]
[0.5, -0.6708203932, 0.5, 0.2236067977]
S =
[34.0,
V =
[0.5, 0.5, 0.6708203932, 0.2236067977]
[0.5, -0.5, -0.2236067977, 0.6708203932]

```
```

[0.5, -0.5, 0.2236067977, -0.6708203932]
[0.5, 0.5, -0.6708203932, -0.2236067977]

```

Compute the product of \(\mathrm{U}, \mathrm{S}\), and the Hermitian transpose of V with the 10-digit accuracy. The result is the original matrix A with all its elements converted to floating-point numbers:
```

vpa(U*S*V',10)
ans =
[16.0, 2.0, 3.0, 13.0]
[5.0, 11.0, 10.0, 8.0]
[9.0, 7.0, 6.0, 12.0]
[4.0, 14.0, 15.0, 1.0]

```

\section*{Thin or Economy SVD}

Use the second input argument 0 to compute the thin, or economy, SVD of this 3-by-2 matrix:
```

old = digits(10);
A = sym([1 1;2 2; 2 2]);
[U, S, V] = svd(A, 0)
U =
[0.3333333333, -0.6666666667]
[0.6666666667, 0.6666666667]
[0.6666666667, -0.3333333333]
S =
[4.242640687, 0]
[0, 0]
V =
[0.7071067812, 0.7071067812]
[0.7071067812, -0.7071067812]

```

Now, use the second input argument 'econ' to compute the thin, or economy, of matrix \(B\). Here, the 3 -by-2 matrix \(B\) is the transpose of \(A\).
```

B = A';
[U, S, V] = svd(B, 'econ')
digits(old)

```
```

U =
[0.7071067812, -0.7071067812]
[0.7071067812, 0.7071067812]
S =
[4.242640687, 0]
[0, 0]
V =
[0.3333333333, 0.6666666667]
[0.6666666667, -0.6666666667]
[0.6666666667, 0.3333333333]

```

\section*{Input Arguments}

\section*{X - Input matrix \\ symbolic matrix}

Input matrix specified as a symbolic matrix. For syntaxes with one output argument, the elements of X can be symbolic numbers, variables, expressions, or functions. For syntaxes with three output arguments, the elements of \(X\) must be convertible to floating-point numbers.

\section*{Output Arguments}

\section*{sigma - Singular values \\ symbolic vector | vector of symbolic numbers}

Singular values of a matrix, returned as a vector. If sigma is a vector of numbers, then its elements are sorted in descending order.

\section*{U - Singular vectors}
matrix of symbolic numbers
Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular vector.

\section*{S - Singular values}
matrix of symbolic numbers

Singular values, returned as a diagonal matrix. Diagonal elements of this matrix appear in descending order.

\section*{V - Singular vectors \\ matrix of symbolic numbers}

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular vector.

\section*{Tips}
- The second arguments 0 and 'econ' only affect the shape of the returned matrices. These arguments do not affect the performance of the computations.
- Calling svd for numeric matrices that are not symbolic objects invokes the MATLAB svd function.

\section*{See Also}
chol|digits|eig|inv|lu|qr|svd|vpa

\section*{Topics}
"Singular Value Decomposition" on page 2-144

\section*{Introduced before R2006a}

\section*{sym}

Create symbolic variables, expressions, functions, matrices

Note Support of character vectors that are not valid variable names and that do not define a number has been removed. To create symbolic expressions, first create symbolic variables, and then use operations on them. For example, use syms \(x\); \(x+1\) instead of sym('x + 1'), exp(sym(pi)) instead of sym('exp(pi)'), and syms \(f(v a r 1, \ldots\) varN \()\) instead of \(f(v a r 1, \ldots\) varN \()=s y m(' f(v a r 1, \ldots v a r N) ')\).

\section*{Syntax}
```

x = sym('x')
A = sym('a', [n1 ... nM])
A = sym('a', n)
sym(
, set)
sym(

```
\(\qquad\)
```

 'clear')
 sym(num)
sym(num, flag)
symexpr = sym(h)

```

\section*{Description}
\(x=\operatorname{sym}(' x\) ') creates symbolic variable \(x\).
A \(=\operatorname{sym}\left({ }^{\prime} a^{\prime}, \quad[n 1 \ldots n M]\right)\) creates an n1-by-....-by-nM symbolic array filled with automatically generated elements. For example, \(A=\operatorname{sym}(' a '\), 13 3]) creates the row vector \(A=\left[\begin{array}{lll}a 1 & a 2 & \text { a3]. The auto-generated elements do not appear in the MATLAB }\end{array}\right.\) workspace. For arrays, these elements have the prefix a followed by the element's index using _ as a delimiter, such as a1_3_2.

A = sym('a', n) creates an n-by-n symbolic matrix filled with automatically generated elements.
sym( \(\qquad\) , set) creates a symbolic variable or array and sets the assumption that the variable or all array elements belong to a set. Here, set can be 'real', 'positive', 'integer', or 'rational'.

\section*{sym(}
\(\qquad\) , 'clear') clears assumptions set on a symbolic variable or array. You can specify 'clear' after the input arguments in any of the previous syntaxes, except combining 'clear' and set. You cannot set and clear an assumption in the same function call to sym.
sym (num) converts a number or numeric matrix to a symbolic number or symbolic matrix.
sym(num, flag) uses the technique specified by flag for converting floating-point numbers to symbolic numbers.
symexpr \(=\operatorname{sym}(\mathrm{h})\) creates a symbolic expression or matrix symexpr from an anonymous MATLAB function associated with the function handle \(h\).

\section*{Examples}

\section*{Create Symbolic Variables}

Create the symbolic variables \(x\) and \(y\).
x = sym('x');
y = sym('y');

\section*{Create Symbolic Vector}

Create a 1-by-4 symbolic vector a with auto-generated elements a1, ..., a4.
```

a = sym('a', [1 4])
a =
[a1, a2, a3, a4]

```

Format the names of elements of a by using a format character vector as the first argument. sym replaces \%d in the format character vector with the index of the element to generate the element names.
```

a = sym('x_%d', [1 4])

```
```

a =
[x_1, x_2, x_3, x_4]

```

This syntax does not create symbolic variables \(x \_1, \ldots, x \_4\) in the MATLAB workspace. Access elements of a using standard indexing methods.
```

a(1)
a(2:3)
ans =
x 1
ans =
[x_2, x_3]

```

\section*{Create Symbolic Matrices}

Create a 3-by-4 symbolic matrix with automatically generated elements. The elements are of the form ai_j, which generates the elements A1_1, ..., A3_4.
\(A=\operatorname{sym}(' A ',[34])\)
\(A=\)
[ A1_1, A1_2, A1_3, A1_4]
[ \(\left.\mathrm{A}^{-}{ }^{-1} 1, \mathrm{~A}^{-} 2_{2}, \mathrm{AR}^{-} 3, \mathrm{~A}^{-}-4\right]\)
\(\left[\mathrm{AB}^{-} 1, \mathrm{A3}^{-} 2, \mathrm{A3}^{-} 3, \mathrm{AB}^{-} 4\right]\)
Create a 4 -by- 4 matrix with the element names \(x \_1 \_1, \ldots, x \_4 \_4\) by using a format character vector as the first argument. sym replaces \%d in the format character vector with the index of the element to generate the element names.
```

B = sym('x_%d_%d',4)
B =
[x_1_1, x_1_2, x_1_3, x_1_4]
[x_2-1, x_2_2, x_2_3, x_2_4]
[x_3_1, x_3_2, x_3_3, x_3_4]
[x_4_1, x_4_2, x_4_3, x_4_4]

```

This syntax does not create symbolic variables A1_1, ..., A3_4, x_1_1, ..., x_4_4 in the MATLAB workspace. To access an element of a matrix, use parentheses.

A \((2,3)\)
B \((4,2)\)

\section*{Create Symbolic Multidimensional Arrays}

Create a 2 -by-2-by-2 symbolic array with automatically generated elements A1_1_1, ..., A2 2 2.

A = sym('a',[2 2 2])
A(:,:, 1 ) =
[ a1_1_1, a1_2_1]
[ a2_11, a2_2_1]
\(\mathrm{A}(:,:, 2)=\)
[ a1_1_2, a1_2_2]
[ a2_1_2, a2_2_2]

\section*{Create Symbolic Numbers}

Convert numeric values to symbolic numbers or expressions. Use sym on subexpressions instead of the entire expression for better accuracy. Using sym on entire expressions is inaccurate because MATLAB first converts the expression to a floating-point number, which loses accuracy. sym cannot always recover this lost accuracy.
```

inaccurate1 = sym(1/1234567)
accuratel = 1/sym(1234567)
inaccurate2 = sym(sqrt(1234567))
accurate2 = sqrt(sym(1234567))
inaccurate3 = sym(exp(pi))
accurate3 = exp(sym(pi))
inaccuratel =
7650239286923505/9444732965739290427392
accurate1 =
1/1234567

```
inaccurate2 =
4886716562018589/4398046511104

\section*{accurate2 =}

1234567^(1/2)
inaccurate3 =
6513525919879993/281474976710656
accurate3 =
exp(pi)

\section*{Create Large Symbolic Numbers}

When creating symbolic numbers with 15 or more digits, use quotation marks to accurately represent the numbers.
```

inaccurateNum = sym(111111111111111111111)
accurateNum = sym('111111111111111111111')

```

\section*{inaccurateNum =}

11111111111111110656
accurateNum =
11111111111111111111
When you use quotation marks to create symbolic complex numbers, specify the imaginary part of a number as \(1 i, 2 i\), and so on.
```

sym('1234567 + 1i')
ans =
1234567 + 1i

```

\section*{Create Symbolic Expressions from Function Handles}

Create a symbolic expression and a symbolic matrix from anonymous functions associated with MATLAB handles.
```

h_expr = @(x)(sin(x) + cos(x));
sym_expr = sym(h_expr)
sym_expr =
cos(x) + sin(x)
h_matrix = @(x)(x*pascal(3));
sym_matrix = sym(h_matrix)
sym matrix =
[x, x, x]

```
```

[x, 2*x, 3*x]
[x, 3*x, 6*x]

```

\section*{Set Assumptions While Creating Variables}

Create the symbolic variables \(\mathrm{x}, \mathrm{y}, \mathrm{z}\), and t simultaneously assuming that x is real, y is positive, \(z\) integer, and \(t\) is rational.
```

x = sym('x','real');
y = sym('y','positive');
z = sym('z','integer');
t = sym('t','rational');

```

Check the assumptions on \(\mathrm{x}, \mathrm{y}\), and z using assumptions.
```

assumptions

```
```

ans =
[in(z, 'integer'), in(t, 'rational'), in(x, 'real'), 0 < y]

```

For further computations, clear the assumptions using assume.
```

assume([x y z t],'clear')
assumptions
ans =
Empty sym: 1-by-0

```

\section*{Set Assumptions on Matrix Elements}

Create a symbolic matrix and set assumptions on each element of that matrix.
```

A = sym('A%d%d',[2 2],'positive')
A =
[A11, A12]
[A21, A22]

```

Solve an equation involving the first element of A. MATLAB assumes that this element is positive.
```

solve(A(1, 1)^2 - 1, A(1, 1))

```

\section*{ans =}

Check the assumptions set on the elements of A by using assumptions.
```

assumptions(A)
ans =
[0 < A11, 0 < A12, 0 < A21, 0 < A22]

```

Clear all previously set assumptions on elements of a symbolic matrix by using assume.
```

assume(A,'clear');
assumptions(A)
ans =
Empty sym: 1-by-0

```

Solve the same equation again.
```

solve(A(1, 1)^2 - 1, A(1, 1))
ans =
-1
1

```

\section*{Choose Conversion Technique for Floating-Point Values}

Convert pi to a symbolic value.
Choose the conversion technique by specifying the optional second argument, which can be 'r', 'f', 'd', or 'e'. The default is 'r'. See the Input Arguments section for the details about conversion techniques.
```

r = sym(pi)
f = sym(pi,'f')
d = sym(pi,'d')
e = sym(pi,'e')
r=
pi
f =
884279719003555/281474976710656

```
```

d =
3.1415926535897931159979634685442
e =
pi - (198*eps)/359

```

\section*{Input Arguments}

\section*{x - Variable name \\ character vector}

Variable name, specified as a character vector. Argument x must a valid variable name. That is, \(x\) must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

Example: x, y123, z_1

\section*{h - Anonymous function}

MATLAB function handle
Anonymous function, specified as a MATLAB function handle
Example: \(\mathrm{h}=\) @(x)sin(x); symexpr = sym(h)

\section*{a - Prefix for automatically generated matrix elements}
character vector
Prefix for automatically generated matrix elements, specified as a character vector. Argument a must a valid variable name. That is, a must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

Example: a, b, a_bc
[n1 ... nM] - Vector, matrix, or array dimensions
vector of integers
Vector, matrix, or array dimensions, specified as a vector of integers. As a shortcut, you also can use one integer to create a square matrix. For example, \(A=\operatorname{sym}\left({ }^{\prime} A\right.\) ' , 3 ) creates a square 3-by-3 matrix.

Example: [2 3], [2,3], [2;3]

\section*{set - Assumptions on symbolic variable or matrix}
'real'|'positive'|'integer'| 'rational'
Assumptions on a symbolic variable or matrix, specified as one of these character vectors: 'real', 'positive', 'integer', or 'rational'.

\section*{num - Numeric value to be converted to symbolic number or matrix}
number | matrix of numbers
Numeric value to be converted to symbolic number or matrix, specified as a number or a matrix of numbers.

Example: 10, pi,hilb(3)

\section*{flag - Conversion technique}
'r' (default) | 'd'| 'e'|'f'
Conversion technique, specified as one of the characters listed in this table.
\begin{tabular}{|c|c|}
\hline 'r' & When sym uses the rational mode, it converts floating-point numbers obtained by evaluating expressions of the form \(p / q, p * p i / q, \operatorname{sqrt}(p), 2^{\wedge} q\), and \(10^{\wedge} q\) for modest sized integers \(p\) and \(q\) to the corresponding symbolic form. This effectively compensates for the round-off error involved in the original evaluation, but might not represent the floating-point value precisely. If sym cannot find simple rational approximation, then it uses the same technique as it would use with the flag ' \(f\) '. \\
\hline 'd' & When sym uses the decimal mode, it takes the number of digits from the current setting of digits. Conversions with fewer than 16 digits lose some accuracy, while more than 16 digits might not be warranted. For example, sym(4/3, 'd') with the 10-digit accuracy returns 1.333333333 , while with the 20-digit accuracy it returns 1.3333333333333332593. The latter does not end in 3 s , but it is an accurate decimal representation of the floating-point number nearest to 4/3. \\
\hline 'e' & When sym uses the estimate error mode, it supplements a result obtained in the rational mode by a term involving the variable eps. This term estimates the difference between the theoretical rational expression and its actual floating-point value. For example, sym(3*pi/4,'e') returns (3*pi)/4 (103*eps)/249. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline ' \(f\) ' & \begin{tabular}{l} 
When sym uses the floating-point mode, it represents all values in the form \\
\(N^{*} 2^{\wedge} \mathrm{e}\) or \(-N^{*} 2^{\wedge} \mathrm{e}\), where \(\mathrm{N}>=0\) and e are integers. For example, \\
sym(1/10,' f ' ) returns \(3602879701896397 / 36028797018963968\). The \\
returned rational value is the exact value of the floating-point number that you \\
convert to a symbolic number.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Arguments}

\section*{x - Variable}
symbolic variable
Variable, returned as a symbolic variable.

\section*{symexpr - Expression or matrix generated from anonymous MATLAB function}
symbolic expression | symbolic matrix
Expression or matrix generated from an anonymous MATLAB function, returned as a symbolic expression or matrix.

A - Vector or matrix with automatically generated elements
symbolic vector | symbolic matrix
Vector or matrix with automatically generated elements, returned as a symbolic vector or matrix. The elements of this vector or matrix do not appear in the MATLAB workspace.

\section*{Tips}
- Statements like \(\mathrm{pi}=\) sym('pi') and delta \(=\operatorname{sym}(' 1 / 10\) ') create symbolic numbers that avoid the floating-point approximations inherent in the values of pi and \(1 / 10\). The pi created in this way temporarily replaces the built-in numeric function with the same name.
- sym always treats i in character vector input as an identifier. To input the imaginary number i, use 1i instead.
- clear x does not clear the symbolic object of its assumptions, such as real, positive, or any assumptions set by assume, sym, or syms. To remove assumptions, use one of these options:
- assume ( x, 'clear') removes all assumptions affecting \(x\).
- clear all clears all objects in the MATLAB workspace and resets the symbolic engine.
- assume and assumeAlso provide more flexibility for setting assumptions on variable.
- When you replace one or more elements of a numeric vector or matrix with a symbolic number, MATLAB converts that number to a double-precision number.
```

A = eye(3);
A(1,1) = sym('pi')
A =
3.1416
0 0 1.0000

```

You cannot replace elements of a numeric vector or matrix with a symbolic variable, expression, or function because these elements cannot be converted to doubleprecision numbers. For example, \(A(1,1)=\) sym('a') throws an error.

\section*{Alternative Functionality}

\section*{Alternative Approaches for Creating Symbolic Variables}

To create several symbolic variables in one function call, use syms.

\section*{See Also}
assume|clear all|double|reset|str2sym| symfun| syms| symvar

\section*{Topics}
"Create Symbolic Numbers, Variables, and Expressions" on page 1-3
"Create Symbolic Functions" on page 1-7
"Create Symbolic Matrices" on page 1-9
"Use Assumptions on Symbolic Variables" on page 1-28

\section*{Introduced before R2006a}

\section*{sym2cell}

Convert symbolic array to cell array

\section*{Syntax}

C = sym2cell(S)

\section*{Description}

C = sym2cell(S) converts a symbolic array S to a cell array C. The resulting cell array has the same size and dimensions as the input symbolic array.

\section*{Examples}

\section*{Convert Symbolic Array to Cell Array}

Convert a matrix of symbolic variables and numbers to a cell array.
Create the following symbolic matrix.
```

syms x y
S = [x 2 3 4; y 6 7 8; 9 10 11 12]
S =
[x, 2, 3, 4]
[y, 6, 7, 8]
[9, 10, 11, 12]

```

Convert this matrix to a cell array by using sym2cell. The size of the resulting cell array corresponds to the size of the input matrix. Each cell contains an element of the symbolic matrix S .
```

C = sym2cell(S)
C =
3\times4 cell array

```
\(\left.\begin{array}{llllll}\{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\} \\ \{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\} \\ \{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\} & \{1 \times 1 & \text { sym }\}\end{array}\right\}\)

To access an element in each cell, use curly braces.
```

[C{1,1:4}]
ans =
[x, 2, 3, 4]
[C{1:3,1}]
ans =
[x, y, 9]

```

\section*{Input Arguments}

\section*{S - Input symbolic array}
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input symbolic array, specified as a symbolic vector, matrix, or multidimensional array. S also can be a scalar, that is, a symbolic number, variable, expression, or function.

\section*{Output Arguments}

\section*{C - Resulting cell array}

\author{
cell array
}

Resulting cell array, returned as a cell array such that size(C) = size(S). Each element of the input symbolic array \(S\) is enclosed in a separate cell.

\section*{See Also}
cell2mat|cell2sym|mat2cell|num2cell

Introduced in R2016a

\section*{sym2poly}

Extract vector of all numeric coefficients, including zeros, from symbolic polynomial

\section*{Syntax}
c = sym2poly(p)

\section*{Description}
\(c=\operatorname{sym} 2 p o l y(p)\) returns the numeric vector of coefficients \(c\) of the symbolic polynomial \(p\). The returned vector cincludes all coefficients, including those equal 0.
sym2poly returns coefficients in order of descending powers of the polynomial variable.
If \(c_{1} x^{n-1}+c_{2} x^{n-2}+\ldots+c_{n}\), then \(\mathrm{c}=\operatorname{sym} 2 \operatorname{poly}(\mathrm{p})\) returns \(\mathrm{c}=\left[\begin{array}{ll}\mathrm{c} 1 & \mathrm{c} 2 \ldots \mathrm{cn}\end{array}\right]\).

\section*{Examples}

\section*{Extract Numeric Coefficients of Polynomial}

Create row vectors of coefficients of symbolic polynomials.
Extract integer coefficients of a symbolic polynomial into a numeric row vector.
syms \(x\)
\(c=\operatorname{sym} 2 \operatorname{poly}\left(x^{\wedge} 3-2^{*} x-5\right)\)
\(C=\)

Extract rational and integer coefficients of a symbolic polynomial into a vector. Because sym2poly returns numeric double-precision results, it approximates exact rational coefficients with double-precision numbers.
\(c=\operatorname{sym} 2 p o l y\left(1 / 2^{*} x^{\wedge} 3-2 / 3^{*} x-5\right)\)
\(0.5000 \quad 0 \quad-0.6667 \quad-5.0000\)

\section*{Input Arguments}

\section*{p - Polynomial}
symbolic expression
Polynomial, specified as a symbolic expression.

\section*{Output Arguments}

\section*{c - Polynomial coefficients}
numeric row vector
Polynomial coefficients, returned as a numeric row vector.

\section*{Tips}
- To extract symbolic coefficients of a polynomial, use coeffs. This function returns a symbolic vector of coefficients and omits all zeros. For example, syms a b x; \(c=\) coeffs (a*x^3 - \(5^{*} b, x\) ) returns \(c=[-5 * b, a]\).

\section*{See Also}
coeffs | poly2sym

Introduced before R2006a

\section*{symengine}

Return symbolic engine

\section*{Syntax}
s = symengine

\section*{Description}
\(\mathrm{s}=\) symengine returns the currently active symbolic engine.

\section*{Examples}

\section*{Return Active Symbolic Engine}

To see which symbolic computation engine is currently active, enter:
```

s = symengine

```
s =
MuPAD symbolic engine

Now you can use the variable \(s\) in function calls that require symbolic engine:
```

syms a b c x
p = a*x^2 + b*x + c;
feval(s,'polylib::discrim', p, x)
ans =
b^2 - 4*a*c

```

\section*{See Also}
evalin|feval|read

\section*{Introduced in R2008b}

\section*{symfun}

Create symbolic functions

\section*{Syntax}
f(inputs) = formula f = symfun(formula,inputs)

\section*{Description}
\(f(\) inputs \()=\) formula creates the symbolic function \(f\). For example, \(f(x, y)=x+\) \(y\). The symbolic variables in inputs are the input arguments. The symbolic expression formula is the body of the function \(f\).
\(f=\) symfun(formula, inputs) is the formal way to create a symbolic function.

\section*{Examples}

\section*{Create and Define Symbolic Functions}

Define the symbolic function \(x+y\). First, create the function by using syms. Then define the function.
```

syms f(x,y)
f(x,y) = x + y
f(x,y) =
x + y

```

Find the value of f at \(\mathrm{x}=1\) and \(\mathrm{y}=2\).
f(1,2)
ans \(=\)
3

Define the function again by using the formal way.
```

syms x y
f = symfun(x+y,[ll y])
f(x, y) =
x + y

```

\section*{Return Body and Arguments of Symbolic Function}

Return the body of a symbolic function by using formula. You can use the body for operations such as indexing into the function. Return the arguments of a symbolic function by using argnames.

Index into the symbolic function \(\left[x^{\wedge} 2, y^{\wedge} 4\right]\). Since a symbolic function is a scalar, you cannot directly index into the function. Instead, index into the body of the function.
```

syms f(x,y)
f(x,y) = [x^2, y^4];
fbody = formula(f);
fbody(1)
fbody(2)
ans =
x^2
ans =
y^4

```

Return the arguments of the function.
```

fvars = argnames(f)
fvars =
[x, y]

```
- "Create Symbolic Functions" on page 1-7

\section*{Input Arguments}

\section*{formula - Function body}
symbolic expression | vector of symbolic expressions | matrix of symbolic expressions

Function body, specified as a symbolic expression, vector of symbolic expressions, or matrix of symbolic expressions.

\section*{Example: x + y}

\section*{inputs - Input argument or arguments of function}
symbolic variable | array of symbolic variables
Input argument or arguments of a function, specified as a symbolic variable or an array of symbolic variables, respectively.

\section*{Example: [x,y]}

\section*{Output Arguments}

\section*{f - Function \\ symbolic function (symfun data type)}

Function, returned as a symbolic function (symfun data type).

\section*{See Also}
argnames | formula|matlabFunction|sym|syms|symvar

\section*{Topics}
"Create Symbolic Functions" on page 1-7

Introduced in R2012a

\section*{sympref}

Set symbolic preferences

\section*{Syntax}
```

sympref(pref,value)
sympref(pref,'default')
sympref(pref)
sympref()
sympref('default')
sympref(allPref)

```

\section*{Description}
sympref(pref, value) sets the symbolic preference pref to value and returns the previous value of pref. Symbolic preferences can affect the functions fourier, ifourier, and heaviside. These preferences persist between successive MATLAB sessions.
sympref(pref,'default') sets pref to its default value and returns the previous value of pref.
sympref(pref) returns the value of symbolic preference pref.
sympref() returns the values of all symbolic preferences in a structure.
sympref('default') sets all symbolic preferences to their default values and returns the previous values in a structure.
sympref(allPref) restores all symbolic preferences to the values in structure allPref and returns the previous values in a structure. allPref is the structure returned by a previous call to sympref.

Note Symbolic preferences persist between successive MATLAB sessions. MATLAB does not restore them for a new session.

\section*{Examples}

\section*{Change Parameter Values of Fourier Transform}

The Fourier transform \(F(w)\) of \(f=f(t)\) is
\[
F(w)=c \int_{-\infty}^{\infty} f(t) e^{i s w t} d t
\]
where \(c\) and \(s\) are parameters with default values 1 and -1 . Other common values for \(c\) are \(1 / 2 \pi\) and \(1 / \sqrt{2 \pi}\), and for s are \(1,-2 \pi\), and \(2 \pi\).

Find the Fourier transform of \(\sin (t)\) with default values of \(c\) and \(s\).
```

syms t w
fourier(sin(t),t,w)
ans =
-pi*(dirac(w - 1) - dirac(w + 1))*li

```

Find the same Fourier transform for \(c=1 /(2 \pi)\) and \(s=1\). Set these parameter values by using the FourierParameter preference of sympref. Represent \(\pi\) exactly using sym. The values of \(c\) and \(s\) are specified as the vector [1/(2*sym(pi)) 1]. Store the previous values returned by sympref to restore them later.
```

oldparam = sympref('FourierParameters',[1/(2*sym(pi)) 1])
fourier(sin(t),t,w)
oldparam =
[1, -1]
ans =
(dirac(w - 1)*1i)/2 - (dirac(w + 1)*1i)/2

```

The preferences set by sympref persist through your current and future MATLAB sessions. Restore the old values of c and s using the previous parameter values stored in oldparam.
sympref('FourierParameters',oldparam);

Alternatively, you can restore the default values of \(c\) and \(s\) by specifying the 'default' option.
```

sympref('FourierParameters','default');

```

\section*{Change Value of Heaviside at Origin}

The default value of the Heaviside function at the origin is \(1 / 2\) in the Symbolic Math Toolbox. Return the value of heaviside(0). Find the Z-Transform of heaviside(x) for this default value of heaviside(0).
```

syms x
heaviside(sym(0))
ztrans(heaviside(x))
ans =
1/2
ans =
1/(z - 1) + 1/2

```

Other common values for the Heaviside function at the origin are 0 and 1. Set heaviside(0) to 1 using the 'HeavisideAtOrigin' preference of sympref. Store the old parameter value returned by sympref to restore it later.
```

oldparam = sympref('HeavisideAtOrigin',1)
oldparam =
1/2

```

Check the new value of heaviside(0). Find the Z-Transform of heaviside(x) for this value.
```

heaviside(sym(0))
ztrans(heaviside(x))
ans =
1
ans =
1/(z - 1) + 1

```

The new output of heaviside(0) modifies the output of ztrans.

The preferences set by sympref persist throughout your current and future MATLAB sessions. Restore the previous value of heaviside(0) by loading the old parameter stored in oldparam.
```

sympref('HeavisideAtOrigin',oldparam);

```

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by specifying the 'default' option.
```

sympref('HeavisideAtOrigin','default');

```

\section*{Modify Display of Symbolic Expressions in Live Scripts}

By default, symbolic expressions in Live Scripts are typeset and, long expressions are abbreviated. You can turn off the use of typesetting and abbreviation using symbolic preferences.

Turn off abbreviations of long outputs by setting the preference 'AbbreviateOutput ' to false. First, show the abbreviated output.
```

syms a b c d x
f = a*x^3 + b*x^2 + c*x + d;
outputAbbrev = sin(f) + cos(f) + tan(f) + log(f) + 1/f
outputAbbrev =
cos(\mp@subsup{\sigma}{1}{})+\operatorname{log}(\mp@subsup{\sigma}{1}{})+\operatorname{sin}(\mp@subsup{\sigma}{1}{})+\operatorname{tan}(\mp@subsup{\sigma}{1}{})+\frac{1}{\mp@subsup{\sigma}{1}{}}

```
where
\[
\sigma_{1}=a x^{3}+b x^{2}+c x+d
\]

Turn off abbreviated output and display the same expression again.
```

sympref('AbbreviateOutput',false);
outputLong = sin(f) + cos(f) + tan(f) + log(f) + 1/f
outputLong =

```
\(\cos \left(a x^{3}+b x^{2}+c x+d\right)+\log \left(a x^{3}+b x^{2}+c x+d\right)+\sin \left(a x^{3}+b x^{2}+c x+d\right)+\tan \left(a x^{3}+b x^{2}+c x+d\right)+\frac{1}{a x^{3}+b x^{2}+c x+d}\)

Turn off rendered output and use ASCII output instead by setting the preference 'Typeset0utput' to false. First, show the typeset output.
```

syms a b c d x
f = exp(a^b)+pi
f =
\pi+\mp@subsup{\textrm{e}}{}{\mp@subsup{a}{}{b}}

```

Turn off typeset output and display the same expression again.
```

sympref('TypesetOutput',false);
f = exp(a^b)+pi
f =
pi + exp(a^b)

```

The preferences set by sympref persist throughout your current and future MATLAB sessions. Restore the default values of 'AbbreviateOutput ' and 'TypesetOutput' by using the option 'default'.
```

sympref('Abbreviate0utput','default');

```
sympref('TypesetOutput','default');

\section*{Saving and Restoring All Symbolic Preferences}
sympref can save and restore all symbolic preferences simultaneously in place of working with individual preferences.

Return the values of all symbolic preferences using sympref. The sympref function returns a structure of values of preferences. Access individual preferences by addressing the fields of the structure.
```

S = sympref;
S.FourierParameters
S.HeavisideAtOrigin
ans=
[1, -1]

```

\section*{ans =}

1/2
S stores the values of all symbolic preferences.
Assume that you have changed the preferences. Since the preferences persist through your current and future MATLAB sessions, you want to restore your previous preferences in S. Restore the saved preferences using sympref(S).
sympref(S);
Alternatively, you can set all symbolic preferences to their defaults by specifying the option 'default'.
```

sympref('default');

```

\section*{Input Arguments}

\section*{pref - Symbolic preference}
character vector
Symbolic preference, specified as a character vector.

\section*{Example: 'HeavisideAt0rigin'}

\section*{value - Value of symbolic preference}
numeric number | symbolic number
Value of the symbolic preference, specified as a numeric or symbolic number.

\section*{allPref - Values of all symbolic preferences}
structure
Values of all symbolic preferences, specified as a structure. Typically, allPref is generated by a previous call to sympref.

\section*{Tips}
- The commands clear(all) and reset (symengine) do not reset or affect symbolic preferences. Use sympref to manipulate symbolic preferences.

\author{
See Also \\ fourier| heaviside |ifourier \\ Introduced in R2015a
}

\section*{symprod}

Product of series

\section*{Syntax}
```

F = symprod(f,k,a,b)
F = symprod(f,k)

```

\section*{Description}
\(F=\operatorname{symprod}(f, k, a, b)\) returns the product of the series with terms that expression \(f\) specifies, which depend on symbolic variable \(k\). The value of \(k\) ranges from \(a\) to \(b\). If you do not specify \(k\), symprod uses the variable that symvar determines. If \(f\) is a constant, then the default variable is x .
\(F=\operatorname{symprod}(f, k)\) returns the product of the series that expression \(f\) specifies, which depend on symbolic variable \(k\). The value of \(k\) starts at 1 with an unspecified upper bound. The product \(F\) is returned in terms of \(k\) where \(k\) represents the upper bound. This product \(F\) differs from the indefinite product. If you do not specify \(k\), symprod uses the variable that symvar determines. If \(f\) is a constant, then the default variable is \(x\).

\section*{Examples}

\section*{Find Product of Series Specifying Bounds}

Find the following products of series
\[
\begin{aligned}
& P 1=\prod_{k=2}^{\infty} 1-\frac{1}{k^{2}}, \\
& P 2=\prod_{k=2}^{\infty} \frac{k^{2}}{k^{2}-1} .
\end{aligned}
\]
```

syms k
P1 = symprod(1 - 1/k^2, k, 2, Inf)
P2 = symprod(k^2/(k^2 - 1), k, 2, Inf)
P1 =
1/2
P2 =
2

```

Alternatively, specify bounds as a row or column vector.
syms k
P1 = symprod(1 - 1/k^2, k, [2 Inf])
P2 \(=\operatorname{symprod}\left(\mathrm{k}^{\wedge} 2 /\left(\mathrm{k}^{\wedge} 2-1\right), \mathrm{k},[2 ;\right.\) Inf])
P1 =
1/2
P2 =
2

\section*{Find Product of Series Specifying Product Index and Bounds}

Find the product of series
\[
P=\prod_{k=1}^{10000} \frac{e^{k x}}{x}
\]
```

syms k x
P = symprod(exp(k*x)/x, k, 1, 10000)
P =
exp(50005000*x)/x^10000

```

\section*{Find Product of Series with Unspecified Bounds}

When you do not specify the bounds of a series are unspecified, the variable k starts at 1 . In the returned expression, k itself represents the upper bound.

Find the products of series with an unspecified upper bound
\[
\begin{aligned}
& P 1=\prod_{k} k, \\
& P 2=\prod_{k} \frac{2 k-1}{k^{2}} .
\end{aligned}
\]
syms k
P1 \(=\operatorname{symprod}(\mathrm{k}, \mathrm{k})\)
P2 \(=\operatorname{symprod}\left((2 * k-1) / k^{\wedge} 2, k\right)\)
P1 =
factorial(k)
P2 =
\(\left(1 / 2^{\wedge}(2 * \mathrm{k}) * 2^{\wedge}(\mathrm{k}+1) *\right.\) factorial \(\left.(2 * \mathrm{k})\right) /(2 *\) factorial \((\mathrm{k}) \wedge 3)\)

\section*{Input Arguments}

\section*{f - Expression defining terms of series}
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number

Expression defining terms of series, specified as a symbolic expression, function, constant, or a vector or matrix of symbolic expressions, functions, or constants.

\section*{k - Product index}
symbolic variable
Product index, specified as a symbolic variable. If you do not specify this variable, symprod uses the default variable that symvar (expr, 1) determines. If \(f\) is a constant, then the default variable is \(x\).

\section*{a - Lower bound of product index}
number | symbolic number | symbolic variable | symbolic expression | symbolic function
Lower bound of product index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

\section*{b - Upper bound of product index}
number | symbolic number | symbolic variable | symbolic expression | symbolic function
Upper bound of product index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

\section*{Definitions}

\section*{Definite Product}

The definite product of a series is defined as
\[
\prod_{i=a}^{b} x_{i}=x_{a} \cdot x_{a+1} \cdot \ldots \cdot x_{b}
\]

\section*{Indefinite Product}

The indefinite product of \(x_{i}\) over \(i\) is
\[
f(i)=\prod_{i} x_{i}
\]

This definition holds under the assumption that the following identity is true for all values of \(i\).
\[
\frac{f(i+1)}{f(i)}=x_{i}
\]

Note symprod does not compute indefinite products.
```

See Also
cumprod | cumsum | int | syms | symsum| symvar
Introduced in R2011b

```

\section*{symReadSSCParameters}

Load parameters from Simscape component

\section*{Syntax}
[names,values,units] = symReadSSCParameters(componentName)

\section*{Description}
[names,values,units] = symReadSSCParameters(componentName) returns cell arrays containing the names, values, and units of all parameters from the Simscape component called componentName.

\section*{Examples}

\section*{Parameters of Simscape Component}

Load the names, values, and units of the parameters of a Simscape component.
Suppose you have the Simscape component friction.ssc in your current folder.
```

type('friction.ssc');
component friction < foundation.mechanical.rotational.branch
parameters
brkwy_trq = { 25, 'N*m' }; % Breakaway friction torque
Col_trq = { 20, 'N*m' }; % Coulomb friction torque
visc_coef = { 0.001, 'N*m*s/rad' }; % Viscous friction coefficient
trans_coef = { 10, 's/rad' }; % Transition approximation coefficient
vel_thr = { le-4, 'rad/s' }; % Linear region velocity threshold
end
parameters (Access=private)
brkwy_trq_th = { 24.995, 'N*m' }; % Breakaway torque at threshold velocity

```
end
```

function setup
% Parameter range checking
if brkwy_trq <= 0
pm_error('simscape:GreaterThanZero','Breakaway friction torque')
end
if Col_trq <= 0
pm_error('simscape:GreaterThanZero','Coulomb friction torque')
end
if Col_trq > brkwy_trq
pm_error('simsčape:LessThanOrEqual','Coulomb friction torque',...
'Breakaway friction torque')
end
if visc coef < 0
pm_error('simscape:GreaterThanOrEqualToZero','Viscous friction coefficient')
end
if trans_coef <= 0
pm_ēror('simscape:GreaterThanZero','Transition approximation coefficient')
end
if vel_thr <= 0
pm_error('simscape:GreaterThanZero','Linear region velocity threshold')
end
% Computing breakaway torque at threshold velocity
brkwy_trq_th = visc_coef * vel_thr + Col_trq + (brkwy_trq - Col_trq) * ...
exp(-trans_coef * vel_thr);
end
equations
if (abs(w) <= vel thr)
% Linear regiōn
t == brkwy_trq_th * w / vel_thr;
elseif w > 0
t == visc_coef * w + Col_trq + ...
(brkwy_trq - Col_trq) * exp(-trans_coef * w);
else
t == visc_coef * w - Col_trq - ...
(brkwȳ_trq - Col_trq) * exp(-trans_coef * abs(w));
end
end
end

```

4-1595

Load the names, values, and units of the parameters of the component friction.ssc.
```

[names,values,units] = symReadSSCParameters('friction.ssc');

```

In this example, all elements of the resulting cell arrays are scalars. You can convert the cell arrays to symbolic vectors.
```

names_sym = cell2sym(names)
names_sym =
[Col_trq, brkwy_trq, brkwy_trq_th, trans_coef, vel_thr, visc_coef]
values_sym = cell2sym(values)
values_sym =
[20, 25, 4999/200, 10, 1/10000, 1/1000]

```

Create individual symbolic variables from the elements of the cell array names in the MATLAB workspace. This command creates the symbolic variables Col_trq, brkwy_trq, brkwy_trq_th, trans_coef, vel_thr, and visc_coef as sym objects in the workspace.
```

syms(names)

```

\section*{Input Arguments}

\section*{componentName - Simscape component name}
file name enclosed in single quotes
Simscape component name, specified as a file name enclosed in single quotes. The file must have the extension . ssc. If you do not provide the file extension, symReadSSCParameters assumes it to be .ssc. The component must be on the MATLAB path or in the current folder.
Example: 'MyComponent.ssc'

\section*{Output Arguments}

\section*{names - Names of all parameters of Simscape component}
cell array
Names of all parameters of a Simscape component, returned as a cell array.

\section*{Data Types: cell}

\section*{values - Values of all parameters of Simscape component cell array}

Values of all parameters of a Simscape component, returned as a cell array.
Data Types: cell
units - Units of all parameters of Simscape component cell array

Units of all parameters of a Simscape component, returned as a cell array.
Data Types: cell

\author{
See Also \\ symReadSSCVariables| symWriteSSC \\ Introduced in R2016a
}

\section*{symReadSSCVariables}

Load variables from Simscape component

\section*{Syntax}
[names, values, units] = symReadSSCVariables(componentName) [names, values,units] = symReadSSCVariables(componentName, 'ReturnFunctions',ReturnFunctions)

\section*{Description}
[names,values,units] = symReadSSCVariables(componentName) returns cell arrays containing the names, values, and units of all variables from the Simscape component called componentName.
[names,values,units] = symReadSSCVariables(componentName, 'ReturnFunctions', ReturnFunctions) returns the names as symbolic functions of variable \(t\), when 'ReturnFunctions' is set to true.

\section*{Examples}

\section*{Variables of Simscape Component}

Load the names, values, and units of the variables of a Simscape component.
Suppose you have the Simscape component friction. ssc in your current folder.
```

type('friction.ssc');
component friction < foundation.mechanical.rotational.branch
parameters
brkwy_trq = { 25, 'N*m' }; % Breakaway friction torque
Col tr

```
```

 visc_coef = { 0.001, 'N*m*s/rad' }; % Viscous friction coefficient
 trans
 vel_thr = { le-4, 'rad/s' }; % Linear region velocity threshold
 end
parameters (Access=private)
brkwy_trq_th = { 24.995, 'N*m' }; % Breakaway torque at threshold velocity
end
function setup
% Parameter range checking
if brkwy_trq <= 0
pm_error('simscape:GreaterThanZero','Breakaway friction torque')
end
if Col_trq <= 0
pm_error('simscape:GreaterThanZero','Coulomb friction torque')
end
if Col_trq > brkwy_trq
pm_error('simscape:LessThanOrEqual','Coulomb friction torque',...
'Breakaway friction torque')
end
if visc coef < 0
pm_error('simscape:GreaterThanOrEqualToZero','Viscous friction coefficient')
end
if trans_coef <= 0
pm_error('simscape:GreaterThanZero','Transition approximation coefficient')
end
if vel thr <= 0
pm_error('simscape:GreaterThanZero','Linear region velocity threshold')
end
% Computing breakaway torque at threshold velocity
brkwy_trq_th = visc_coef * vel_thr + Col_trq + (brkwy_trq - Col_trq) * ...
exp(-trans coef * vel thr);
end
equations
if (abs(w) <= vel thr)
% Linear region
t == brkwy trq th * w / vel thr;
elseif w > 0
t == visc_coef * w + Col_trq + ...
(brkwy trq - Col_trq) * exp(-trans coef * w);
else

```

4-1599
```

 t == visc_coef * w - Col_trq - ...
 (brkwy_trq - Col_trq) * exp(-trans_coef * abs(w));
 end
 end
end

```

Load the names, values, and units of the variables of the component friction.ssc.
[names,values,units] = symReadSSCVariables('friction.ssc');

In this example, all elements of the resulting cell arrays are scalars. You can convert the cell arrays to symbolic vectors.
```

names_sym = cell2sym(names)
names sym =
[t, w]
values_sym = cell2sym(values)
values_sym =
[0, 0]

```

Create individual symbolic variables from the elements of the cell array names in the MATLAB workspace. This command creates the symbolic variables \(t\) and \(w\) as sym objects in the workspace.
syms(names)

\section*{Variables of Simscape Component Returned as Functions}

Load the names of the variables of a Simscape component while converting them to symbolic functions of the variable \(t\).

Suppose you have the Simscape component source.ssc in your current folder.
```

type('source.ssc');
component source
% Electrical Source
% Defines an electrical source with positive and negative external nodes.
% Also defines associated through and across variables.

```
```

nodes
p = foundation.electrical.electrical; % :top
n = foundation.electrical.electrical; % :bottom
end
variables(Access=protected)
i = { 0, 'A' }; % Current
v = { 0, 'V' }; % Voltage
end
branches
i : p.i -> n.i;
end
equations
v == p.v - n.v;
end
end

```

Load the names the variables of the component source.ssc setting ReturnFunction to true.
[names,~,~] = symReadSSCVariables('source.ssc','ReturnFunction',true);

In this example, all elements of the resulting cell arrays are scalars. You can convert the cell arrays to symbolic vectors.
```

names_symfun = cell2sym(names)
names_symfun =
[i(t), v(t)]

```

Create individual symbolic functions from the elements of the cell array names in the MATLAB workspace. This command creates the symbolic functions \(i\) and \(v\) as symfun objects, and their variable \(t\) as a sym object in the workspace.
```

syms(names)

```

\section*{Input Arguments}

\section*{componentName - Simscape component name}
file name enclosed in single quotes
Simscape component name, specified as a file name enclosed in single quotes. The file must have the extension . ssc. If you do not provide the file extension, symReadSSCVariables assumes it to be .ssc. The component must be on the MATLAB path or in the current folder.

Example: 'MyComponent.ssc'

\section*{Output Arguments}

\section*{names - Names of all variables of Simscape component}
cell array
Names of all variables of a Simscape component, returned as a cell array.
Data Types: cell
values - Values of all variables of Simscape component
cell array
Values of all variables of a Simscape component, returned as a cell array.
Data Types: cell
units - Units of all variables of Simscape component
cell array
Units of all variables of a Simscape component, returned as a cell array.
Data Types: cell

\section*{See Also}
symReadSSCParameters | symWriteSSC

\section*{Introduced in R2016a}

\section*{syms}

Create symbolic variables and functions

\section*{Syntax}
```

syms var1 ... varN
syms varl ... varN set
syms varl ... varN clear
syms f(varl,...,varN)
syms(symArray)
syms
S = syms

```

\section*{Description}
syms var1 ... varN creates symbolic variables var1 ... varN. Separate variables by spaces.
syms var1 ... varN set sets an assumption that the created symbolic variables belong to a set.
syms var1 ... varN clear clears assumptions set on a symbolic variables var1 ... varN.
syms \(f(\operatorname{var} 1, \ldots, \operatorname{varN})\) creates the symbolic function \(f\) and symbolic variables var1,... , varN representing the input arguments of \(f\). You can create multiple symbolic functions in one call. For example, syms \(f(x) g(t)\) creates two symbolic functions ( \(f\) and \(g\) ) and two symbolic variables ( \(x\) and \(t\) ).
syms ( symArray) creates the symbolic variables and functions contained in symArray, where symArray is either a vector of symbolic variables or a cell array of symbolic variables and functions. Use this syntax only when such an array is returned by another function, such as solve or symReadSSCVariables.
syms lists the names of all symbolic variables, functions, and arrays in the MATLAB workspace.
\(S=\) syms returns a cell array of the names of all symbolic variables, functions, and arrays.

\section*{Examples}

\section*{Create Symbolic Variables}

Create symbolic variables \(x\) and \(y\).
syms x y

\section*{Set Assumptions While Creating Variables}

Create symbolic variables \(x\) and \(y\), and assume that they are integers.
syms x y integer
Check assumptions.
```

assumptions
ans =
[in(x, 'integer'), in(y, 'integer')]

```

Alternatively, check assumptions on each variable. For example, check assumptions set on the variable x .
```

assumptions(x)
ans =
in(x, 'integer')

```

Clear assumptions on \(x\) and \(y\).
assume([x y],'clear')
assumptions

\section*{ans =}

Empty sym: 1-by-0

\section*{Create Symbolic Functions}

Create symbolic functions with one and two arguments.

\section*{syms \(s(t) f(x, y)\)}

Both \(s\) and \(f\) are abstract symbolic functions. They do not have symbolic expressions assigned to them, so the bodies of these functions are \(s(t)\) and \(f(x, y)\), respectively. Specify the following formula for \(f\).
```

f(x,y) = x + 2*y
f(x, y) =
x + 2*y

```

Compute the function value at the point \(\mathrm{x}=1\) and \(\mathrm{y}=2\).
f(1,2)
ans \(=\)
5

\section*{Create Symbolic Functions with Matrices as Formulas}

Create a symbolic function and specify its formula by using a symbolic matrix.
```

syms x
M = [x x^3; x^2 x^4];
f(x) = [M]
f(x) =
[x, x^3]
[x^2, x^4]

```

Compute the function value at the point \(x=2\) :
f(2)
```

ans =
[2, 8]
[4, 16]

```

Compute the value of this function for \(x=\left[\begin{array}{lllll}1 & 2 & 3 ; & 4 & 5\end{array}\right]\). The result is a cell array of symbolic matrices.
```

xVal = [1 2 3; 4 5 6];
y = f(xVal)
y =
2\times2 cell array
{2\times3 sym} {2\times3 sym}
{2\times3 sym} {2\times3 sym}

```

Access the contents of a cell in the cell array by using braces.
```

y{1}

```
ans \(=\)
[ 1, 2, 3]
[ 4, 5, 6]

\section*{Create Symbolic Objects from Returned Symbolic Array}

Certain functions, such as solve and symReadSSCVariables, can return a vector of symbolic variables or a cell array of symbolic variables and functions. These variables or functions do not automatically appear in the MATLAB workspace. Create these variables or functions from the vector or cell array by using syms.

Solve the equation \(\sin (x)==1\) by using solve. The parameter k in the solution does not appear in the MATLAB workspace.
```

syms x
eqn = sin(x) == 1;
[sol, parameter, condition] = solve(eqn, x, 'ReturnConditions', true);
parameter
parameter =
k

```

Create the parameter \(k\) by using syms. The parameter \(k\) now appears in the MATLAB workspace.

\section*{syms(parameter)}

Similarly, use syms to create the symbolic objects contained in a vector or cell array. Examples of functions that return a cell array of symbolic objects are symReadSSCVariables and symReadSSCParameters.

\section*{List All Symbolic Variables, Functions, and Arrays}

Create some symbolic variables, functions, and arrays.
syms a f(x)
A = sym('A',[2 3]);
Display a list of all symbolic objects that currently exist in the MATLAB workspace by using syms.
syms
Your symbolic variables are:

A a f \(x\)
Instead of displaying a list, return a cell array of all symbolic objects by providing an output to syms.
\(S=\) syms
\(S=\)
\(4 \times 1\) cell array
\{'A'\}
\{'a'\}
\{'f'\}
\{'x'\}

\section*{Check for a Symbolic Variable, Function, or Array}

Create some symbolic variables, functions, and arrays.
```

syms a f(x)
A = sym('A',[2 3]);

```

Check if \(x\) exists in the output of syms by using ismember and any. The any function returns logical 1 (true), meaning \(x\) does exist in the output of syms.
```

checkVar = sym('x');
S = syms;
any(ismember(S,checkVar))
ans =
logical
l

```

\section*{Delete All Symbolic Variables, Functions, or Arrays}

Create several symbolic objects.
```

syms a b c f(x)

```

Delete all symbolic objects by clearing the output of syms.
```

symObj = syms;
cellfun(@clear,symObj)

```

Check that you deleted all symbolic objects by calling syms. The output is empty meaning no symbolic objects exist in the MATLAB workspace.

\section*{syms}
- "Create Symbolic Numbers, Variables, and Expressions" on page 1-3
- "Create Symbolic Functions" on page 1-7
- "Create Symbolic Matrices" on page 1-9
- "Use Assumptions on Symbolic Variables" on page 1-28

\section*{Input Arguments}

\section*{var1 ... varN - Symbolic variables}
valid variable names separated by spaces
Symbolic variables, specified as valid variable names separated by spaces. Each variable name must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

\section*{Example: x y123 z_1}

\section*{set - Assumptions on symbolic variables \\ real|positive | integer| rational}

Assumptions on a symbolic variable or matrix, specified as real, positive, integer, or rational.
f(var1, ... , varN) - Symbolic function with its input arguments
expression with parentheses
Symbolic function with its input arguments, specified as an expression with parentheses. The function name \(f\) and the variable names var1. . .varN must be valid variable names. That is, they must begin with a letter and can contain only alphanumeric characters and underscores. To verify that the name is a valid variable name, use isvarname.

Example: s(t), f(x,y)
symArray - Symbolic variables and functions
vector of symbolic variables | cell array of symbolic variables and functions
Symbolic variables or functions, specified as a vector of symbolic variables or a cell array of symbolic variables and functions. Such a vector or array is typically the output of another function, such as solve or symReadSSCVariables.

\section*{Output Arguments}

\section*{S - Names of all symbolic variables, functions, and arrays}
cell array of character vectors
Names of all symbolic variables, functions, and arrays in the MATLAB workspace, returned as a cell array of character vectors.

\section*{Tips}
- syms is a shortcut for sym. This shortcut lets you create several symbolic variables in one function call. Alternatively, you can use sym and create each variable separately. You also can use symfun to create symbolic functions.
- In functions and scripts, do not use syms to create symbolic variables with the same names as MATLAB functions. For these names MATLAB does not create symbolic
variables, but keeps the names assigned to the functions. If you want to create a symbolic variable with the same name as a MATLAB function inside a function or a script, use sym. For example, use alpha = sym('alpha').
- The following variable names are invalid with syms: integer, real, rational, positive, and clear. To create variables with these names, use sym. For example, real = sym('real').
- clear x does not clear the symbolic object of its assumptions, such as real, positive, or any assumptions set by assume, sym, or syms. To remove assumptions, use one of these options:
- assume ( x, ' clear') removes all assumptions affecting x .
- clear all clears all objects in the MATLAB workspace and resets the symbolic engine.
- assume and assumeAlso provide more flexibility for setting assumptions on variables.
- When you replace one or more elements of a numeric vector or matrix with a symbolic number, MATLAB converts that number to a double-precision number.
```

A = eye(3);
A(1,1) = sym('pi')
A =
3.1416 0 0
0

```

You cannot replace elements of a numeric vector or matrix with a symbolic variable, expression, or function because these elements cannot be converted to doubleprecision numbers. For example, syms a; \(\mathrm{A}(1,1)=\) a throws an error.

\section*{See Also}
assume | assumeAlso|assumptions | reset | sym| symfun| symvar

\section*{Topics}
"Create Symbolic Numbers, Variables, and Expressions" on page 1-3
"Create Symbolic Functions" on page 1-7
"Create Symbolic Matrices" on page 1-9
"Use Assumptions on Symbolic Variables" on page 1-28

\section*{Introduced before R2006a}

\section*{symsum}

Sum of series

\section*{Syntax}
```

F = symsum(f,k,a,b)
F = symsum(f,k)

```

\section*{Description}
\(F=\operatorname{symsum}(f, k, a, b)\) returns the sum of the series with terms that expression \(f\) specifies, which depend on symbolic variable \(k\). The value of \(k\) ranges from \(a\) to \(b\). If you do not specify the variable, symsum uses the variable that symvar determines. If \(f\) is a constant, then the default variable is \(x\).
\(F=\operatorname{symsum}(f, k)\) returns the indefinite sum \(F\) of the series with terms that expression \(f\) specifies, which depend on variable \(k\). The \(f\) argument defines the series such that the indefinite sum \(F\) is given by \(F(k+1)-F(k)=f(k)\). If you do not specify the variable, symsum uses the variable that symvar determines. If \(f\) is a constant, then the default variable is x .

\section*{Examples}

\section*{Find Sum of Series Specifying Bounds}

Find the following sums of series.
```

 S1= 㳸的
 S2= \sum m 质=1
 S3= 泣和k
 syms k x
S1 = symsum(k^2, k, 0, 10)
S2 = symsum(1/k^2, k, 1, Inf)
S3 = symsum(x^k/factorial(k), k, 0, Inf)
S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

```

Alternatively，specify bounds as a row or column vector．
```

S1 = symsum(k^2, k, [0 10])
S2 = symsum(1/k^2, k, [1; Inf])
S3 = symsum(x^k/factorial(k), k, [0 Inf])
S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

```

\section*{Find Indefinite Sum of Series}

Find the indefinite sum of the series specified by the symbolic expressions k and \(\mathrm{k}^{\wedge} 2\) ．
syms k
symsum（k，k）
symsum（1／k＾2，k）
ans \(=\)
k＾2／2－k／2
```

ans =
-psi(1, k)

```

\section*{Difference between symsum and sum}

The sum function finds the sum of elements of symbolic vectors and matrices.
Consider the definite sum
\[
S=\sum_{k=1}^{10} \frac{1}{k^{2}} .
\]

Contrast symsum and sum by summing this definite sum using both functions.
```

syms k
S sum = sum(subs(1/k^2, k, 1:10))
S_symsum = symsum(1/k^2, k, 1, 10)
S sum =
1968329/1270080
S symsum =
1968329/1270080

```

For details on sum, see the information on the MATLAB sum page.

\section*{Input Arguments}

\section*{f - Expression defining terms of series}
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic number

Expression defining terms of series, specified as a symbolic expression, function, or a vector or matrix of symbolic expressions, functions, or constants.

\section*{k - Summation index}
symbolic variable

Summation index, specified as a symbolic variable. If you do not specify this variable, symsum uses the default variable determined by symvar (expr, 1). If \(f\) is a constant, then the default variable is \(x\).

\section*{a - Lower bound of summation index}
number | symbolic number | symbolic variable | symbolic expression | symbolic function
Lower bound of summation index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

\section*{b - Upper bound of summation index}
number | symbolic number | symbolic variable | symbolic expression | symbolic function
Upper bound of summation index, specified as a number, symbolic number, variable, expression, or function (including expressions and functions with infinities).

\section*{Definitions}

\section*{Definite Sum}

The definite sum of series is defined as
\[
\sum_{k=a}^{b} x_{k}=x_{a}+x_{a+1}+\ldots+x_{b}
\]

\section*{Indefinite Sum}

The indefinite sum of a series is defined as
\[
F(x)=\sum_{x} f(x),
\]
such that
\[
F(x+1)-F(x)=f(x)
\]

\section*{See Also}
cumsum | int | sum | symprod | syms | symvar

\section*{Topics}
"Symbolic Summation" on page 2-65

\section*{Introduced before R2006a}

\section*{symunit}

Units of measurement

\section*{Syntax}
u = symunit

\section*{Description}
\(\mathrm{u}=\) symunit returns the units collection. Then, specify any unit by using u. unit. For example, specify 3 meters as \(3^{*}\) u.m. Common alternate names for units are supported, such as u.meter and u.metre. Plurals are not supported.

\section*{Examples}

\section*{Specify Units of Measurement}

Before specifying units, load units by using symunit. Then, specify a unit by using dot notation.

Specify a length of 3 meters. You can also use aliases u.meter or u.metre.
```

u = symunit;
length = 3*u.m
length =
3*[m]

```

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Specify the acceleration due to gravity of 9.81 meters per second squared. Because units are symbolic expressions, numeric inputs are converted to exact symbolic values. Here, 9.81 is converted to \(981 / 100\).
```

g = 9.81*u.m/u.s^2
g =
(981/100)*([m]/[s]^2)

```

If you are unfamiliar with the differences between symbolic and numeric arithmetic, see "Choose Symbolic or Numeric Arithmetic" on page 2-115.

\section*{Operations on Units and Conversion to Double}

Units behave like symbolic expressions when you perform standard operations on them. For numeric operations, separate the value from the units, substitute for any symbolic parameters, and convert the result to double.

Find the speed required to travel 5 km in 2 hours.
```

u = symunit;
d = 5*u.km;
t = 2*u.hr;
s = d/t
S =
(5/2)*([km]/[h])

```

The value \(5 / 2\) is symbolic. You may prefer double output, or require double output for a MATLAB function that does not accept symbolic values. Convert to double by separating the numeric value using seperateUnits and then using double.
```

[sNum,sUnits] = separateUnits(s)
sNum =
5/2
sUnits =
1*([km]/[h])
sNum = double(sNum)
sNum =
2.5000

```

For the complete units workflow, see "Units of Measurement Tutorial" on page 2-5.

\section*{Rewrite Between Units}

Use your preferred unit by rewriting units using rewrite. Also, instead of specifying specific units, you can specify that the output should be in terms of SI units.

Calculate the force required to accelerate 2 kg by \(5 \mathrm{~m} / \mathrm{s}^{2}\). The expression is not automatically rewritten in terms of Newtons.
```

u = symunit;
m = 2*u.kg;
a = 5*u.m/u.s^2;
F = m*a
F =
10*(([kg]*[m])/[s]^2)

```

Rewrite the expression in terms of Newtons by using rewrite.
```

F = rewrite(F,u.N)
F =
10*[N]

```

Rewrite 5 cm in terms of inches.
```

length = 5*u.cm;
length = rewrite(length,u.in)
length =
(250/127)*[in]

```

Rewrite length in terms of SI units. The result is in meters.
length = rewrite(length,'SI')
length =
(1/20)*[m]

\section*{Simplify Units of Same Dimension}

Simplify expressions containing units of the same dimension by using simplify. Units are not automatically simplified or checked for consistency unless you call simplify.
```

u = symunit;
expr = 300*u.cm + 40*u.inch + 2*u.m

```
```

expr =
300*[cm] + 40*[in] + 2*[m]
expr = simplify(expr)
expr =
(3008/5)*[cm]

```
simplify automatically chooses the unit to rewrite in terms of. To choose a specific unit, see "Rewrite Between Units" on page 4-1620.

\section*{Temperature: Absolute and Difference Forms}

By default, temperatures are assumed to represent temperature differences. For example, 5*u. Celsius represents a temperature difference of 5 degrees Celsius. This assumption allows arithmetical operations on temperature values, and conversion between temperature scales.

For representing absolute temperatures, use degrees Kelvin, so that you do not have to distinguish an absolute temperature from a temperature difference.

Rewrite 23 degrees Celsius to Kelvin, treating it first as a temperature difference and then as an absolute temperature.
```

u = symunit;
T = 23*u.Celsius;
diffK = rewrite(T,u.K)
diffK =
23*[K]
absK = rewrite(T,u.K,'Temperature','absolute')
absK =
(5923/20)*[K]

```

\section*{Tips}
- 1 represents a dimensionless unit. Hence, isUnit (sym(1)) returns logical 1 (true).
- Certain non-linear units, such as decibels, are not implemented because arithmetic operations are not possible for these units.
- Instead of using dot notation to specify units, you can alternatively use string input as symunit(unit). For example, symunit('m') specifies the unit meter.

\section*{See Also}
checkUnits|isUnit|newUnit|rewrite|separateUnits| symunit2str| unitConversionFactor|unitInfo

\section*{Topics}
"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

\section*{External Websites}

The International System of Units (SI)

\section*{Introduced in R2017a}

\section*{symunit2str}

Convert unit to character vector

\section*{Syntax}
symunit2str(unit)
symunit2str(unit,toolbox)

\section*{Description}
symunit2str(unit) converts the symbolic unit unit to a character vector.
symunit2str(unit, toolbox) converts the symbolic unit unit to a character vector representing units in the toolbox toolbox. The allowed values of toolbox are 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

\section*{Examples}

\section*{Convert Unit to Character Vector}

Convert the symbolic unit \(\mathrm{u} . \mathrm{km}\) to a character vector, where \(\mathrm{u}=\) symunit.
```

u = symunit;
unitStr = symunit2str(u.km)
unitStr =
km'

```

\section*{Convert Unit for Specified Toolbox}

Convert symbolic units to character vectors representing units in other toolboxes by specifying the toolbox name as the second argument to symunit2str. The allowed toolboxes are 'Aerospace', 'SimBiology','Simscape', or 'Simulink'. The unit must exist in the target toolbox to be valid.

Where u = symunit, convert u.km/(u.hour*u.s) to a character vector representing units from Aerospace Toolbox.
```

u = symunit;
unit = symunit2str(u.km/(u.hour*u.s),'Aerospace')
unit =
km/h-s'

```

Convert u.molecule/u.s to a character vector representing units from SimBiology.
```

unit = symunit2str(u.molecule/u.s,'SimBiology')

```
unit =
    'molecule/second'

Convert u.gn/u.km to a character vector representing units from Simscape.
```

unit = symunit2str(u.gn/u.km,'Simscape')

```
```

unit =

```
    gee/km'

Convert u.rad/u.s to a character vector representing units from Simulink.
```

unit = symunit2str(u.rad/u.s,'Simulink')

```
unit =
    'rad/s'

\section*{Input Arguments}

\section*{unit - Symbolic unit to convert}
symbolic unit
Symbolic unit to convert, specified as a symbolic unit.

\section*{toolbox - Toolbox to represent unit in}
'Aerospace'|'SimBiology'|'Simscape'|'Simulink'
Toolbox to represent unit in, specified as 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

Example: symunit2str(u.km/u.h,'Aerospace')
See AlsocheckUnits|findUnits|isUnit|newUnit|separateUnits|str2symunit|symunit|unitConversionFactor
Topics"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13
External Websites
The International System of Units (SI)
Introduced in R2017a

\section*{symvar}

Find symbolic variables in symbolic input

\section*{Syntax}
```

symvar(s)
symvar(s,n)

```

\section*{Description}
symvar(s) returns a vector of all symbolic variables in \(s\). The variables are in alphabetical order with uppercase letters preceding lowercase letters.
symvar( \(\mathrm{s}, \mathrm{n}\) ) chooses the n symbolic variables in s that are alphabetically closest to x and returns them in alphabetical order. If \(s\) is a symbolic function, symvar( \(s, n\) ) returns the input arguments of \(s\) before other variables in \(s\).

\section*{Examples}

\section*{Find Symbolic Variables in Expression}

Find all symbolic variables in an expression. symvar returns the variables in alphabetical order.
```

syms wa wb yx ya
sum = wa + wb + ya + yx;
symvar(sum)
ans =
[wa, wb, ya, yx]

```

Find the first three symbolic variables in an expression. symvar chooses variables alphabetically closest to \(x\) and returns them in alphabetical order.
```

syms a x y b
f = a*x^2/(sin(3*y-b));
symvar(f,3)
ans =
[b, x, y]

```

\section*{Find Symbolic Variables in Function}

Find all symbolic variables in this function. For a symbolic function, symvar returns the function inputs before other variables.
```

syms x y a b
f(x,y) = a*x^2/(sin(3*y-b));
symvar(f)
ans =
[x, y, a, b]

```

Find the first three symbolic variables in f .
```

symvar(f,3)
ans =
[x, y, b]

```

\section*{Find Default Variable of Expression}

When a symbolic function, such as solve, needs to find the default independent variable in symbolic, the function uses symvar. Find the default independent variable for symbolic expressions.
```

syms v z
g = v + z;
symvar(g,1)
ans =
z
syms aaa aab
g = aaa + aab;
symvar(g,1)

```
```

ans =
aaa
syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
symvar(g,1)
ans =
x2

```

When differentiating, integrating, substituting, or solving equations, MATLAB uses the variable returned by symvar ( \(\mathrm{s}, 1\) ) as a default variable. For a symbolic expression or matrix, symvar(s,1) returns the variable closest to \(x\). For a function, symvar( \(\mathrm{s}, 1\) ) returns the first input argument of \(s\).
- "Find Symbolic Variables in Expressions, Functions, Matrices" on page 2-3

\section*{Input Arguments}

\section*{s - Input}
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

\section*{n - Number of variables}
integer
Number of variables, specified as an integer or Inf. If n exceeds the number of variables in \(s\), then symvar returns the number of variables in \(s\).

\section*{Tips}
- symvar treats the constants pi, i, and \(j\) as variables.
- If there are no symbolic variables in \(s\), symvar returns the empty vector.

\section*{Algorithms}

When symvar sorts the symbolic variables alphabetically, all uppercase letters have precedence over lowercase: 01 ... 9 A B ... Z a b ... z.

\section*{See Also}
argnames | sym | symfun | syms

\section*{Topics}
"Find Symbolic Variables in Expressions, Functions, Matrices" on page 2-3

\section*{Introduced in R2008b}

\section*{symWriteSSC}

Create new Simscape component

\section*{Syntax}
symWriteSSC(newComponentName, templateComponentName, eqns)
symWriteSSC (newComponentName, templateComponentName, eqns, Name, Value)

\section*{Description}
symWriteSSC(newComponentName, templateComponentName, eqns) creates a new Simscape component newComponentName using an existing component templateComponentName as a template and adding eqns. Thus, the new component has both the existing equations taken from the template component and the added equations.
symWriteSSC(newComponentName, templateComponentName, eqns, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Create Component with Additional Equation}

Create a new Simscape component by using an existing component as a template and adding an equation.

Suppose you have the Simscape component spring.ssc in your current folder.
```

type('spring.ssc');
component spring < foundation.mechanical.rotational.branch
parameters
spr_rate = { 10, 'N*m/rad' };
end

```
```

variables
phi = { value = { 0, 'rad'}, priority = priority.high };
end
function setup
if spr_rate <= 0
pm_error('simscape:GreaterThanZero','Spring rate')
end
end
equations
w == phi.der;
t == spr_rate*phi;
end
end

```

Create symbolic variables with names of the parameters and variables of the component you are going to use when creating new equations. Also create a symbolic variable, \(u\), to denote the energy of the rotational spring.
```

syms spr rate phi u

```

Create the equation defining the energy \(u\).
```

eq = u == spr_rate*phi^2/2;

```

Create the new component, myRotationalSpring.ssc, that is a copy of the component spring.ssc with an additional equation defining the energy of the rotational spring.
```

symWriteSSC('myRotationalSpring.ssc','spring.ssc',eq)

```
Warning: Equations contain undeclared variables 'u'.
> In symWriteSSC (line 94)
symWriteSSC creates the component myRotationalSpring.ssc.
type('myRotationalSpring.ssc');
component myRotationalSpring
parameters
spr_rate \(=\{10, \quad\) ' \(N * m / r a d '\} ;\)
end
```

variables
phi = { value = { 0, 'rad'}, priority = priority.high };
end
function setup
if spr_rate <= 0
pm_error('simscape:GreaterThanZero','Spring rate')
end
end
equations
w == phi.der;
t == spr_rate*phi;
u == phi^2*spr_rate*(1.0/2.0);
end
end

```

\section*{Add Component Title and Description}

Create a Simscape component with the title and descriptive text different from those of the template component.

Suppose you have the Simscape component spring.ssc in your current folder. This component does not have any title or descriptive text.
```

type('spring.ssc');
component spring < foundation.mechanical.rotational.branch
parameters
spr_rate = { 10, 'N*m/rad' };
end
variables
phi = { value = { 0, 'rad'}, priority = priority.high };
end
function setup
if spr rate <= 0
pm_error('simscape:GreaterThanZero','Spring rate')
end

```
end
equations
```

 w == phi.der;
 t == spr_rate*phi;
    ```
end
end
Create symbolic variables with names of the parameters and variables of the component you are going to use when creating new equations. Also create a symbolic variable, \(u\), to denote the energy of the rotational spring.
```

syms spr rate phi u

```

Create the equation defining the energy \(u\).
```

eq = u == spr_rate*phi^2/2;

```

Create the new component, myRotationalSpring.ssc, based on the spring.ssc component. Add the equation eq, the title "Rotational Spring", and a few lines of descriptive text to the new component.
```

symWriteSSC('myRotationalSpring.ssc','spring.ssc',eq,...
'H1Header','% Rotational Spring',...
'HelpText',{'% The block represents an ideal mechanical rotational linear spring.',...
'% Connections R and C are mechanical rotational conserving ports.'...
'% The block positive direction is from port R to port C. This means'...
'% that the torque is positive if it acts in the direction from R to C.'})

```
```

Warning: Equations contain undeclared variables 'u'.

```
Warning: Equations contain undeclared variables 'u'.
> In symWriteSSC (line 94)
> In symWriteSSC (line 94)
symWriteSSC creates the component myRotationalSpring.ssc.
type('myRotationalSpring.ssc');
component myRotationalSpring
% Rotational Spring
% The block represents an ideal mechanical rotational linear spring.
% Connections R and C are mechanical rotational conserving ports.
% The block positive direction is from port R to port C. This means
% that the torque is positive if it acts in the direction from R to C.
parameters
```

```
    spr_rate = { 10, 'N*m/rad' };
end
variables
    phi = { value = { 0, 'rad'}, priority = priority.high };
end
function setup
    if spr_rate <= 0
        pm_error('simscape:GreaterThanZero','Spring rate' )
    end
end
equations
    w == phi.der;
    t == spr_rate*phi;
    u == phi^2*spr_rate*(1.0/2.0);
end
end
```


Input Arguments

newComponentName - Name of Simscape component to create

file name enclosed in single quotes
Name of Simscape component to create, specified as a file name enclosed in single quotes. File must have the extension .ssc. If you do not provide file extension, symWriteSSC assumes it to be .ssc. If you do not specify the absolute path, symWriteSSC creates the new component in the current folder.
Example: 'MyNewComponent.ssc'

templateComponentName - Name of template Simscape component

file name enclosed in single quotes
Name of template Simscape component, specified as a file name enclosed in single quotes. File must have the extension . ssc. If you do not provide the file extension, symWriteSSC assumes it to be .ssc. The component must be on the MATLAB path or in the current folder.

Example: 'TemplateComponent.ssc'

eqns - Symbolic equations

row vector

Symbolic equations, specified as a row vector.

```
Example: [ y(t) == diff(x(t), t), m*diff(y(t), t, t) + b*y(t) + k*x(t)
== F]
```


Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: symWriteSSC('myComp.ssc','template.ssc',eq,'H1Header','\% New title','HelpText',\{'\% Description of the','\% new component'\})

H1Header - Title
row vector of characters

Title specified as a row vector of characters (type char) starting with \%. If the first character is not \%, then symWriteSSC adds \%.

If the template component has a title and you use H1Header, the new component will have the title specified by H1Header. If the template component has a title and you call symWriteSSC without H1Header, the new component will have the same title as the template component.

```
Example: 'H1Header','% New title'
```


HelpText - Descriptive text

cell array of row vectors of characters
Descriptive text, specified as a cell array of row vectors of characters. Each row vector must start with \%. If the first character is not \%, then symWriteSSC adds \%.

If the template component has descriptive text and you use HelpText, the new component will have only the text specified by HelpText. In this case, symWriteSSC does not copy the descriptive text of the template component to the new component. If the template component has a title and you call symWriteSSC without HelpText, the new component will have the same descriptive text as the template component.

Example: 'HelpText',\{'\% Description of the','\% new component'\}

See Also
simscapeEquation| symReadSSCParameters|symReadSSCVariables
Introduced in R2016a

tan

Symbolic tangent function

Syntax

$\tan (X)$

Description

$\tan (X)$ returns the tangent function on page 4-1641 of X.

Examples

Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, tan returns floating-point or exact symbolic results.
Compute the tangent function for these numbers. Because these numbers are not symbolic objects, tan returns floating-point results.

```
A = tan([-2, -pi, pi/6, 5*pi/7, 11])
A =
    2.1850 0.0000 0.5774 -1.2540 -225.9508
```

Compute the tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, tan returns unresolved symbolic calls.

```
symA = tan(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA =
[ -tan(2), 0, 3^(1/2)/3, -tan((2*pi)/7), tan(11)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
```

```
ans =
[ 2.1850398632615189916433061023137,...
0,..
0.57735026918962576450914878050196,...
-1.2539603376627038375709109783365,...
-225.95084645419514202579548320345]
```


Plot Tangent Function

Plot the tangent function on the interval from ${ }^{-\pi}$ to π. Prior to R2016a, use ezplot instead of fplot.

```
syms x
fplot(tan(x), [-pi, pi])
grid on
```


Handle Expressions Containing Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing tan.

Find the first and second derivatives of the tangent function:

```
syms x
diff(tan(x), x)
diff(tan(x), x, x)
ans =
tan(x)^2 + 1
```

```
ans =
2*}\operatorname{tan}(x)*(\operatorname{tan}(x)^2 + 1
```

Find the indefinite integral of the tangent function:

```
int(tan(x), x)
ans =
- log(\operatorname{cos}(x))
```

Find the Taylor series expansion of $\tan (x)$:

```
taylor(tan(x), x)
ans =
(2*x^5)/15 + x^3/3 + x
```

Rewrite the tangent function in terms of the sine and cosine functions:

```
rewrite(tan(x), 'sincos')
ans =
sin(x)/cos(x)
```

Rewrite the tangent function in terms of the exponential function:

```
rewrite(tan(x), 'exp')
ans =
-(exp(x*2i)*1i - li)/(exp(x*2i) + 1)
```


Evaluate Units with tan Function

tan numerically evaluates these units automatically: radian, degree, arcmin, arcsec, and revolution.

Show this behavior by finding the tangent of x degrees and 2 radians.

```
u = symunit;
syms x
f = [x*u.degree 2*u.radian];
tanf = tan(f)
tanf =
[ tan((pi*x)/180), tan(2)]
```

You can calculate tanf by substituting for x using subs and then using double or vpa.

Input Arguments

X - Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Tangent Function

The tangent of an angle, α, defined with reference to a right angled triangle is

$$
\tan (\alpha)=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{a}{b} .
$$

The tangent of a complex angle, α, is

$$
\tan (\alpha)=\frac{e^{i \alpha}-e^{-i \alpha}}{i\left(e^{i \alpha}+e^{-i \alpha}\right)}
$$

See Also

acos |acot |acsc|asec|asin|atan|cos|cot|csc|sec|sin

Introduced before R2006a

tanh

Symbolic hyperbolic tangent function

Syntax

$\tanh (X)$

Description

$\tanh (X)$ returns the hyperbolic tangent function of X.

Examples

Hyperbolic Tangent Function for Numeric and Symbolic Arguments

Depending on its arguments, tanh returns floating-point or exact symbolic results.
Compute the hyperbolic tangent function for these numbers. Because these numbers are not symbolic objects, tanh returns floating-point results.

```
A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])
A =
\begin{tabular}{rrr}
\(-0.9640+0.0000 i\) & \(0.0000+0.0000 i\) & \(0.0000+0.5774 i \ldots\) \\
\(0.0000+1.7321 i\) & \(0.0000-1.2540 i\) &
\end{tabular}
```

Compute the hyperbolic tangent function for the numbers converted to symbolic objects. For many symbolic (exact) numbers, tanh returns unresolved symbolic calls.

```
symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))
symA =
[ -tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]
```

Use vpa to approximate symbolic results with floating-point numbers:

```
vpa(symA)
ans =
[ -0.96402758007581688394641372410092,...
0,
0.57735026918962576450914878050196i,...
1.7320508075688772935274463415059i,... .
-1.2539603376627038375709109783365i]
```


Plot Hyperbolic Tangent Function

Plot the hyperbolic tangent function on the interval from $-\pi$ to π. Prior to R2016a, use ezplot instead of fplot.
syms x
fplot(tanh(x), [-pi, pi])
grid on

Handle Expressions Containing Hyperbolic Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions containing tanh.

Find the first and second derivatives of the hyperbolic tangent function:

```
syms x
diff(tanh(x), x)
diff(tanh(x), x, x)
ans =
1- tanh(x)^2
```

```
ans =
2*tanh(x)*(tanh(x)^2 - 1)
```

Find the indefinite integral of the hyperbolic tangent function:
int (tanh $(x), x)$
ans =
$\log (\cosh (x))$
Find the Taylor series expansion of $\tanh (x)$:

```
taylor(tanh(x), x)
```

ans =
$\left(2 * x^{\wedge} 5\right) / 15-x^{\wedge} 3 / 3+x$

Rewrite the hyperbolic tangent function in terms of the exponential function:

```
rewrite(tanh(x), 'exp')
ans =
(exp(2*x) - 1)/(exp(2*x) + 1)
```


Input Arguments

X - Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth \| csch | sech | sinh

Introduced before R2006a

taylor

Taylor series

Syntax

```
taylor(f,var)
taylor(f,var,a)
taylor(
    ,Name,Value)
```


Description

taylor(f,var) approximates f with the Taylor series expansion on page 4-1654 of f up to the fifth order at the point var $=0$. If you do not specify var, then taylor uses the default variable determined by symvar ($f, 1$).
taylor(f,var,a) approximates f with the Taylor series expansion of f at the point var = a.
taylor(\qquad , Name, Value) uses additional options specified by one or more Name, Value pair arguments. You can specify Name, Value after the input arguments in any of the previous syntaxes.

Examples

Find Maclaurin Series of Univariate Expressions

Find the Maclaurin series expansions of these functions.

```
syms x
taylor(exp(x))
taylor(sin(x))
taylor(cos(x))
ans =
x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1
```

```
ans =
x^5/120 - x^3/6 + x
ans =
x^4/24 - x^2/2 + 1
```


Specify Expansion Point

Find the Taylor series expansions at $x=1$ for these functions. The default expansion point is 0 . To specify a different expansion point, use ExpansionPoint:

```
syms x
taylor(log(x), x, 'ExpansionPoint', 1)
ans =
x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - 1
```

Alternatively, specify the expansion point as the third argument of taylor:

```
taylor(acot(x), x, 1)
ans =
pi/4 - x/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + 1/2
```


Specify Truncation Order

Find the Maclaurin series expansion for $f=\sin (x) / x$. The default truncation order is 6. Taylor series approximation of this expression does not have a fifth-degree term, so taylor approximates this expression with the fourth-degree polynomial:

```
syms x
f = sin(x)/x;
t6 = taylor(f, x)
t6 =
x^4/120 - x^2/6 + 1
```

Use Order to control the truncation order. For example, approximate the same expression up to the orders 8 and 10:

```
t8 = taylor(f, x, 'Order', 8)
t10 = taylor(f, x, 'Order', 10)
```

```
t8 =
- x^6/5040 + x^4/120 - x^2/6 + 1
t10 =
x^8/362880 - x^6/5040 + x^4/120 - x^2/6 + 1
```

Plot the original expression f and its approximations t6, t8, and t10. Note how the accuracy of the approximation depends on the truncation order. Prior to R2016a, use ezplot instead of fplot.

```
fplot([t6 t8 t10 f])
```

$x \lim ([-44])$
grid on

```
legend('approximation of sin(x)/x up to 0(x^6)',...
    'approximation of sin(x)/x up to 0(x^8)',...
    'approximation of sin(x)/x up to O(x^{10})',...
    'sin(x)/x','Location','Best')
title('Taylor Series Expansion')
```

Taylor Series Expansion

Specify Order Mode: Relative or Absolute

Find the Taylor series expansion of this expression. By default, taylor uses an absolute order, which is the truncation order of the computed series.

```
taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5)
ans =
-x^3/3
```

Fnd the Taylor series expansion with a relative truncation order by using OrderMode. For some expressions, a relative truncation order provides more accurate approximations.

```
taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5, 'OrderMode', 'relative')
```

```
ans =
- x^7/2520 - x^5/60 - x^3/3
```


Find Maclaurin Series of Multivariate Expressions

Find the Maclaurin series expansion of this multivariate expression. If you do not specify the vector of variables, taylor treats f as a function of one independent variable.

```
syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f)
ans =
x^5/120 - x^3/6 + x + cos(y) + exp(z)
```

Find the multivariate Maclaurin expansion by specifying the vector of variables.

```
syms x y z
f = sin(x) + cos(y) + exp(z);
taylor(f, [x, y, z])
ans =
x^5/120- x^3/6 + x + y^4/24 - y^2/2 + z^^5/120 + z^4/24 + z^3/6 + z^2/2 + z + 2
```


Specify Expansion Point for Multivariate Expression

Find the multivariate Taylor expansion by specifying both the vector of variables and the vector of values defining the expansion point:

```
syms x y
f = y*exp(x - 1) - x*log(y);
taylor(f, [x, y], [1, 1], 'Order', 3)
ans =
x+(x - 1)^2/2 + (y - 1)^2/2
```

If you specify the expansion point as a scalar a, taylor transforms that scalar into a vector of the same length as the vector of variables. All elements of the expansion vector equal a:

```
taylor(f, [x, y], 1, 'Order', 3)
ans =
x + (x - 1)^2/2 + (y - 1)^2/2
```


Input Arguments

f - Input to approximate

symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic multidimensional array

Input to approximate, specified as a symbolic expression or function. It also can be a vector, matrix, or multidimensional array of symbolic expressions or functions.

var - Expansion variable

symbolic variable
Expansion variable, specified as a symbolic variable. If you do not specify var, then taylor uses the default variable determined by $\operatorname{symvar}(\mathrm{f}, 1)$.

a - Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You also can specify the expansion point as a Name, Value pair argument. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN , ValueN.

Example: taylor(log(x),x,'ExpansionPoint',1,'Order', 9)

ExpansionPoint - Expansion point

0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or expression. The expansion point cannot depend on the expansion variable. You can also specify the expansion point using the input argument a. If you specify the expansion point both ways, then the Name, Value pair argument takes precedence.

Order - Truncation order of Taylor series expansion 6 (default) | positive integer | symbolic positive integer

Truncation order of Taylor series expansion, specified as a positive integer or a symbolic positive integer. taylor computes the Taylor series approximation with the order n-1. The truncation order n is the exponent in the O-term: $O\left(v a r^{\mathrm{n}}\right)$.

OrderMode - Order mode indicator

'absolute' (default)|'relative'
Order mode indicator, specified as 'absolute' or 'relative'. This indicator specifies whether you want to use absolute or relative order when computing the Taylor polynomial approximation.

Absolute order is the truncation order of the computed series. Relative order n means that the exponents of var in the computed series range from the leading order m to the highest exponent $\mathrm{m}+\mathrm{n}-1$. Here $\mathrm{m}+\mathrm{n}$ is the exponent of var in the O-term: $O\left(\right.$ var $^{\mathrm{m}+\mathrm{n}}$).

Definitions

Taylor Series Expansion

Taylor series expansion represents an analytic function $f(x)$ as an infinite sum of terms around the expansion point $x=a$:

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime}(a)}{2!}(x-a)^{2}+\ldots=\sum_{m=0}^{\infty} \frac{f^{(m)}(a)}{m!} \cdot(x-a)^{m}
$$

Taylor series expansion requires a function to have derivatives up to an infinite order around the expansion point.

Maclaurin Series Expansion

Taylor series expansion around $x=0$ is called Maclaurin series expansion:

$$
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots=\sum_{m=0}^{\infty} \frac{f^{(m)}(0)}{m!} x^{m}
$$

Tips

- If you use both the third argument a and ExpansionPoint to specify the expansion point, the value specified via ExpansionPoint prevails.
- If var is a vector, then the expansion point a must be a scalar or a vector of the same length as var. If var is a vector and a is a scalar, then a is expanded into a vector of the same length as var with all elements equal to a.
- If the expansion point is infinity or negative infinity, then taylor computes the Laurent series expansion, which is a power series in 1/var.

See Also

pade|series | symvar

Topics

"Taylor Series" on page 2-68

Introduced before R2006a

taylortool

Taylor series calculator

Syntax

```
taylortool
taylortool('f')
```


Description

taylortool initiates a GUI that graphs a function against the Nth partial sum of its Taylor series about a base point $x=a$. The default function, value of N, base point, and interval of computation for taylortool are $f=x^{*} \cos (x), N=7, a=0$, and [-2*pi,2*pi], respectively.
taylortool ('f') initiates the GUI for the given expression f.

See Also

funtool|rsums

Topics

"Taylor Series" on page 2-68

Introduced before R2006a

texlabel

TeX representation of symbolic expression

Syntax

```
texlabel (expr)
```

texlabel(expr,'literal')

Description

texlabel (expr) converts the symbolic expression expr into the TeX equivalent for use in character vectors. texlabel converts Greek variable names, such as delta, into Greek letters. Annotation functions, such as title, xlabel, and text can use the TeX character vector as input. To obtain the LaTeX representation, use latex.
texlabel(expr,' literal') interprets Greek variable names literally.

Examples

Generate TeX Character Vector

Use texlabel to generate TeX character vectors for these symbolic expressions.

```
syms x y lambda12 delta
texlabel(sin(x) + x^3)
texlabel(3*(1-x)^2*exp(-(x^2) - (y+1)^2))
texlabel(lambda12^(3/2)/pi - pi*delta^(2/3))
ans =
    '{sin}({x}) + {x}^{3}'
ans =
    '{3} {exp}(- ({y} + {1})^{2} - {x}^{2}) ({x} - {1})^{2}'
```

```
ans =
    '{\lambda_{12}}^{{3}/{2}}/{\pi} - {\delta}^{{2}/{3}} {\pi}'
```

To make texlabel interpret Greek variable names literally, include the argument 'literal'.
texlabel(lambda12,'literal')
ans $=$
\{lambda12\}'

Insert TeX in Figure

Plot $y=x^{\wedge} 2$ using fplot. Show the plotted expression y by using texlabel to generate a TeX character vector that text inserts into the figure. Prior to R2016a, use ezplot instead of fplot.
syms x
$y=x^{\wedge} 2$;
fplot(y)
ylabel = texlabel(y);
text(1, 15, ['y = ' ylabel]);

Input Arguments

expr - Expression to be converted

symbolic expression
Expression to be converted, specified as a symbolic expression.

See Also

latex| text|title|xlabel|ylabel|zlabel

Introduced before R2006a

times.*

Symbolic array multiplication

Syntax

A.*B
times (A, B)

Description

A.*B performs elementwise multiplication of A and B.
times (A, B) is equivalent to $A . * B$.

Examples

Multiply Matrix by Scalar

Create a 2-by-3 matrix.

```
A = sym('a', [2 3])
A =
[ a1_1, a1_2, a1_3]
[ a2_1, a2_2, a2_3]
```

Multiply the matrix by the symbolic expression sin(b). Multiplying a matrix by a scalar means multiplying each element of the matrix by that scalar.

```
syms b
A.*sin(b)
ans =
[ a1_1*sin(b), a1_2*sin(b), a1_3*sin(b)]
[ a2_1*sin(b), a2_2*sin(b), a2_3*sin(b)]
```


Multiply Two Matrices

Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

```
H = sym(hilb(3))
d = diag(sym([llll))
H =
[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]
d =
[ 1, 0, 0]
[ 0, 2, 0]
[ 0, 0, 3]
```

Multiply the matrices by using the elementwise multiplication operator .*. This operator multiplies each element of the first matrix by the corresponding element of the second matrix. The dimensions of the matrices must be the same.

```
H.*d
ans =
[ 1, 0, 0]
[ 0, 2/3, 0]
[ 0, 0, 3/5]
```


Multiply Expression by Symbolic Function

Multiply a symbolic expression by a symbolic function. The result is a symbolic function.

```
syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6).*f
f1(x) =
x^2*(x^2 + 5* 
```


Input Arguments

```
A - Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression
```

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

B - Input

number | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression. Inputs A and B must be the same size unless one is a scalar. A scalar value expands into an array of the same size as the other input.

See Also

ctranspose|ldivide | minus |mldivide | mpower |mrdivide |mtimes | plus |
power|rdivide|transpose

Introduced before R2006a

toeplitz

Symbolic Toeplitz matrix

Syntax

```
toeplitz(c,r)
toeplitz(r)
```


Description

toeplitz(c,r) generates a nonsymmetric Toeplitz matrix on page 4-1667 having c as its first column and r as its first row. If the first elements of c and r are different, toeplitz issues a warning and uses the first element of the column.
toeplitz (r) generates a symmetric Toeplitz matrix if r is real. If r is complex, but its first element is real, then this syntax generates the Hermitian Toeplitz matrix formed from r. If the first element of r is not real, then the resulting matrix is Hermitian off the main diagonal, meaning that $T_{i j}=\operatorname{conjugate}\left(T_{j i}\right)$ for $i \neq j$.

Examples

Generate Toeplitz Matrix

Generate the Toeplitz matrix from these vectors. Because these vectors are not symbolic objects, you get floating-point results.

```
c = [1 2 2 3 4 5 6];
r = [1 3/2 3 7/2 5];
toeplitz(c,r)
ans =
\begin{tabular}{lllll}
1.0000 & 1.5000 & 3.0000 & 3.5000 & 5.0000 \\
2.0000 & 1.0000 & 1.5000 & 3.0000 & 3.5000 \\
3.0000 & 2.0000 & 1.0000 & 1.5000 & 3.0000
\end{tabular}
```

| 4.0000 | 3.0000 | 2.0000 | 1.0000 | 1.5000 |
| :--- | :--- | :--- | :--- | :--- |
| 5.0000 | 4.0000 | 3.0000 | 2.0000 | 1.0000 |
| 6.0000 | 5.0000 | 4.0000 | 3.0000 | 2.0000 |

Now, convert these vectors to a symbolic object, and generate the Toeplitz matrix:

```
c = sym([1 2 3 4 5 6]);
r = sym([1 3/2 3 7/2 5]);
toeplitz(c,r)
ans =
[ 1, 3/2, 3, 7/2, 5]
[ 2, 1, 3/2, 3, 7/2]
[ 3, 2, 1, 3/2, 3]
[4, 3, 2, 1, 3/2]
[ 5, 4, 3, 2, 1]
[6, 5, 4, 3, 2]
```


Generate Toeplitz Matrix from Vector

Generate the Toeplitz matrix from this vector:

```
syms a b c d
T = toeplitz([a b c d])
T = a, cracl
```

If you specify that all elements are real, then the resulting Toeplitz matrix is symmetric:

```
syms a b c d real
T =
[ a, b, c, d]
[ b, a, b, c]
[ c, b, a, b]
[ d, c, b, a]
```

T = toeplitz([a b c d])

For further computations, clear the assumptions:
syms a b c d clear

Generate Toeplitz with Complex Values

Generate the Toeplitz matrix from a vector containing complex numbers:

```
T = toeplitz(sym([1, 2, i]))
T =
[ 1, 2, 1i]
[ 2, 1, 2]
[ -1i, 2, 1]
```

If the first element of the vector is real, then the resulting Toeplitz matrix is Hermitian:

```
isAlways(T == T')
ans =
    3\times3 logical array
        1 1 1
        1 1 1
        1 1 1
```

If the first element is not real, then the resulting Toeplitz matrix is Hermitian off the main diagonal:

```
T = toeplitz(sym([i, 2, 1]))
T =
[ 1i, 2, 1]
[ 2, 1i, 2]
[ 1, 2, 1i]
isAlways(T == T')
ans =
    3\times3 logical array
\begin{tabular}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}
```


Use Vectors with Conflicting First Element

Generate a Toeplitz matrix using these vectors to specify the first column and the first row. Because the first elements of these vectors are different, toeplitz issues a warning and uses the first element of the column:

```
syms a b c
toeplitz([a b c], [1 b/2 a/2])
```

```
Warning: First element of given column does not match first element of given row.
Column wins diagonal conflict.
```

ans $=$
$a, b / 2, a / 2]$
[b, a, b/2]
[c, b, a]

Input Arguments

c - First column of Toeplitz matrix

vector | symbolic vector
First column of Toeplitz matrix, specified as a vector or symbolic vector.

r-First row of Toeplitz matrix

vector | symbolic vector
First row of Toeplitz matrix, specified as a vector or symbolic vector.

Definitions

Toeplitz Matrix

A Toeplitz matrix is a matrix that has constant values along each descending diagonal from left to right. For example, matrix T is a symmetric Toeplitz matrix:

$$
T=\left(\begin{array}{ccccccc}
t_{0} & t_{1} & t_{2} & & & & t_{k} \\
t_{-1} & t_{0} & t_{1} & \cdots & & & \\
t_{-2} & t_{-1} & t_{0} & & & & \\
& \vdots & & \ddots & & \vdots & \\
& & & & t_{0} & t_{1} & t_{2} \\
& & & \cdots & t_{-1} & t_{0} & t_{1} \\
t_{-k} & & & & t_{-2} & t_{-1} & t_{0}
\end{array}\right)
$$

Tips

- Calling toeplitz for numeric arguments that are not symbolic objects invokes the MATLAB toeplitz function.

See Also

toeplitz

Introduced in R2013a

transpose.'

Symbolic matrix transpose

Syntax

A.'
transpose(A)

Description

A. ' computes the nonconjugate transpose on page 4-1671 of A.
transpose (A) is equivalent to A. '.

Examples

Transpose of Real Matrix

Create a 2-by-3 matrix, the elements of which represent real numbers.

```
syms x y real
A = [x x x; y y y]
A =
[ x, x, x]
[ y, y, y]
```

Find the nonconjugate transpose of this matrix.
A.'
ans $=$
[x, y]
[x, y]
[x, y]

If all elements of a matrix represent real numbers, then its complex conjugate transform equals its nonconjugate transform.

```
isAlways(A' == A.')
ans =
    3\times2 logical array
        1 1
        1
        1 
```


Transpose of Complex Matrix

Create a 2-by-2 matrix, the elements of which represent complex numbers.

```
syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]
A =
[ x + y*li, x - y*li]
[ y + x*li, y - x*li]
```

Find the nonconjugate transpose of this matrix. The nonconjugate transpose operator, A. ' , performs a transpose without conjugation. That is, it does not change the sign of the imaginary parts of the elements.
A. '

```
ans =
[ x + y*li, y + x*li]
[ x - y*li, y - x*li]
```

For a matrix of complex numbers with nonzero imaginary parts, the nonconjugate transform is not equal to the complex conjugate transform.

```
isAlways(A.' == A','Unknown','false')
ans =
    2\times2 logical array
        0}
        0}
```


Input Arguments

A - Input
 number | symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic matrix | symbolic multidimensional array

Input, specified as a number or a symbolic number, variable, expression, vector, matrix, multidimensional array.

Definitions

Nonconjugate Transpose

The nonconjugate transpose of a matrix interchanges the row and column index for each element, reflecting the elements across the main diagonal. The diagonal elements themselves remain unchanged. This operation does not affect the sign of the imaginary parts of complex elements.

For example, if $B=A . '$ and $A(3,2)$ is $1+1 i$, then the element $B(2,3)$ is $1+1 i$.

See Also

ctranspose| ldivide |minus |mldivide | mpower |mrdivide |mtimes | plus | power|rdivide|times

Introduced before R2006a

triangularPulse

Triangular pulse function

Syntax

triangularPulse(a, b, c, x)
triangularPulse(a, c, x)
triangularPulse(x)

Description

triangularPulse (a, b, c, x) returns the "Triangular Pulse Function" on page 4-1677.
triangularPulse (a, c, x) is a shortcut for triangularPulse $(a,(a+c) / 2, c$, $x)$.
triangularPulse (x) is a shortcut for triangularPulse(-1, $0,1, x)$.

Examples

Plot Triangular Pulse Function

```
syms x
fplot(triangularPulse(x), [-2 2])
```


Compute Triangular Pulse Function

Compute the triangular pulse function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[triangularPulse(-2, 0, 2, -3)
triangularPulse(-2, 0, 2, -1/2)
triangularPulse(-2, 0, 2, 0)
triangularPulse(-2, 0, 2, 3/2)
triangularPulse(-2, 0, 2, 3)]]
```


ans =

0.7500
1.0000
0.2500

0

Compute the same values symbolically by converting the numbers to symbolic objects.

```
[triangularPulse(sym(-2), 0, 2, -3)
triangularPulse(-2, 0, 2, sym(-1/2))
triangularPulse(-2, sym(0), 2, 0)
triangularPulse(-2, 0, 2, sym(3/2))
triangularPulse(-2, 0, sym(2), 3)]
ans =
    0
    3/4
        1
    1/4
    0
```


Fixed-Form Triangular Pulse of Width 2

Use triangularPulse with one input argument as a shortcut for computing triangularPulse(-1, 0, 1, x):
syms x
triangularPulse(x)
ans $=$
triangularPulse(-1, 0, 1, x)

Symmetrical Triangular Pulse

Use triangularPulse with three input arguments as a shortcut for computing triangularPulse(a, (a + c)/2, c, x):
syms a c x
triangularPulse(a, c, x)

ans =

triangularPulse(a, $a / 2+c / 2, c, x)$

Special Cases of Triangular Pulse Function

Depending on the relation between inputs, the triangularPulse has special values.
Compute the triangular pulse function for $\mathrm{a}<\mathrm{x}<\mathrm{b}$:

```
syms a b c x
assume(a < x < b)
ans =
(a - x)/(a - b)
```

triangularPulse(a, b, c, x)

For further computations, remove the assumption:
syms a b x clear
Compute the triangular pulse function for $\mathrm{b}<\mathrm{x}<\mathrm{c}$:

```
assume(b < x < c)
ans =
-(c - x)/(b - c)
```

triangularPulse(a, b, c, x)

For further computations, remove the assumption:
syms b c x clear
Compute the triangular pulse function for $\mathrm{a}=\mathrm{b}$:

```
syms a b c x
assume(b < c)
triangularPulse(b, b, c, x)
ans =
-((c - x)*rectangularPulse(b, c, x))/(b - c)
```

Compute the triangular pulse function for $\mathrm{c}=\mathrm{b}$:

```
assume(a < b)
triangularPulse(a, b, b, x)
ans =
((a - x)*rectangularPulse(a, b, x))/(a - b)
```

For further computations, remove all assumptions on a, b, and c :
syms a b c clear

Input Arguments

a - Input
 - 1 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the rising edge of the triangular pulse function.

b - Input

number | symbolic scalar
Input, specified as a number or a symbolic scalar. This argument specifies the peak of the triangular pulse function. If you specify a and c, then $(a+c) / 2$. Otherwise, 0 .

c - Input

1 (default) | number | symbolic scalar
Input, specified as a number or a symbolic scalar. This argument specifies the falling edge of the triangular pulse function.

x - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Triangular Pulse Function

If $a<x<b$, then the triangular pulse function equals $(x-a) /(b-a)$.
If $b<x<c$, then the triangular pulse function equals $(c-x) /(c-b)$.
If $x<=a$ or $x>=c$, then the triangular pulse function equals 0 .
The triangular pulse function is also called the triangle function, hat function, tent function, or sawtooth function.

Tips

- If a, b, and c are variables or expressions with variables, triangularPulse assumes that $a<=b<=c$. If a, b, and c are numerical values that do not satisfy this condition, triangularPulse throws an error.
- If $a=b=c$, triangularPulse returns 0 .
- If $a=b$ or $b=c$, the triangular function can be expressed in terms of the rectangular function.

See Also

dirac| heaviside | rectangularPulse

Introduced in R2012b

tril

Return lower triangular part of symbolic matrix

Syntax

tril(A)
tril(A,k)

Description

$\operatorname{tril}(A)$ returns a triangular matrix that retains the lower part of the matrix A. The upper triangle of the resulting matrix is padded with zeros.
$\operatorname{tril}(A, k)$ returns a matrix that retains the elements of A on and below the k-th diagonal. The elements above the k-th diagonal equal to zero. The values $k=0, k>0$, and $\mathrm{k}<0$ correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Lower Triangular Part of Symbolic Matrix

Display the matrix retaining only the lower triangle of the original symbolic matrix:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)
ans =
[rrrrr
```


Triangular Matrix On and Below Specified Superdiagonal

Display the matrix that retains the elements of the original symbolic matrix on and below the first superdiagonal:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)
ans =
```


Triangular Matrix On and Below Specified Subdiagonal

Display the matrix that retains the elements of the original symbolic matrix on and below the first subdiagonal:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)
ans =
[rrrrr
```


Input Arguments

A - Input

matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

k - Diagonal

number | symbolic number
Diagonal, specified as a numeric or symbolic number.

See Also
diag|triu
Introduced before R2006a

triu

Return upper triangular part of symbolic matrix

Syntax

triu(A)
triu(A,k)

Description

$\operatorname{triu}(A)$ returns a triangular matrix that retains the upper part of the matrix A. The lower triangle of the resulting matrix is padded with zeros.
$\operatorname{triu}(A, k)$ returns a matrix that retains the elements of A on and above the k-th diagonal. The elements below the k-th diagonal equal to zero. The values $k=0, k>0$, and $\mathrm{k}<0$ correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Upper Triangular Part of Symbolic Matrix

Display the matrix retaining only the upper triangle of the original symbolic matrix:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)
ans =
[ a, b, c]
[ 0, 2, 3]
[ 0, 0, c + 3]
```


Triangular Matrix On and Above Specified Superdiagonal

Display the matrix that retains the elements of the original symbolic matrix on and above the first superdiagonal:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)
ans =
[ 0, b, c]
[ 0, 0, 3]
[ 0, 0, 0]
```


Triangular Matrix On and Above Specified Subdiagonal

Display the matrix that retains the elements of the original symbolic matrix on and above the first subdiagonal:

```
syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)
ans =
[rrrr
```


Input Arguments

A - Input

matrix | symbolic matrix
Input, specified as a numeric or symbolic matrix.

k - Diagonal

number | symbolic number
Diagonal, specified as a numeric or symbolic number.

See Also

diag|tril

Introduced before R2006a

unitConversionFactor

Conversion factor between units

Syntax

C = unitConversionFactor(unit1,unit2)
C = unitConversionFactor(unit1, unit2,' Force', true)

Description

$\mathrm{C}=$ unitConversionFactor(unit1, unit2) returns the conversion factor C between units unit1 and unit2 so that unit1 = C*unit2.

C = unitConversionFactor(unit1, unit2, 'Force', true) forces unitConversionFactor to return a conversion factor even if the units are not dimensionally compatible.

Examples

Conversion Factor Between Units

Find the conversion factor between inches and centimeters.
u = symunit;
inch2cm = unitConversionFactor(u.inch,u.cm)
inch $2 \mathrm{~cm}=$
127/50
Convert the conversion factor to double.

```
inch2cm = double(inch2cm)
```

inch $2 \mathrm{~cm}=$
2.5400

The same result is returned using simplify or rewrite.

```
inch2cm = simplify(u.inch/u.cm)
inch2cm =
127/50
inch2cm = rewrite(u.inch,u.cm)
```

inch2cm =
(127/50)*[cm]

Find the conversion factor between Newtons and $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$. The conversion factor is 1 .

```
convFactor = unitConversionFactor(1*u.N, 1*u.kg*u.m/u.s^2)
```

convFactor =
1

Convert Between Dimensionally Incompatible Units

Convert between dimensionally incompatible units by specifying the argument 'Force' as true.

Convert between Watts and Joules. unitConversionFactor returns the factor 1/[s] since $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$.

```
u = symunit;
convFactor = unitConversionFactor(u.W, u.J, 'Force', true)
convFactor =
1/[s]
```

If you do not specify 'Force' as true then unitConversionFactor errors.
unitConversionFactor(u.W, u.J)
Error using unitConversionFactor (line 73) Incompatible units.

Input Arguments

unit - Units

symbolic units

Units, specified as symbolic units.

See Also

checkUnits|findUnits|isUnit|newUnit|separateUnits|str2symunit| symunit| symunit2str

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017a

unitlnfo

Information on units of measurement

Syntax

```
unitInfo(unit)
unitInfo(dim)
unitInfo
```

A = unitInfo(\qquad)

Description

unitInfo(unit) returns information for the symbolic unit unit.
unitInfo(dim) returns available units for the dimension dim.
unitInfo returns a list of available physical dimensions.
A = unitInfo (__) returns the output in A using any of the input arguments in the previous syntaxes. Dimensions are returned as strings, and units are returned as symbolic units.

Examples

Find Information on Units and Dimensions

Find information on unit $u . W b$ where $u=$ symunit. The unitInfo function specifies that Wb is the SI unit of magnetic flux.

```
u = symunit;
unitInfo(u.Wb)
```

weber - a physical unit of magnetic flux. ['SI']

```
Get all units for measuring 'MagneticFlux' by calling unitInfo('MagneticFlux').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.
```

Find all available units for 'MagneticFlux' as described.
unitInfo('MagneticFlux')
All units of dimension 'MagneticFlux':
abWb - abweber
Mx - maxwell
statWb - statweber
Wb - weber ['SI']

Get the base SI units of any unit above by calling rewrite(<unit>,'SI').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.
unitInfo also returns information on compound units. Find information on u.m/u.s^2.
unitInfo(u.m/u.s^2)
meter per square second - a physical unit of acceleration. ['SI']

Get all units for measuring 'Acceleration' by calling unitInfo('Acceleration').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.

Find All Physical Dimensions Available

Return all available dimensions using unitInfo without input arguments.
unitInfo
"AbsorbedDose"
"AbsorbedDoseOrDoseEquivalent"
"Acceleration"
...
"Length"
"Luminance"
"LuminousFlux"
. \cdot
"Time"
"Velocity"
"Volume"

Use Information on Units and Dimensions

Store information returned by unitInfo for use by providing an output.
Store the dimension of u.C.

```
u = symunit;
dimC = unitInfo(u.C)
dimC =
    "ElectricCharge"
```

Find and store all units for the dimension dimC.

```
unitsEC = unitInfo(dimC)
unitsEC =
    [abC]
            [C]
            [e]
        [Fr]
    [statC]
```

Find information on the third unit of unitsEC.

```
unitInfo(unitsEC(3))
```

elementary charge - a physical unit of electric charge.
Get all units for measuring 'ElectricCharge' by calling unitInfo('ElectricCharge').

Store [e]. Then, approximate the electrons in a coulomb of electric charge.

```
electronCharge = unitsEC(3);
```

numElectrons = simplify(u.C/electronCharge)
numElectrons =
6241509125883257926.5158629382492

Show that approximately 6.24×10^{18} electrons are in a coulomb by converting the highprecision symbolic result to double.

```
numElectrons = double(numElectrons)
```


Input Arguments

unit - Unit name

symbolic unit | character vector | string
Unit name, specified as a symbolic unit, character vector, or string.
Example: unitInfo(u.m) where u = symunit

dim - Dimension

character vector | string
Dimension, specified as a character vector or string.
Example: unitInfo('Length')

See Also
rewrite|simplify|symunit
Introduced in R2017b

unitSystems

List available unit systems

Syntax

unitSystems

Description

unitSystems returns a row vector of available unit systems.

- To add custom unit systems, see newUnitSystem.
- To convert between unit systems, see "Unit Conversions and Unit Systems" on page 231.
- For available unit systems, see "Unit Systems List" on page 2-28.

Examples

Get Available Unit Systems

Get available unit systems by using unitSystems. Add a custom unit system and check that unitSystems lists it as available.

Find the unit systems available by default.

```
unitSystems
```

```
ans =
    1\times6 string array
        "CGS" "EMU" "ESU" "GU" "SI" "US"
```

Add a custom unit system that modifies the SI base units. For details, see newUnitSystem and "Unit Conversions and Unit Systems" on page 2-31.

```
u = symunit;
SIUnits = baseUnits('SI');
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr]);
newUnitSystem('SI_km_hr',newUnits)
ans =
    "SI_km_hr"
```

Check that the new unit system is available by using unitSystems.

```
unitSystems
```

```
ans =
    1\times7 string array
        "CGS" "EMU" "ESU" "GU" "SI" "SI_km_hr" "US"
```

After calculations, remove the new unit system and check that it is unavailable.

```
removeUnitSystem('SI_km_hr');
unitSystems
ans =
    1\times6 string array
        "CGS" "EMU" "ESU" "GU" "SI" "US"
```

- "Units of Measurement Tutorial" on page 2-5
- "Unit Conversions and Unit Systems" on page 2-31
- "Units and Unit Systems List" on page 2-13

See Also

baseUnits|derivedUnits|newUnitSystem|removeUnitSystem|rewrite| symunit

Topics

"Units of Measurement Tutorial" on page 2-5
"Unit Conversions and Unit Systems" on page 2-31
"Units and Unit Systems List" on page 2-13

External Websites

The International System of Units (SI)

Introduced in R2017b

vectorPotential

Vector potential of vector field

Syntax

```
vectorPotential(V,X)
vectorPotential(V)
```


Description

vectorPotential (V, X) computes the vector potential of the vector field on page 41696 V with respect to the vector X in Cartesian coordinates. The vector field V and the vector X are both three-dimensional.
vectorPotential (V) returns the vector potential V with respect to a vector constructed from the first three symbolic variables found in V by symvar.

Examples

Compute Vector Potential of Field

Compute the vector potential of this row vector field with respect to the vector $[x, y$, z]:

```
syms x y z
ans =
    -(x*y^2*z)/2
        -x^2*y*z
            0
```

vectorPotential([x^2*y, -1/2*y^2*x, -x*y*z], [x y z])

Compute the vector potential of this column vector field with respect to the vector [x , y, z]:

```
syms x y z
f(x,y,z) = 2*y^3 - 4*x*y;
g(x,y,z) = 2*y^2 - 16* z^2+18;
h(x,y,z) = -32*x^2 - 16*x*y^2;
A = vectorPotential([f; g; h], [x y z])
A(x, y, z) =
    z*(2* y^2 + 18) - (16* z^3)/3 + (16* }\mp@subsup{\mp@code{*}}{}{*}\mp@subsup{y}{}{*}(\mp@subsup{y}{}{\wedge}2+6*x))/
                                    2*y*z*(- y^2 + 2*x)
```


Test if Vector Potential Exists for Field

To check whether the vector potential exists for a particular vector field, compute the divergence of that vector field:

```
syms x y z
V = [x^2 2*y z];
divergence(V, [x y z])
ans =
2*x + 3
```

If the divergence is not equal to 0 , the vector potential does not exist. In this case, vectorPotential returns the vector with all three components equal to NaN :

```
vectorPotential(V, [x y z])
ans =
    NaN
    NaN
    NaN
```


Input Arguments

V - Vector field

3-D symbolic vector of symbolic expressions or functions (default)
Vector field, specified as a 3-D vector of symbolic expressions or functions.

X - Input

vector of three symbolic variables

Input, specified as a vector of three symbolic variables with respect to which you compute the vector potential.

Definitions

Vector Potential of a Vector Field

The vector potential of a vector field V is a vector field A , such that:

$$
V=\nabla \times A=\operatorname{curl}(A)
$$

Tips

- The vector potential exists if and only if the divergence of a vector field V with respect to X equals 0 . If vectorPotential cannot verify that V has a vector potential, it returns the vector with all three components equal to NaN .

See Also

curl|diff|divergence | gradient|hessian| jacobian|laplacian| potential

Introduced in R2012a

vertcat

Concatenate symbolic arrays vertically

Syntax

```
vertcat(A1,...,AN)
[A1;...;AN]
```


Description

vertcat (A1, . . , AN) vertically concatenates the symbolic arrays A1, . . . , AN. For vectors and matrices, all inputs must have the same number of columns. For multidimensional arrays, vertcat concatenates inputs along the first dimension. The remaining dimensions must match.
[A1; ...;AN] is a shortcut for vertcat (A1,... $A N$).

Examples

Concatenate Two Symbolic Vectors Vertically

Concatenate the two symbolic vectors A and B to form a symbolic matrix.

```
A = sym('a%d',[1 4]);
B = sym('b%d',[1 4]);
vertcat(A,B)
ans =
[ a1, a2, a3, a4]
[ b1, b2, b3, b4]
```

Alternatively, you can use the shorthand $[A ; B]$ to concatenate A and B.
[A;B]

```
ans =
[ a1, a2, a3, a4]
[ b1, b2, b3, b4]
```


Concatenate Multiple Symbolic Arrays Vertically

Concatenate multiple symbolic arrays into one symbolic matrix.
A = sym('a\%d',[13]);
$B=\operatorname{sym}\left(' b \% d \% d ',\left[\begin{array}{ll}4 & 3])\end{array}\right.\right.$;
C = sym('c\%d\%d',[2 3]);
vertcat(C,A,B)
ans $=$
[c11, c12, c13]
[c21, c22, c23]
[a1, a2, a3]
[b11, b12, b13]
[b21, b22, b23]
[b31, b32, b33]
[b41, b42, b43]

Concatenate Multidimensional Arrays Vertically

Create the 3-D symbolic arrays A and B.

```
A = [2 4; 1 7; 3 3];
A(:,:,2) = [8 9; 4 5; 6 2];
A = sym(A)
B = [8 3; 0 2];
B(:,:,2) = [6 2; 3 3];
B = sym(B)
A(:,:,1) =
[ 2, 4]
[ 1, 7]
[ 3, 3]
A(:,:,2) =
[ 8, 9]
[ 4, 5]
[ 6, 2]
```

$B(:,:, 1)=$

```
[ 8, 3]
[ 0, 2]
B(:,:,2) =
[ 6, 2]
[ 3, 3]
```

Use vertcat to concatenate A and B.
vertcat (A, B)
ans(:,:,1) =
[2, 4]
[1, 7]
[3, 3]
$[8,3]$
[0, 2]
ans(:,:,2) =
[8, 9]
[4, 5]
[6, 2]
[6, 2]
[3, 3]

Input Arguments

A1, ..., AN - Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array
Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional arrays.

See Also

cat | horzcat

Introduced before R2006a

vpa

Variable-precision arithmetic (arbitrary-precision arithmetic)

Note Support for character vectors that do not define a number has been removed. Instead, first create symbolic numbers and variables using sym and syms, and then use operations on them. For example, use vpa((1 + sqrt(sym(5)))/2) instead of vpa('(1 + sqrt(5))/2').

Syntax

```
vpa(x)
vpa(x,d)
```


Description

vpa (x) uses variable-precision floating-point arithmetic (VPA) to evaluate each element of the symbolic input x to at least d significant digits, where d is the value of the digits function. The default value of digits is 32 .
vpa (x, d) uses at least d significant digits, instead of the value of digits.

Examples

Evaluate Symbolic Inputs with Variable-Precision Arithmetic

Evaluate symbolic inputs with variable-precision floating-point arithmetic. By default, vpa calculates values to 32 significant digits.
syms x
p = sym(pi);
piVpa $=$ vpa(p)
piVpa =
3.1415926535897932384626433832795

```
a = sym(1/3);
f = a*sin(2*p*x);
fVpa = vpa(f)
fVpa =
0.33333333333333333333333333333333*sin(6.283185307179586476925286766559*x)
```

Evaluate elements of vectors or matrices with variable-precision arithmetic.

```
V = [x/p a^3];
M = [sin(p) cos(p/5); exp(p*x) x/log(p)];
vpa(V)
vpa(M)
ans =
[ 0.31830988618379067153776752674503*x, 0.037037037037037037037037037037037]
ans =
[ 0, 0.80901699437494742410229341718282]
[ exp(3.1415926535897932384626433832795*x), 0.87356852683023186835397746476334*x]
```

Note You must wrap all inner inputs with vpa, such as exp(vpa(200)). Otherwise the inputs are automatically converted to double by MATLAB.

Change Precision Used by vpa

By default, vpa evaluates inputs to 32 significant digits. You can change the number of significant digits by using the digits function.

Approximate the expression 100001/10001 with seven significant digits using digits. Save the old value of digits returned by digits (7). The vpa function returns only five significant digits, which can mean the remaining digits are zeros.

```
digitsOld = digits(7);
y = sym(100001)/10001;
vpa(y)
ans =
9.9991
```

Check if the remaining digits are zeros by using a higher precision value of 25 . The result shows that the remaining digits are in fact a repeating decimal.

```
digits(25)
vpa(y)
ans =
9.999100089991000899910009
```

Alternatively, to override digits for a single vpa call, change the precision by specifying the second argument.

Find π to 100 significant digits by specifying the second argument.

```
vpa(pi,100)
ans =
3.141592653589793238462643383279502884197169
39937510582097494459230781640628620899862803...
4825342117068
```

Restore the original precision value in digits0ld for further calculations.

```
digits(digitsOld)
```


Numerically Approximate Symbolic Results

While symbolic results are exact, they might not be in a convenient form. You can use vpa to numerically approximate exact symbolic results.

Solve a high-degree polynomial for its roots using solve. The solve function cannot symbolically solve the high-degree polynomial and represents the roots using root.

```
syms x
y = solve(x^4 - x + 1, x)
y =
    root(z^4 - z + 1, z, 1)
    root(z^4 - z + 1, z, 2)
    root(z^4 - z + 1, z, 3)
    root(z^4 - z + 1, z, 4)
```

Use vpa to numerically approximate the roots.
y Vpa $=$ vpa(y)
$y V p a=$

- 0.72713608449119683997667565867496 - $0.93409928946052943963903028710582 i$

```
0.72713608449119683997667565867496 + 0.93409928946052943963903028710582i
0.72713608449119683997667565867496 - 0.43001428832971577641651985839602i
0.72713608449119683997667565867496 + 0.43001428832971577641651985839602i
```


vpa Uses Guard Digits to Maintain Precision

The value of the digits function specifies the minimum number of significant digits used. Internally, vpa can use more digits than digits specifies. These additional digits are called guard digits because they guard against round-off errors in subsequent calculations.

Numerically approximate $1 / 3$ using four significant digits.
$a=\operatorname{vpa}(1 / 3,4)$
a =
0.3333

Approximate the result a using 20 digits. The result shows that the toolbox internally used more than four digits when computing a. The last digits in the result are incorrect because of the round-off error.
vpa(a, 20)
ans =
0.33333333333303016843

Avoid Hidden Round-off Errors

Hidden round-off errors can cause unexpected results.
Evaluate $1 / 10$ with the default 32 -digit precision, and then with the 10 digits precision.
$\mathrm{a}=\mathrm{vpa}(1 / 10,32)$
$b=\operatorname{vpa}(1 / 10,10)$
a $=$
0.1
b $=$
0.1

Superficially, a and b look equal. Check their equality by finding $a-b$.

```
a - b
ans =
0.0000000000000000000086736173798840354720600815844403
```

The difference is not equal to zero because b was calculated with only 10 digits of precision and contains a larger round-off error than a. When you find a - b, vpa approximates b with 32 digits. Demonstrate this behavior.

```
a - vpa(b, 32)
```

ans =
0.0000000000000000000086736173798840354720600815844403

vpa Restores Precision of Common Double-Precision Inputs

Unlike exact symbolic values, double-precision values inherently contain round-off errors. When you call vpa on a double-precision input, vpa cannot restore the lost precision, even though it returns more digits than the double-precision value. However, vpa can recognize and restore the precision of expressions of the form $p / q, p \pi / q,(p / q)^{1 / 2}, 2^{q}$, and 10^{q}, where p and q are modest-sized integers.

First, demonstrate that vpa cannot restore precision for a double-precision input. Call vpa on a double-precision result and the same symbolic result.

```
dp = log(3);
s = log(sym(3));
dpVpa = vpa(dp)
sVpa = vpa(s)
d = sVpa - dpVpa
dpVpa =
1.0986122886681095600636126619065
sVpa =
1.0986122886681096913952452369225
d =
0.00000000000000013133163257501600766255995767652
```

As expected, the double-precision result differs from the exact result at the $16^{\text {th }}$ decimal place.

Demonstrate that vpa restores precision for expressions of the form $p / q, p \pi / q,(p / q)^{1 / 2}, 2^{q}$, and 10^{q}, where p and q are modest sized integers, by finding the difference between the
vpa call on the double-precision result and on the exact symbolic result. The differences are 0.0 showing that vpa restores lost precision in the double-precision input.

```
vpa(1/3) - vpa(1/sym(3))
vpa(pi) - vpa(sym(pi))
vpa(1/sqrt(2)) - vpa(1/sqrt(sym(2)))
vpa(2^66) - vpa(2^sym(66))
vpa(10^25) - vpa(10^sym(25))
ans =
0.0
```


Input Arguments

x - Input to evaluate

number | vector | matrix | multidimensional array | symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic function | symbolic character vector

Input to evaluate, specified as a number, vector, matrix, multidimensional array, or a symbolic number, vector, matrix, multidimensional array, expression, function, or character vector.

d - Number of significant digits

integer
Number of significant digits, specified as an integer. d must be greater than 1 and lesser than $2^{29}+1$.

Tips

- vpa does not convert fractions in the exponent to floating point. For example, $\operatorname{vpa}\left(a^{\wedge} \operatorname{sym}(2 / 5)\right)$ returns $a^{\wedge}(2 / 5)$.
- vpa uses more digits than the number of digits specified by digits. These extra digits guard against round-off errors in subsequent calculations and are called guard digits.
- When you call vpa on a numeric input, such as $1 / 3,2^{\wedge}(-5)$, or $\sin (\mathrm{pi} / 4)$, the numeric expression is evaluated to a double-precision number that contains round-off errors. Then, vpa is called on that double-precision number. For accurate results, convert numeric expressions to symbolic expressions with sym. For example, to approximate $\exp (1)$, use vpa ($\exp (\operatorname{sym}(1)))$.
- If the second argument d is not an integer, vpa rounds it to the nearest integer with round.
- vpa restores precision for numeric inputs that match the forms $p / q, p \pi / q,(p / q)^{1 / 2}, 2^{q}$, and 10^{q}, where p and q are modest-sized integers.
- Atomic operations using variable-precision arithmetic round to nearest.
- The differences between variable-precision arithmetic and IEEE Floating-Point Standard 754 are
- Inside computations, division by zero throws an error.
- The exponent range is larger than in any predefined IEEE mode. vpa underflows below approximately 10^(-323228496).
- Denormalized numbers are not implemented.
- Zeroes are not signed.
- The number of binary digits in the mantissa of a result may differ between variableprecision arithmetic and IEEE predefined types.
- There is only one NaN representation. No distinction is made between quiet and signaling NaN .
- No floating-point number exceptions are available.

See Also

digits|double|root|vpaintegral
Topics"Increase Precision of Numeric Calculations" on page 2-117"Recognize and Avoid Round-Off Errors" on page 2-119
"Increase Speed by Reducing Precision" on page 2-124
"Choose Symbolic or Numeric Arithmetic" on page 2-115
Introduced before R2006a

vpaintegral

Numerical integration using variable precision

Syntax

```
vpaintegral(f,a,b)
vpaintegral(f,x,a,b)
vpaintegral(___,Name,Value)
```


Description

vpaintegral(f, a, b) numerically approximates f from a to b. The default variable x in f is found by symvar.
vpaintegral(f,[a b]) is equal to vpaintegral(f,a,b).
vpaintegral($f, x, a, b)$ performs numerical integration using the integration variable x.
vpaintegral(\qquad , Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Numerically Integrate Symbolic Expression

Numerically integrate the symbolic expression $x^{\wedge} 2$ from 1 to 2 .

```
syms x
vpaintegral(x^2, 1, 2)
ans =
2.33333
```


Numerically Integrate Symbolic Function

Numerically integrate the symbolic function $y(x)=x^{2}$ from 1 to 2 .

```
syms y(x)
y(x) = x^2;
vpaintegral(y, 1, 2)
ans =
2.33333
```


High-Precision Numerical Integration

vpaintegral uses variable-precision arithmetic while the MATLAB integral function uses double-precision arithmetic. Using the default values of tolerance, vpaintegral can handle values that cause the MATLAB integral function to overflow or underflow.

Integrate besseli(5,25*u).*exp(-u*25) by using both integral and vpaintegral. The integral function returns NaN and issues a warning while vpaintegral returns the correct result.

```
syms u x
f = besseli(5,25*x).*exp(-x*25);
fun = @(u)besseli(5,25*u).*exp(-u*25);
usingIntegral = integral(fun, 0, 30)
usingVpaintegral = vpaintegral(f, 0, 30)
```

```
Warning: Infinite or Not-a-Number value encountered.
usingIntegral =
    NaN
```

usingVpaintegral =
0.688424

Increase Precision Using Tolerances

The digits function does not affect vpaintegral. Instead, increase the precision of vpainteral by decreasing the integration tolerances. Conversely, increase the speed of numerical integration by increasing the tolerances. Control the tolerance used by vpaintegral by changing the relative tolerance RelTol and absolute tolerance AbsTol, which affect the integration through the condition

$$
\begin{gathered}
|Q-I| \leq \max (\text { AbsTol },|Q| \text { RelTol }) \\
\text { where } \quad Q=\text { Calculated Integral } \\
I=\text { Exact Integral. }
\end{gathered}
$$

Numerically integrate besselj ($0, x$) from 0 to pi, to 32 significant figures by setting RelTol to 10^(-32). Turn off AbsTol by setting it to 0 .

```
syms x
vpaintegral(besselj(0,x), [0 pi], 'RelTol', le-32, 'AbsTol', 0)
ans =
1.3475263146739901712314731279612
```

Using lower tolerance values increases precision at the cost of speed.

Complex Path Integration Using Waypoints

Integrate $1 /(2 * z-1)$ over the triangular path from 0 to $1+1$ i to $1-1 i$ back to 0 by specifying waypoints.

```
syms z
vpaintegral(1/(2*z-1), [0 0], 'Waypoints', [1+1i 1-1i])
ans =
- 8.67362e-19 - 3.14159i
```

Reversing the direction of the integral, by changing the order of the waypoints and exchanging the limits, changes the sign of the result.

Multiple Integrals

Perform multiple integration by nesting calls to vpaintegral. Integrate

$$
\int_{-1}^{2} \int_{1}^{3} x y d x d y
$$

```
syms x y
vpaintegral(vpaintegral(x*y, x, [1 3]), y, [-1 2])
```


ans =

6.0

The limits of integration can be symbolic expressions or functions. Integrate over the triangular region $0 \leq x \leq 1$ and $|y|<x$ by specifying the limits of the integration over y in terms of x .
vpaintegral(vpaintegral(sin(x-y)/(x-y), y, [-x x]), x, [0 1])
ans =
0.89734

Input Arguments

f - Expression or function to integrate

symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Expression or function to integrate, specified as a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

a,b-Limits of integration

list of two numbers | list of two symbolic numbers | list of two symbolic variables | list of two symbolic functions | list of two symbolic expressions

Limits of integration, specified as a list of two numbers, symbolic numbers, symbolic variables, symbolic functions, or symbolic expressions.

x - Integration variable
 symbolic variable

Integration variable, specified as a symbolic variable. If x is not specified, the integration variable is found by symvar.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'RelTol',1e-20

RelTol - Relative error tolerance

1e-6 (default) | positive real number
Relative error tolerance, specified as a positive real number. The default is $1 e-6$. The
RelTol argument determines the accuracy of the integration only if RelTol $\cdot|Q|>A b s T o l$, where Q is the calculated integral. In this case, vpaintegral satisfies the condition
$|Q-I| \leq$ RelTol $\cdot|Q|$, where I is the exact integral value. To use only RelTol and turn off AbsTol, set AbsTol to 0.

Example: 1e-8

AbsTol - Absolute error tolerance

1e-10 (default) | non-negative real number
Absolute error tolerance, specified as a non-negative real number. The default is 1e-10.
AbsTol determines the accuracy of the integration if AbsTol $>\operatorname{RelTol} \cdot|Q|$, where Q is the calculated integral. In this case, vpaintegral satisfies the condition $|Q-I| \leq A b s T o l$, where I is the exact integral value. To turn off AbsTol and use only RelTol, set AbsTol to 0 .

Example: 1e-12

Waypoints - Integration path

vector of numbers | vector of symbolic numbers | vector of symbolic expressions | vector of symbolic functions

Integration path, specified as a vector of numbers, or as a vector of symbolic numbers, expressions, or functions. vpaintegral integrates along the sequence of straight-line paths (lower limit to the first waypoint, from the first to the second waypoint, and so on) and finally from the last waypoint to the upper limit. For contour integrals, set equal lower and upper limits and define the contour using waypoints.

MaxFunctionCalls - Maximum evaluations of input

10^5 (default) | positive integer | positive symbolic integer
Maximum evaluations of input, specified as a positive integer or a positive symbolic integer. The default value is $10^{\wedge} 5$. If the number of evaluations of f is greater than

MaxFunctionCalls, then vpaintegral throws an error. For unlimited evaluations, set MaxFunctionCalls to Inf.

Tips

- Ensure that the input is integrable. If the input is not integrable, the output of vpaintegral is unpredictable.
- The digits function does not affect vpaintegral. To increase precision, use the RelTol and AbsTol arguments instead.

See Also

diff|int|integral|vpa

Topics

"Integration" on page 2-57

Introduced in R2016b

vpasolve

Solve equations numerically

Syntax

```
S = vpasolve(eqn)
S = vpasolve(eqn,var)
S = vpasolve(eqn,var,init_guess)
Y = vpasolve(eqns)
Y = vpasolve(eqns,vars)
Y = vpasolve(eqns,vars,init_guess)
[y1,...,yN] = vpasolve(eqns)
[y1,...,yN] = vpasolve(eqns,vars)
[y1,\ldots.,yN] = vpasolve(eqns,vars,init_guess)
___ = vpasolve(___ ,'Random',Random)
```


Description

$S=$ vpasolve(eqn) numerically solves the equation eqn for the variable determined by symvar.

S = vpasolve(eqn, var) numerically solves the equation eqn for the variable specified by var.

S = vpasolve(eqn, var,init_guess) numerically solves the equation eqn for the variable specified by var using the starting point or search range specified in init_guess. If you do not specify var, vpasolve solves for variables determined by symvar.
$Y=$ vpasolve(eqns) numerically solves the system of equations eqns for variables determined by symvar. This syntax returns Y as a structure array. You can access the solutions by indexing into the array.
$Y=$ vpasolve(eqns, vars) numerically solves the system of equations eqns for variables specified by vars. This syntax returns a structure array that contains the solutions. The fields in the structure array correspond to the variables specified by vars.
$Y=$ vpasolve(eqns, vars,init_guess) numerically solves the system of equations eqns for the variables vars using the starting values or the search range init_guess.
$[y 1, \ldots, y N]=$ vpasolve(eqns) numerically solves the system of equations eqns for variables determined by symvar. This syntax assigns the solutions to variables y1,...,yN.
$[y 1, \ldots, y N]=$ vpasolve(eqns, vars) numerically solves the system of equations eqns for the variables specified by vars.
$[y 1, \ldots, y N]=$ vpasolve(eqns, vars,init_guess) numerically solves the system of equations eqns for the variables specified by vars using the starting values or the search range init_guess.
$=$ vpasolve (__, 'Random' , Random) uses a random starting point for finding solutions when 'Random' is set to true. Use this input to avoid returning the same solution repeatedly for nonpolynomial equations. If you specify starting points for all variables, setting random to true has no effect.

Examples

Solve Polynomial Equation

For polynomial equations, vpasolve returns all solutions:

```
syms x
vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)
ans =
    0.88011377126068169817875190457835 + 0.76331583387715452512978468102263i
    0.88011377126068169817875190457835 - 0.76331583387715452512978468102263i
    0.50511377126068169817875190457835 + 0.81598965068946312853227067890656i
    0.50511377126068169817875190457835 - 0.81598965068946312853227067890656i
```

If vpasolve returns an empty object, then no solution was found.

```
eqns = [3*x+2, 3*x+1];
vpasolve(eqns, x)
```


ans =

Empty sym: 0-by-1

Solve Nonpolynomial Equation

For nonpolynomial equations, vpasolve returns the first solution that it finds:
syms x

```
vpasolve(sin(x^2) == 1/2, x)
```

ans $=$
-226.94447241941511682716953887638

Assign Solutions to Structure Array

When solving a system of equations, use one output argument to return the solutions in the form of a structure array:

```
syms x y
S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])
S =
    struct with fields:
    x: [6x1 sym]
    y: [6x1 sym]
```

Display solutions by accessing the elements of the structure array S:
S.x
ans $=$
0.2365742942773341617614871521768
$0.28124065338711968666197895499453+1.2348724236470142074859894531946 i$
$0.28124065338711968666197895499453-1.2348724236470142074859894531946 i$
$0.16295350624845260578123537890613-1.6151544650555366917886585417926 i$
$0.16295350624845260578123537890613+1.6151544650555366917886585417926 i$
S.y
ans $=$
0.48638903593454300001655725369801

- $70187356885586188630668751791218+0.879697197929824022870267273817691$
$0.70187356885586188630668751791218-0.87969719792982402287026727381769 i$

```
0.94506808682313338631496614476119 + 0.85451751443904587692179191887616i
0.94506808682313338631496614476119 - 0.85451751443904587692179191887616i
```


Assign Solutions to Variables When Solving System of Equations

When solving a system of equations, use multiple output arguments to assign the solutions directly to output variables. To ensure the correct order of the returned solutions, specify the variables explicitly. The order in which you specify the variables defines the order in which the solver returns the solutions.

```
syms x y
[sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2 == exp(-2*x/3)], [x, y])
sol_x =
88.90707209659114864849280774681
sol_y =
0.000000000000013470479710676694388973703681918
```


Find Multiple Solutions by Specifying Starting Points

Plot the two sides of the equation, and then use the plot to specify initial guesses for the solutions.

Plot the left and right sides of the equation $200 \sin (x)=x^{3}-1$.

```
syms x
eqnLeft = 200*sin(x);
eqnRight = x^3 - 1;
fplot([eqnLeft eqnRight])
title([texlabel(eqnLeft) ' = ' texlabel(eqnRight)])
```


This equation has three solutions. If you do not specify the initial guess (zeroapproximation), vpasolve returns the first solution that it finds:

```
vpasolve(200*sin(x) == x^3 - 1, x)
ans =
-0.0050000214585835715725440675982988
```

Find one of the other solutions by specifying the initial point that is close to that solution:

```
vpasolve(200*sin(x) == x^3 - 1, x, -4)
ans =
-3.0009954677086430679926572924945
```

```
vpasolve(200*sin(x) == x^3 - 1, x, 3)
ans =
3.0098746383859522384063444361906
```


Specify Ranges for Solutions

You can specify ranges for solutions of an equation. For example, if you want to restrict your search to only real solutions, you cannot use assumptions because vpasolve ignores assumptions. Instead, specify a search interval. For the following equation, if you do not specify ranges, the numeric solver returns all eight solutions of the equation:

```
syms x
vpasolve(x^8 - x^2 == 3, x)
ans =
    -1.2052497163799060695888397264341
    1.2052497163799060695888397264341
    0.77061431370803029127495426747428 + 0.85915207603993818859321142757163i
    0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i
    -1.0789046020338265308047436284205i
                            1.0789046020338265308047436284205i
    0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
    0.77061431370803029127495426747428 - 0.85915207603993818859321142757163i
```

Suppose you need only real solutions of this equation. You cannot use assumptions on variables because vpasolve ignores them.

```
assume(x, 'real')
vpasolve(x^8 - x^2 == 3, x)
ans =
    1.2052497163799060695888397264341
    1.2052497163799060695888397264341
- 0.77061431370803029127495426747428 + 0.85915207603993818859321142757163i
0.77061431370803029127495426747428-0.85915207603993818859321142757164i
    -1.0789046020338265308047436284205i
    1.0789046020338265308047436284205i
    0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
    0.77061431370803029127495426747428-0.85915207603993818859321142757163i
```

Specify the search range to restrict the returned results to particular ranges. For example, to return only real solutions of this equation, specify the search interval as [Inf Inf]:

```
vpasolve(x^8 - x^2 == 3, x, [-Inf Inf])
```

```
ans =
    -1.2052497163799060695888397264341
    1.2052497163799060695888397264341
```

Return only nonnegative solutions:

```
vpasolve(x^8 - x^2 == 3, x, [0 Inf])
```

ans =
1.2052497163799060695888397264341

The search range can contain complex numbers. In this case, vpasolve uses a rectangular search area in the complex plane:

```
vpasolve(x^8 - x^2 == 3, x, [-1, 1 + i])
ans =
    0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
    0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
```


Find Multiple Solutions for Nonpolynomial Equation

By default, vpasolve returns the same solution on every call. To find more than one solution for nonpolynomial equations, set random to true. This makes vpasolve use a random starting value which can lead to different solutions on successive calls.

If random is not specified, vpasolve returns the same solution on every call.

```
syms x
```

$\mathrm{f}=\mathrm{x}-\tan (\mathrm{x})$;
for $n=1: 3$
vpasolve(f,x)
end
ans $=$
0
ans $=$
0
ans $=$
0

When random is set to true, vpasolve returns a distinct solution on every call.

```
syms x
f = x-tan(x);
```

```
for n = 1:3
    vpasolve(f,x,'random',true)
end
ans =
    -227.76107684764829218924973598808
    ans =
    102.09196646490764333652956578441
    ans =
    61.244730260374400372753016364097
```

random can be used in conjunction with a search range:

```
vpasolve(f,x,[10 12],'random',true)
```

ans =
10.904121659428899827148702790189

Input Arguments

eqn - Equation to solve

symbolic equation | symbolic expression
Equation to solve, specified as a symbolic equation or symbolic expression. A symbolic equation is defined by the relation operator $==$. If eqn is a symbolic expression (without the right side), the solver assumes that the right side is 0 , and solves the equation eqn $=0$.

var - Variable to solve equation for
 symbolic variable

Variable to solve equation for, specified as a symbolic variable. If var is not specified, symvar determines the variables.

eqns - System of equations or expressions to solve

symbolic vector | symbolic matrix | symbolic N-D array
System of equations or expressions to be solve, specified as a symbolic vector, matrix, or N -D array of equations or expressions. These equations or expressions can also be separated by commas. If an equation is a symbolic expression (without the right side), the solver assumes that the right side of that equation is 0 .

vars - Variables to solve system of equations for symbolic vector

Variables to solve system of equations for, specified as a symbolic vector. These variables are specified as a vector or comma-separated list. If vars is not specified, symvar determines the variables.

init_guess - Initial guess for solution

numeric value | vector | matrix with two columns
Initial guess for a solution, specified as a numeric value, vector, or matrix with two columns.

If init_guess is a number or, in the case of multivariate equations, a vector of numbers, then the numeric solver uses it as a starting point. If init_guess is specified as a scalar while the system of equations is multivariate, then the numeric solver uses the scalar value as a starting point for all variables.

If init_guess is a matrix with two columns, then the two entries of the rows specify the bounds of a search range for the corresponding variables. To specify a starting point in a matrix of search ranges, specify both columns as the starting point value.

To omit a search range for a variable, set the search range for that variable to [NaN , NaN] in init_guess. All other uses of NaN in init_guess will error.

By default, vpasolve uses its own internal choices for starting points and search ranges.

Output Arguments

S - Solutions of univariate equation
 symbolic value | symbolic array

Solutions of univariate equation, returned as symbolic value or symbolic array. The size of a symbolic array corresponds to the number of the solutions.

Y - Solutions of system of equations
 structure array

Solutions of system of equations, returned as a structure array. The number of fields in the structure array corresponds to the number of variables to be solved for.

y1, ..., yN - Variables that are assigned solutions of system of equations array of numeric variables | array of symbolic variables

Variables that are assigned solutions of system of equations, returned as an array of numeric or symbolic variables. The number of output variables or symbolic arrays must equal the number of variables to be solved for. If you explicitly specify independent variables vars, then the solver uses the same order to return the solutions. If you do not specify vars, the toolbox sorts independent variables alphabetically, and then assigns the solutions for these variables to the output variables or symbolic arrays.

Tips

- If vpasolve returns an empty object, then no solution was found.
- vpasolve returns all solutions only for polynomial equations. For nonpolynomial equations, there is no general method of finding all solutions. When you look for numerical solutions of a nonpolynomial equation or system that has several solutions, then, by default, vpasolve returns only one solution, if any. To find more than just one solution, set random to true. Now, calling vpasolve repeatedly might return several different solutions.
- When you solve a system where there are not enough equations to determine all variables uniquely, the behavior of vpasolve behavior depends on whether the system is polynomial or nonpolynomial. If polynomial, vpasolve returns all solutions by introducing an arbitrary parameter. If nonpolynomial, a single numerical solution is returned, if it exists.
- When you solve a system of rational equations, the toolbox transforms it to a polynomial system by multiplying out the denominators. vpasolve returns all solutions of the resulting polynomial system, including those that are also roots of these denominators.
- vpasolve ignores assumptions set on variables. You can restrict the returned results to particular ranges by specifying appropriate search ranges using the argument init_guess.
- If init_guess specifies a search range [a,b], and the values a, b are complex numbers, then vpasolve searches for the solutions in the rectangular search area in the complex plane. Here, a specifies the bottom-left corner of the rectangular search area, and b specifies the top-right corner of that area.
- The output variables y1, ..., yN do not specify the variables for which vpasolve solves equations or systems. If $\mathrm{y} 1, \ldots, y N$ are the variables that appear in eqns, that
does not guarantee that vpasolve(eqns) will assign the solutions to $\mathrm{y} 1, \ldots, \mathrm{yN}$ using the correct order. Thus, for the call $[a, b]=$ vpasolve(eqns), you might get the solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For example, the call $[b, a]=$ vpasolve (eqns $, b, a)$ assigns the solutions for a assigned to a and the solutions for b assigned to b.

- Place equations and expressions to the left of the argument list, and the variables to the right. vpasolve checks for variables starting on the right, and on reaching the first equation or expression, assumes everything to the left is an equation or expression.
- If possible, solve equations symbolically using solve, and then approximate the obtained symbolic results numerically using vpa. Using this approach, you get numeric approximations of all solutions found by the symbolic solver. Using the symbolic solver and postprocessing its results requires more time than using the numeric methods directly. This can significantly decrease performance.

Algorithms

- When you set random to true and specify a search range for a variable, random starting points within the search range are chosen using the internal random number generator. The distribution of starting points within finite search ranges is uniform.
- When you set random to true and do not specify a search range for a variable, random starting points are generated using a Cauchy distribution with a half-width of 100. This means the starting points are real valued and have a large spread of values on repeated calls.

See Also

dsolve|equationsToMatrix|fzero|linsolve|solve|symvar|vpa
Introduced in R2012b

whittakerM

Whittaker M function

Syntax

```
whittakerM(a,b,z)
```


Description

whittakerM($\mathrm{a}, \mathrm{b}, \mathrm{z}$) returns the value of the Whittaker M function on page 4-1728.

Examples

Compute Whittaker M Function for Numeric Input

Compute the Whittaker M function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),...
whittakerM(2, 2, 2), whittakerM(3, -0.3, 1/101)]
ans=
    0.7303 -9.2744 + 5.4705i 2.6328 0.3681
```


Compute Whittaker M Function for Symbolic Input

Compute the Whittaker M function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, whittakerM returns unresolved symbolic calls.

```
[whittakerM(sym(1), 1, 1), whittakerM(-2, sym(1), 3/2 + 2*i),...
whittakerM(2, 2, sym(2)), whittakerM(sym(3), -0.3, 1/101)]
ans =
[ whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2i),
whittakerM(2, 2, 2), whittakerM(3, -3/10, 1/101)]
```

For symbolic variables and expressions, whittakerM also returns unresolved symbolic calls:

```
syms a b x y
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]
ans =
[ whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]
```


Solve ODE for Whittaker Functions

Solve this second-order differential equation. The solutions are given in terms of the Whittaker functions.

```
syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)
ans =
C2*whittakerM(-a,-b,-z) + C3*whittakerW(-a,-b,-z)
```


Verify Whittaker Functions are Solution of ODE

Verify that the Whittaker M function is a valid solution of this differential equation:

```
syms a b z
isAlways(diff(whittakerM(a,b,z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(a,b,z) == 0)
ans =
    logical
        1
```

Verify that whittakerM $(-a,-b,-z)$ also is a valid solution of this differential equation:

```
syms a b z
isAlways(diff(whittakerM(-a,-b,-z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(-a,-b,-z) == 0)
ans =
    logical
        l
```


Compute Special Values of Whittaker M Function

The Whittaker M function has special values for some parameters:

```
whittakerM(sym(-3/2), 1, 1)
ans =
exp(1/2)
syms a b x
whittakerM(0, b, x)
ans =
4^b*x^(1/2)*gamma(b + 1)*besseli(b, x/2)
whittakerM(a + 1/2, a, x)
ans =
x^(a + 1/2)*exp(-x/2)whittakerM(a, a - 5/2, x)
ans =
(2*x^(a - 2)*exp(-x/2)*(2*a^2 - 7*a + x^2/2 -...
x*(2*a - 3) + 6))/pochhammer(2*a - 4, 2)
```


Differentiate Whittaker M Function

Differentiate the expression involving the Whittaker M function:

```
syms a b z
diff(whittakerM(a,b,z), z)
ans =
(whittakerM(a + 1, b, z)*(a + b + 1/2))/z -...
(a/z - 1/2)*whittakerM(a, b, z)
```


Compute Whittaker M Function for Matrix Input

Compute the Whittaker M function for the elements of matrix A:

syms x

$\mathrm{A}=\left[-1, x^{\wedge} 2 ; 0, x\right]$;
whittakerM(-1/2, 0, A)

```
ans =
[ exp(-1/2)*1i, exp(x^2/2)*(x^2)^(1/2)]
[ 0, x^(1/2)*exp(x/2)]
```


Input Arguments

a - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If a is a vector or matrix, whittakerM returns the beta function for each element of a.

b - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If b is a vector or matrix, whittakerM returns the beta function for each element of b .

z - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If x is a vector or matrix, whittakerM returns the beta function for each element of z.

Definitions

Whittaker M Function

The Whittaker functions $M_{a, b}(z)$ and $W_{a, b}(z)$ are linearly independent solutions of this differential equation:

$$
\frac{d^{2} w}{d z^{2}}+\left(-\frac{1}{4}+\frac{a}{z}+\frac{1 / 4-b^{2}}{z^{2}}\right) w=0
$$

The Whittaker M function is defined via the confluent hypergeometric functions:

$$
M_{a, b}(z)=e^{-z / 2} z^{b+1 / 2} M\left(b-a+\frac{1}{2}, 1+2 b, z\right)
$$

Tips

- All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then whittakerM expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References

[1] Slater, L. J. "Cofluent Hypergeometric Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

hypergeom | kummerU|whittakerW

Introduced in R2012a

whittakerW

Whittaker W function

Syntax

```
whittakerW(a,b,z)
```


Description

whittakerW ($\mathrm{a}, \mathrm{b}, \mathrm{z}$) returns the value of the Whittaker W function on page 4-1734.

Examples

Compute Whittaker W Function for Numeric Input

Compute the Whittaker W function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

```
[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),...
whittakerW(2, 2, 2), whittakerW(3, -0.3, 1/101)]
ans =
    1.1953 -0.0156-0.0225i 4.8616 -0.1692
```


Compute Whittaker W Function for Symbolic Input

Compute the Whittaker W function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, whittakerW returns unresolved symbolic calls.

```
[whittakerW(sym(1), 1, 1), whittakerW(-2, sym(1), 3/2 + 2*i),...
whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]
ans =
[ whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2i),
whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]
```

For symbolic variables and expressions, whittakerW also returns unresolved symbolic calls:

```
syms a b x y
[whittakerW(a, b, x), whittakerW(1, x, x^2),...
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]
ans =
[ whittakerW(a, b, x), whittakerW(1, x, x^2),
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]
```


Solve ODE for Whittaker Functions

Solve this second-order differential equation. The solutions are given in terms of the Whittaker functions.

```
syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)
ans =
C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)
```


Verify Whittaker Functions are Solution of ODE

Verify that the Whittaker W function is a valid solution of this differential equation:

```
syms a b z
isAlways(diff(whittakerW(a, b, z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z) == 0)
ans =
    logical
        1
```

Verify that whittakerW (-a, -b, -z) also is a valid solution of this differential equation:

```
syms a b z
isAlways(diff(whittakerW(-a, -b, -z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z) == 0)
ans =
    logical
        1
```


Compute Special Values of Whittaker W Function

The Whittaker W function has special values for some parameters:

```
whittakerW(sym(-3/2), 1/2, 0)
ans =
4/(3*pi^(1/2))
syms a b x
whittakerW(0, b, x)
ans =
(x^(b + 1/2)*besselk(b, x/2))/(x^b*pi^(1/2))
whittakerW(a, -a + 1/2, x)
ans =
x^(1 - a)*x^(2*a - 1)*exp(-x/2)
whittakerW(a - 1/2, a, x)
ans =
(x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)
```


Differentiate Whittaker W Function

Differentiate the expression involving the Whittaker W function:

```
syms a b z
diff(whittakerW(a,b,z), z)
ans =
- (a/z - 1/2)*whittakerW(a, b, z) -...
whittakerW(a + 1, b, z)/z
```


Compute Whittaker W Function for Matrix Input

Compute the Whittaker W function for the elements of matrix A :
syms x
$A=\left[-1, x^{\wedge} 2 ; 0, x\right]$;
whittakerW(-1/2, 0, A)

```
ans =
[ - exp(-1/2)*(ei(1) + pi*1i)*1i,...
    exp(\mp@subsup{x}{}{\wedge}2)*exp(-\mp@subsup{x}{}{\wedge}2/2)*expint (x^2)* (x^2)^(1/2)]
[ 0,...
    x^(1/2)*exp(-x/2)*exp(x)*expint (x)]
```


Input Arguments

a - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If a is a vector or matrix, whittakerW returns the beta function for each element of a.

b - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If b is a vector or matrix, whittakerW returns the beta function for each element of b.

z - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

If x is a vector or matrix, whittakerW returns the beta function for each element of z.

Definitions

Whittaker W Function

The Whittaker functions $M_{a, b}(\mathrm{z})$ and $W_{a, b}(\mathrm{z})$ are linearly independent solutions of this differential equation:

$$
\frac{d^{2} w}{d z^{2}}+\left(-\frac{1}{4}+\frac{a}{z}+\frac{1 / 4-b^{2}}{z^{2}}\right) w=0
$$

The Whittaker W function is defined via the confluent hypergeometric functions:

$$
W_{a, b}(z)=e^{-z / 2} z^{b+1 / 2} U\left(b-a+\frac{1}{2}, 1+2 b, z\right)
$$

Tips

- All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then whittakerW expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References

[1] Slater, L. J. "Cofluent Hypergeometric Functions." Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

hypergeom | kummerU|whittakerM

Introduced in R2012a

wrightOmega

Wright omega function

Syntax

wright0mega(x)

Description

wrightOmega (x) computes the Wright omega function on page 4-1737 of x. If z is a matrix, wright0mega acts elementwise on z.

Examples

Compute Wright Omega Function of Numeric Inputs

Compute the Wright omega function for these numbers. Because these numbers are not symbolic objects, you get floating-point results:

```
wrightOmega(1/2)
ans =
    0.7662
wrightOmega(pi)
ans =
    2.3061wright0mega(-1+i*pi)
ans =
    -1.0000 + 0.0000
```


Compute Wright Omega Function of Symbolic Numbers

Compute the Wright omega function for the numbers converted to symbolic objects. For most symbolic (exact) numbers, wright0mega returns unresolved symbolic calls:

```
wright0mega(sym(1/2))
ans =
wrightOmega(1/2)
wrightOmega(sym(pi))
ans =
wrightOmega(pi)
```

For some exact numbers, wright0mega has special values:

```
wright0mega(-1+i*sym(pi))
ans =
    -1
```


Compute Wright Omega Function of Symbolic Expression

Compute the Wright omega function for x and $\sin (x)+x^{*} \exp (x)$. For symbolic variables and expressions, wright0mega returns unresolved symbolic calls:

```
syms x
wrightOmega(x)
wrightOmega(sin(x) + x*exp(x))
ans =
wright0mega(x)
ans =
wrightOmega(sin(x) + x*exp(x))
```


Compute Derivative of Wright Omega Function

Now compute the derivatives of these expressions:

```
diff(wright0mega(x), x, 2)
diff(wrightOmega(sin(x) + x*exp(x)), x)
```

```
ans =
wright0mega(x)/(wright0mega(x) + 1)^2
wright0mega(x)^2/(wright0mega(x) + 1)^3
ans =
(wright0mega(sin(x) + x*exp(x))*(cos(x) +...
exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)
```


Compute Wright Omega Function for Matrix Input

Compute the Wright omega function for elements of matrix M and vector V :

```
M = [0 pi; 1/3 -pi];
V = sym([0; -1+i*pi]);
wrightOmega(M)
wrightOmega(V)
ans =
    0.5671 
ans =
    lambertw(0, 1)
-1
```


Input Arguments

x - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Definitions

Wright omega Function

The Wright omega function is defined in terms of the Lambert W function:

$$
\left.\omega(x)=W_{\left\lceil\frac{\operatorname{Im}(x)-\pi}{2 \pi}\right.}\right\rceil^{\left(e^{x}\right)}
$$

The Wright omega function $\omega(x)$ is a solution of the equation $Y+\log (Y)=X$.

References

[1] Corless, R. M. and D. J. Jeffrey. "The Wright omega Function." Artificial Intelligence, Automated Reasoning, and Symbolic Computation (J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, eds.). Berlin: Springer-Verlag, 2002, pp. 76-89.

See Also

lambertW|log

Introduced in R2011b

xOr

Logical XOR for symbolic expressions

Syntax

$\operatorname{xor}(A, B)$

Description

$\operatorname{xor}(A, B)$ represents the logical exclusive disjunction. $\operatorname{xor}(A, B)$ is true when either A or B are true. If both A and B are true or false, $\operatorname{xor}(A, B)$ is false.

Examples

Set and Evaluate Condition

Combine two symbolic inequalities into the logical expression using xor:

```
syms x
range = xor(x > -10, x < 10);
```

Replace variable x with these numeric values. If you replace x with 11, then inequality x >-10 is valid and $x<10$ is invalid. If you replace x with 0 , both inequalities are valid. Note that subs does not evaluate these inequalities to logical 1 or 0 .

```
x1 = subs(range, x, 11)
x2 = subs(range, x, 0)
x1 =
-10< 11 xor 11 < 10
x2 =
-10< 0 xor 0 < 10
```

To evaluate these inequalities to logical 1 or 0 , use isAlways. If only one inequality is valid, the expression with xor evaluates to logical 1. If both inequalities are valid, the expression with xor evaluates to logical 0.

```
isAlways(x1)
isAlways(x2)
ans =
    logical
        1
ans =
    logical
            0
```

Note that simplify does not simplify these logical expressions to logical 1 or 0 . Instead, they return symbolic values TRUE or FALSE.

```
s1 = simplify(x1)
s2 = simplify(x2)
s1 =
TRUE
s2 =
FALSE
```

Convert symbolic TRUE or FALSE to logical values using isAlways:

```
isAlways(s1)
isAlways(s2)
ans =
    logical
        1
ans =
    logical
            0
```


Input Arguments

A - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

B - Input

number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.

Tips

- If you call simplify for a logical expression containing symbolic subexpressions, you can get symbolic values TRUE or FALSE. These values are not the same as logical 1 (true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values, use isAlways.
- assume and assumeAlso do not accept assumptions that contain xor.

See Also

all|and|any|isAlways|not|or

Introduced in R2012a

zeta

Riemann zeta function

Syntax

```
zeta(z)
zeta(n,z)
```


Description

zeta(z) evaluates the Riemann zeta function at the elements of z, where z is a numeric or symbolic input.
zeta (n, z) returns the nth derivative of zeta(z$)$.

Examples

Find Riemann Zeta Function for Numeric and Symbolic Inputs

Find the Riemann zeta function for numeric inputs.

```
zeta([0.7 i 4 11/3])
ans =
    -2.7784 + 0.0000i 0.0033 - 0.4182i 1.0823 + 0.0000i 1.1094 + 0.0000i
```

Find the Riemann zeta function symbolically by converting the inputs to symbolic objects using sym. The zeta function returns exact results.

```
zeta(sym([0.7 i 4 11/3]))
ans =
[ zeta(7/10), zeta(1i), pi^4/90, zeta(11/3)]
```

zeta returns unevaluated function calls for symbolic inputs that do not have results implemented. The implemented results are listed in "Algorithms" on page 4-1745.

Find the Riemann zeta function for a matrix of symbolic expressions.

```
syms x y
Z = zeta([x sin(x); 8*x/11 x + y])
Z =
[ zeta(x), zeta(sin(x))]
[ zeta((8*x)/11), zeta(x + y)]
```


Find Riemann Zeta Function for Large Inputs

For values of $|z|>1000$, zeta (z) might return an unevaluated function call. Use expand to force zeta to evaluate the function call.

```
zeta(sym(1002))
expand(zeta(sym(1002)))
ans =
zeta(1002)
ans =
(1087503...312*pi^1002)/15156647...375
```


Differentiate Riemann Zeta Function

Find the third derivative of the Riemann zeta function at point x.

```
syms x
expr = zeta(3,x)
expr =
zeta(3, x)
```

Find the third derivative at $\mathrm{x}=4$ by substituting 4 for x using subs.

```
expr = subs(expr,x,4)
expr =
zeta(3, 4)
```

Evaluate expr using vpa.
expr = vpa(expr)
expr =
-0.07264084989132137196244616781177

Plot Zeros of Riemann Zeta Function

Zeros of the Riemann Zeta function zeta ($x+i^{*} y$) are found along the line $x=1 / 2$. Plot the absolute value of the function along this line for $0<y<30$ to view the first three zeros. Prior to R2016a, use ezplot instead of fplot.

```
syms y
fplot(abs(zeta(1/2+1i*y)),[0 30])
grid on
```


Input Arguments

z - Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function or expression.

n - Order of derivative

nonnegative integer
Order of derivative, specified as a nonnegative integer.

Definitions

Riemann Zeta Function

The Riemann zeta function is defined by

$$
\zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}}
$$

The series converges only if the real part of z is greater than 1 . The definition of the function is extended to the entire complex plane, except for a simple pole $z=1$, by analytic continuation.

Tips

- Floating point evaluation is slow for large values of n.

Algorithms

The following exact values are implemented.

- $\zeta(0)=-\frac{1}{2}$
- $\zeta(0,1)=-\frac{\ln (\pi)}{2}-\frac{\ln (2)}{2}$
$\zeta(\infty)=1$
If $z<0$ and z is an even integer, $\zeta(z)=0$.
- If $z<0$ and z is an odd integer

$$
\zeta(z)=-\frac{\text { bernoulli }(1-z)}{1-z}
$$

For $z<-1000$, zeta (z) returns an unevaluated function call. To force evaluation, use expand(zeta(z)).

- If $z>0$ and z is an even integer

$$
\zeta(z)=\frac{(2 \pi)^{z} \mid \text { bernoulli }(z) \mid}{2 z!}
$$

For $z>1000$, zeta (z) returns an unevaluated function call. To force evaluation, use expand(zeta(z)).

If $n>0, \zeta(n, \infty)=0$.

- If the argument does not evaluate to a listed special value, zeta returns the symbolic function call.

See Also

bernoulli

Introduced before R2006a

ztrans

Z-transform

Syntax

```
ztrans(f)
ztrans(f,transVar)
ztrans(f,var,transVar)
```


Description

ztrans(f) finds the "Z-Transform" on page 4-1751 of f. By default, the independent variable is n and the transformation variable is z. If f does not contain n, $z t r a n s$ uses symvar.
ztrans(f,transVar) uses the transformation variable transVar instead of z.
ztrans(f,var,transVar) uses the independent variable var and transformation variable transVar instead of n and z, respectively.

Examples

Z-Transform of Symbolic Expression

Compute the Z-transform of $\sin (\mathrm{n})$. By default, the transform is in terms of z .
syms n
$\mathrm{f}=\sin (\mathrm{n})$;
ztrans(f)
ans $=$
$\left(z^{*} \sin (1)\right) /\left(z^{\wedge} 2-2 * \cos (1) * z+1\right)$

Specify Independent Variable and Transformation Variable

Compute the Z-transform of $\exp (m+n)$. By default, the independent variable is n and the transformation variable is z .
syms m n
$\mathrm{f}=\exp (\mathrm{m}+\mathrm{n})$;
ztrans(f)
ans $=$
(z*exp(m))/(z - exp(1))
Specify the transformation variable as y. If you specify only one variable, that variable is the transformation variable. The independent variable is still n.

```
syms y
ztrans(f,y)
ans =
(y*exp(m))/(y - exp(1))
```

Specify both the independent and transformation variables as m and y in the second and third arguments, respectively.

```
ztrans(f,m,y)
```

ans $=$
$\left(y^{*} \exp (n)\right) /(y-\exp (1))$

Z-Transforms Involving Dirac and Heaviside Functions

Compute the Z-transform of the Heaviside function and the binomial coefficient.

```
syms n z
ztrans(heaviside(n-3),n,z)
ans =
(1/(z - 1) + 1/2)/z^3
ztrans(nchoosek(n,2))
```


ans $=$

$z /(z-1)^{\wedge} 3$

Z-Transform of Array Inputs

Find the Z-transform of the matrix M. Specify the independent and transformation variables for each matrix entry by using matrices of the same size. When the arguments are nonscalars, ztrans acts on them element-wise.

```
syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
ztrans(M,vars,transVars)
ans =
[ (a*exp(x))/(a - 1), b/(b - 1)]
[ (c*sin(1))/(c^2 - 2* cos(1)*c + 1), (d*1i)/(d - 1)^2]
```

If ztrans is called with both scalar and nonscalar arguments, then it expands the scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be the same size.

```
syms w x y z a b c d
ztrans(x,vars,transVars)
ans =
[ (a*x)/(a - 1), b/(b - 1)^2]
[ (c*x)/(c - 1), (d*x)/(d - 1)]
```


Z-Transform of Symbolic Function

Compute the Z-transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.

```
syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ztrans([f1 f2],x,[a b])
```

```
ans =
[ a/(a - exp(1)), b/(b - 1)^2]
```


If Z-Transform Cannot Be Found

If ztrans cannot transform the input then it returns an unevaluated call.

```
syms f(n)
f(n) = 1/n;
F = ztrans(f,n,z)
F =
ztrans(1/n, n, z)
```

Return the original expression by using iztrans.

```
iztrans(F,z,n)
```

ans $=$
$1 / n$

Input Arguments

```
f - Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix
```

Input, specified as a symbolic expression, function, vector, or matrix.

var - Independent variable

n (default) | symbolic variable

Independent variable, specified as a symbolic variable. This variable is often called the "discrete time variable". If you do not specify the variable, then ztrans uses n. If f does not contain n, then ztrans uses the function symvar.

transVar - Transformation variable

z (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix
Transformation variable, specified as a symbolic variable, expression, vector, or matrix. This variable is often called the "complex frequency variable." By default, ztrans uses z. If z is the independent variable of f, then z trans uses w.

Definitions

Z-Transform

The Z-transform $F=F(z)$ of the expression $f=f(n)$ with respect to the variable n at the point z is

$$
F(z)=\sum_{n=0}^{\infty} \frac{f(n)}{z^{n}}
$$

Tips

- If any argument is an array, then ztrans acts element-wise on all elements of the array.
- If the first argument contains a symbolic function, then the second argument must be a scalar.
- To compute the inverse Z-transform, use iztrans.

See Also

fourier|ifourier|ilaplace|iztrans|kroneckerDelta|laplace

Topics

"Solve Difference Equations Using Z-Transform" on page 2-238

Introduced before R2006a

[^0]: Topics
 "Solve Differential Equations Using Laplace Transform" on page 2-230

 Introduced before R2006a

[^1]: number | symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic matrix

[^2]: Topics
 "Set Assumptions" on page 1-28

 Introduced in R2012a

[^3]: symbolic integer | polynomial | symbolic vector | symbolic matrix

